#include "ClipperUtils.hpp" #include "ExtrusionEntityCollection.hpp" #include "PerimeterGenerator.hpp" #include "Layer.hpp" #include "Print.hpp" #include "SupportMaterial.hpp" #include "Fill/FillBase.hpp" #include "EdgeGrid.hpp" #include #include #include #include // #define SLIC3R_DEBUG // Make assert active if SLIC3R_DEBUG #ifdef SLIC3R_DEBUG #undef NDEBUG #include "SVG.hpp" #endif #include namespace Slic3r { // Increment used to reach MARGIN in steps to avoid trespassing thin objects #define NUM_MARGIN_STEPS 3 // Dimensions of a tree-like structure to save material #define PILLAR_SIZE (2.5) #define PILLAR_SPACING 10 //#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 3. //#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 1.5 #define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtSquare, 0. #ifdef SLIC3R_DEBUG const char* support_surface_type_to_color_name(const PrintObjectSupportMaterial::SupporLayerType surface_type) { switch (surface_type) { case PrintObjectSupportMaterial::sltTopContact: return "rgb(255,0,0)"; // "red"; case PrintObjectSupportMaterial::sltTopInterface: return "rgb(0,255,0)"; // "green"; case PrintObjectSupportMaterial::sltBase: return "rgb(0,0,255)"; // "blue"; case PrintObjectSupportMaterial::sltBottomInterface:return "rgb(255,255,128)"; // yellow case PrintObjectSupportMaterial::sltBottomContact: return "rgb(255,0,255)"; // magenta case PrintObjectSupportMaterial::sltRaftInterface: return "rgb(0,255,255)"; case PrintObjectSupportMaterial::sltRaftBase: return "rgb(128,128,128)"; case PrintObjectSupportMaterial::sltUnknown: return "rgb(128,0,0)"; // maroon default: return "rgb(64,64,64)"; }; } Point export_support_surface_type_legend_to_svg_box_size() { return Point(scale_(1.+10.*8.), scale_(3.)); } void export_support_surface_type_legend_to_svg(SVG &svg, const Point &pos) { // 1st row coord_t pos_x0 = pos.x + scale_(1.); coord_t pos_x = pos_x0; coord_t pos_y = pos.y + scale_(1.5); coord_t step_x = scale_(10.); svg.draw_legend(Point(pos_x, pos_y), "top contact" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltTopContact)); pos_x += step_x; svg.draw_legend(Point(pos_x, pos_y), "top iface" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltTopInterface)); pos_x += step_x; svg.draw_legend(Point(pos_x, pos_y), "base" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBase)); pos_x += step_x; svg.draw_legend(Point(pos_x, pos_y), "bottom iface" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBottomInterface)); pos_x += step_x; svg.draw_legend(Point(pos_x, pos_y), "bottom contact" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBottomContact)); // 2nd row pos_x = pos_x0; pos_y = pos.y+scale_(2.8); svg.draw_legend(Point(pos_x, pos_y), "raft interface" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltRaftInterface)); pos_x += step_x; svg.draw_legend(Point(pos_x, pos_y), "raft base" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltRaftBase)); pos_x += step_x; svg.draw_legend(Point(pos_x, pos_y), "unknown" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltUnknown)); pos_x += step_x; svg.draw_legend(Point(pos_x, pos_y), "intermediate" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltIntermediate)); } void export_print_z_polygons_to_svg(const char *path, PrintObjectSupportMaterial::MyLayer ** const layers, size_t n_layers) { BoundingBox bbox; for (int i = 0; i < n_layers; ++ i) bbox.merge(get_extents(layers[i]->polygons)); Point legend_size = export_support_surface_type_legend_to_svg_box_size(); Point legend_pos(bbox.min.x, bbox.max.y); bbox.merge(Point(std::max(bbox.min.x + legend_size.x, bbox.max.x), bbox.max.y + legend_size.y)); SVG svg(path, bbox); const float transparency = 0.5f; for (int i = 0; i < n_layers; ++ i) svg.draw(union_ex(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type), transparency); for (int i = 0; i < n_layers; ++ i) svg.draw(to_lines(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type)); export_support_surface_type_legend_to_svg(svg, legend_pos); svg.Close(); } #endif /* SLIC3R_DEBUG */ PrintObjectSupportMaterial::PrintObjectSupportMaterial(const PrintObject *object, const SlicingParameters &slicing_params) : m_object (object), m_print_config (&object->print()->config), m_object_config (&object->config), m_slicing_params (slicing_params), m_first_layer_flow (Flow::new_from_config_width( frSupportMaterial, // The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution. (object->print()->config.first_layer_extrusion_width.value > 0) ? object->print()->config.first_layer_extrusion_width : object->config.support_material_extrusion_width, float(object->print()->config.nozzle_diameter.get_at(object->config.support_material_extruder-1)), float(slicing_params.first_print_layer_height), false)), m_support_material_flow (Flow::new_from_config_width( frSupportMaterial, // The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution. (object->config.support_material_extrusion_width.value > 0) ? object->config.support_material_extrusion_width : object->config.extrusion_width, float(object->print()->config.nozzle_diameter.get_at(object->config.support_material_extruder-1)), float(slicing_params.layer_height), false)), m_support_material_interface_flow(Flow::new_from_config_width( frSupportMaterialInterface, // The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution. (object->config.support_material_extrusion_width > 0) ? object->config.support_material_extrusion_width : object->config.extrusion_width, float(object->print()->config.nozzle_diameter.get_at(object->config.support_material_interface_extruder-1)), float(slicing_params.layer_height), false)), // 50 mirons layer m_support_layer_height_min (0.05), m_support_layer_height_max (0.) { if (m_object_config->support_material_interface_layers.value == 0) { // No interface layers allowed, print everything with the base support pattern. m_support_material_interface_flow = m_support_material_flow; } // Evaluate the XY gap between the object outer perimeters and the support structures. coordf_t external_perimeter_width = 0.; for (std::map>::const_iterator it_region = object->region_volumes.begin(); it_region != object->region_volumes.end(); ++ it_region) { const PrintRegionConfig &config = object->print()->get_region(it_region->first)->config; coordf_t width = config.external_perimeter_extrusion_width.get_abs_value(slicing_params.layer_height); if (width <= 0.) width = m_print_config->nozzle_diameter.get_at(config.perimeter_extruder-1); external_perimeter_width = std::max(external_perimeter_width, width); } m_gap_xy = m_object_config->support_material_xy_spacing.get_abs_value(external_perimeter_width); } // Using the std::deque as an allocator. inline PrintObjectSupportMaterial::MyLayer& layer_allocate( std::deque &layer_storage, PrintObjectSupportMaterial::SupporLayerType layer_type) { layer_storage.push_back(PrintObjectSupportMaterial::MyLayer()); layer_storage.back().layer_type = layer_type; return layer_storage.back(); } inline void layers_append(PrintObjectSupportMaterial::MyLayersPtr &dst, const PrintObjectSupportMaterial::MyLayersPtr &src) { dst.insert(dst.end(), src.begin(), src.end()); } // Compare layers lexicographically. struct MyLayersPtrCompare { bool operator()(const PrintObjectSupportMaterial::MyLayer* layer1, const PrintObjectSupportMaterial::MyLayer* layer2) const { return *layer1 < *layer2; } }; void PrintObjectSupportMaterial::generate(PrintObject &object) { BOOST_LOG_TRIVIAL(info) << "Support generator - Start"; coordf_t max_object_layer_height = 0.; for (size_t i = 0; i < object.layer_count(); ++ i) max_object_layer_height = std::max(max_object_layer_height, object.layers[i]->height); if (m_support_layer_height_max == 0) m_support_layer_height_max = std::max(max_object_layer_height, 0.75 * m_support_material_flow.nozzle_diameter); // m_support_interface_layer_height_max = std::max(max_object_layer_height, 0.75 * m_support_material_interface_flow.nozzle_diameter); // Layer instances will be allocated by std::deque and they will be kept until the end of this function call. // The layers will be referenced by various LayersPtr (of type std::vector) MyLayerStorage layer_storage; BOOST_LOG_TRIVIAL(info) << "Support generator - Creating top contacts"; // Determine the top contact surfaces of the support, defined as: // contact = overhangs - clearance + margin // This method is responsible for identifying what contact surfaces // should the support material expose to the object in order to guarantee // that it will be effective, regardless of how it's built below. // If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette without holes. MyLayersPtr top_contacts = this->top_contact_layers(object, layer_storage); if (top_contacts.empty()) // Nothing is supported, no supports are generated. return; #ifdef SLIC3R_DEBUG static int iRun = 0; iRun ++; for (MyLayersPtr::const_iterator it = top_contacts.begin(); it != top_contacts.end(); ++ it) Slic3r::SVG::export_expolygons( debug_out_path("support-top-contacts-%d-%lf.svg", iRun, (*it)->print_z), union_ex((*it)->polygons, false)); #endif /* SLIC3R_DEBUG */ BOOST_LOG_TRIVIAL(info) << "Support generator - Creating bottom contacts"; // Determine the bottom contact surfaces of the supports over the top surfaces of the object. // Depending on whether the support is soluble or not, the contact layer thickness is decided. // layer_support_areas contains the per object layer support areas. These per object layer support areas // may get merged and trimmed by this->generate_base_layers() if the support layers are not synchronized with object layers. std::vector layer_support_areas; MyLayersPtr bottom_contacts = this->bottom_contact_layers_and_layer_support_areas( object, top_contacts, layer_storage, layer_support_areas); #ifdef SLIC3R_DEBUG for (size_t layer_id = 0; layer_id < object.layers.size(); ++ layer_id) Slic3r::SVG::export_expolygons( debug_out_path("support-areas-%d-%lf.svg", iRun, object.layers[layer_id]->print_z), union_ex(layer_support_areas[layer_id], false)); #endif /* SLIC3R_DEBUG */ BOOST_LOG_TRIVIAL(info) << "Support generator - Trimming top contacts by bottom contacts"; // Because the top and bottom contacts are thick slabs, they may overlap causing over extrusion // and unwanted strong bonds to the object. // Rather trim the top contacts by their overlapping bottom contacts to leave a gap instead of over extruding // top contacts over the bottom contacts. this->trim_top_contacts_by_bottom_contacts(object, bottom_contacts, top_contacts); BOOST_LOG_TRIVIAL(info) << "Support generator - Creating intermediate layers - indices"; // Allocate empty layers between the top / bottom support contact layers // as placeholders for the base and intermediate support layers. // The layers may or may not be synchronized with the object layers, depending on the configuration. // For example, a single nozzle multi material printing will need to generate a waste tower, which in turn // wastes less material, if there are as little tool changes as possible. MyLayersPtr intermediate_layers = this->raft_and_intermediate_support_layers( object, bottom_contacts, top_contacts, layer_storage, max_object_layer_height); this->trim_support_layers_by_object(object, top_contacts, m_support_layer_height_min, 0., m_gap_xy); BOOST_LOG_TRIVIAL(info) << "Support generator - Creating base layers"; // Fill in intermediate layers between the top / bottom support contact layers, trimm them by the object. this->generate_base_layers(object, bottom_contacts, top_contacts, intermediate_layers, layer_support_areas); #ifdef SLIC3R_DEBUG for (MyLayersPtr::const_iterator it = intermediate_layers.begin(); it != intermediate_layers.end(); ++ it) Slic3r::SVG::export_expolygons( debug_out_path("support-base-layers-%d-%lf.svg", iRun, (*it)->print_z), union_ex((*it)->polygons, false)); #endif /* SLIC3R_DEBUG */ BOOST_LOG_TRIVIAL(info) << "Support generator - Creating raft"; // If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette with holes filled. // There is also a 1st intermediate layer containing bases of support columns. // Inflate the bases of the support columns and create the raft base under the object. MyLayersPtr raft_layers = this->generate_raft_base(object, top_contacts, intermediate_layers, layer_storage); /* // If we wanted to apply some special logic to the first support layers lying on // object's top surfaces this is the place to detect them LayersSet shape; if (m_objectconfig->support_material_pattern.value == smpPillars) shape = this->generate_pillars_shape(contact, support_z); */ BOOST_LOG_TRIVIAL(info) << "Support generator - Creating interfaces"; // Propagate top / bottom contact layers to generate interface layers. MyLayersPtr interface_layers = this->generate_interface_layers( object, bottom_contacts, top_contacts, intermediate_layers, layer_storage); #ifdef SLIC3R_DEBUG for (MyLayersPtr::const_iterator it = interface_layers.begin(); it != interface_layers.end(); ++ it) Slic3r::SVG::export_expolygons( debug_out_path("support-interface-layers-%d-%lf.svg", iRun, (*it)->print_z), union_ex((*it)->polygons, false)); #endif /* SLIC3R_DEBUG */ /* // Clip with the pillars. if (! shape.empty()) { this->clip_with_shape(interface, shape); this->clip_with_shape(base, shape); } */ BOOST_LOG_TRIVIAL(info) << "Support generator - Creating layers"; // raft_layers.clear(); // bottom_contacts.clear(); // top_contacts.clear(); // intermediate_layers.clear(); // interface_layers.clear(); // Install support layers into the object. // A support layer installed on a PrintObject has a unique print_z. MyLayersPtr layers_sorted; layers_sorted.reserve(raft_layers.size() + bottom_contacts.size() + top_contacts.size() + intermediate_layers.size() + interface_layers.size()); layers_append(layers_sorted, raft_layers); layers_append(layers_sorted, bottom_contacts); layers_append(layers_sorted, top_contacts); layers_append(layers_sorted, intermediate_layers); layers_append(layers_sorted, interface_layers); // Sort the layers lexicographically by a raising print_z and a decreasing height. std::sort(layers_sorted.begin(), layers_sorted.end(), MyLayersPtrCompare()); int layer_id = 0; assert(object.support_layers.empty()); for (int i = 0; i < int(layers_sorted.size());) { // Find the last layer with roughly the same print_z, find the minimum layer height of all. // Due to the floating point inaccuracies, the print_z may not be the same even if in theory they should. int j = i + 1; coordf_t zmax = layers_sorted[i]->print_z + EPSILON; for (; j < layers_sorted.size() && layers_sorted[j]->print_z <= zmax; ++j) ; // Assign an average print_z to the set of layers with nearly equal print_z. coordf_t zavg = 0.5 * (layers_sorted[i]->print_z + layers_sorted[j - 1]->print_z); coordf_t height_min = layers_sorted[i]->height; for (int u = i; u < j; ++u) { MyLayer &layer = *layers_sorted[u]; layer.print_z = zavg; height_min = std::min(height_min, layer.height); } object.add_support_layer(layer_id, height_min, zavg); if (layer_id > 0) { // Inter-link the support layers into a linked list. SupportLayer *sl1 = object.support_layers[object.support_layer_count()-2]; SupportLayer *sl2 = object.support_layers.back(); sl1->upper_layer = sl2; sl2->lower_layer = sl1; } #ifdef SLIC3R_DEBUG export_print_z_polygons_to_svg(debug_out_path("support-%d-%lf.svg", iRun, zavg).c_str(), layers_sorted.data() + i, j - i); #endif i = j; ++ layer_id; } BOOST_LOG_TRIVIAL(info) << "Support generator - Generating tool paths"; // Generate the actual toolpaths and save them into each layer. this->generate_toolpaths(object, raft_layers, bottom_contacts, top_contacts, intermediate_layers, interface_layers); BOOST_LOG_TRIVIAL(info) << "Support generator - End"; } // Collect all polygons of all regions in a layer with a given surface type. Polygons collect_region_slices_by_type(const Layer &layer, SurfaceType surface_type) { // 1) Count the new polygons first. size_t n_polygons_new = 0; for (LayerRegionPtrs::const_iterator it_region = layer.regions.begin(); it_region != layer.regions.end(); ++ it_region) { const LayerRegion ®ion = *(*it_region); const SurfaceCollection &slices = region.slices; for (Surfaces::const_iterator it = slices.surfaces.begin(); it != slices.surfaces.end(); ++ it) { const Surface &surface = *it; if (surface.surface_type == surface_type) n_polygons_new += surface.expolygon.holes.size() + 1; } } // 2) Collect the new polygons. Polygons out; out.reserve(n_polygons_new); for (LayerRegionPtrs::const_iterator it_region = layer.regions.begin(); it_region != layer.regions.end(); ++ it_region) { const LayerRegion ®ion = *(*it_region); const SurfaceCollection &slices = region.slices; for (Surfaces::const_iterator it = slices.surfaces.begin(); it != slices.surfaces.end(); ++ it) { const Surface &surface = *it; if (surface.surface_type == surface_type) polygons_append(out, surface.expolygon); } } return out; } // Collect outer contours of all slices of this layer. // This is useful for calculating the support base with holes filled. Polygons collect_slices_outer(const Layer &layer) { Polygons out; out.reserve(out.size() + layer.slices.expolygons.size()); for (ExPolygons::const_iterator it = layer.slices.expolygons.begin(); it != layer.slices.expolygons.end(); ++ it) out.push_back(it->contour); return out; } // Generate top contact layers supporting overhangs. // For a soluble interface material synchronize the layer heights with the object, otherwise leave the layer height undefined. // If supports over bed surface only are requested, don't generate contact layers over an object. PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_layers( const PrintObject &object, MyLayerStorage &layer_storage) const { #ifdef SLIC3R_DEBUG static int iRun = 0; ++ iRun; #endif /* SLIC3R_DEBUG */ // Output layers, sorted by top Z. MyLayersPtr contact_out; // If user specified a custom angle threshold, convert it to radians. // Zero means automatic overhang detection. double threshold_rad = (m_object_config->support_material_threshold.value > 0) ? M_PI * double(m_object_config->support_material_threshold.value + 1) / 180. : // +1 makes the threshold inclusive 0.; // Build support on a build plate only? If so, then collect top surfaces into buildplate_only_top_surfaces // and subtract buildplate_only_top_surfaces from the contact surfaces, so // there is no contact surface supported by a top surface. bool buildplate_only = this->build_plate_only(); Polygons buildplate_only_top_surfaces; // Determine top contact areas. // If generating raft only (no support), only calculate top contact areas for the 0th layer. size_t num_layers = this->has_support() ? object.layer_count() : 1; // If having a raft, start with 0th layer, otherwise with 1st layer. // Note that layer_id < layer->id when raft_layers > 0 as the layer->id incorporates the raft layers. // So layer_id == 0 means first object layer and layer->id == 0 means first print layer if there are no explicit raft layers. for (size_t layer_id = this->has_raft() ? 0 : 1; layer_id < num_layers; ++ layer_id) { const Layer &layer = *object.layers[layer_id]; // Detect overhangs and contact areas needed to support them. // Collect overhangs and contacts of all regions of this layer supported by the layer immediately below. Polygons overhang_polygons; Polygons contact_polygons; Polygons slices_margin_cached; float slices_margin_cached_offset = -1.; if (layer_id == 0) { // This is the first object layer, so the object is being printed on a raft and // we're here just to get the object footprint for the raft. // We only consider contours and discard holes to get a more continuous raft. overhang_polygons = collect_slices_outer(layer); // Extend by SUPPORT_MATERIAL_MARGIN, which is 1.5mm contact_polygons = offset(overhang_polygons, scale_(SUPPORT_MATERIAL_MARGIN)); } else { // Generate overhang / contact_polygons for non-raft layers. const Layer &lower_layer = *object.layers[layer_id-1]; if (buildplate_only) { // Merge the new slices with the preceding slices. // Apply the safety offset to the newly added polygons, so they will connect // with the polygons collected before, // but don't apply the safety offset during the union operation as it would // inflate the polygons over and over. polygons_append(buildplate_only_top_surfaces, offset(lower_layer.slices.expolygons, scale_(0.01))); buildplate_only_top_surfaces = union_(buildplate_only_top_surfaces, false); // don't apply the safety offset. } for (LayerRegionPtrs::const_iterator it_layerm = layer.regions.begin(); it_layerm != layer.regions.end(); ++ it_layerm) { const LayerRegion &layerm = *(*it_layerm); // Extrusion width accounts for the roundings of the extrudates. // It is the maximum widh of the extrudate. float fw = float(layerm.flow(frExternalPerimeter).scaled_width()); float lower_layer_offset = (layer_id < m_object_config->support_material_enforce_layers.value) ? // Enforce a full possible support, ignore the overhang angle. 0.f : (threshold_rad > 0. ? // Overhang defined by an angle. float(scale_(lower_layer.height / tan(threshold_rad))) : // Overhang defined by half the extrusion width. 0.5f * fw); // Overhang polygons for this layer and region. Polygons diff_polygons; Polygons layerm_polygons = to_polygons(layerm.slices); Polygons lower_layer_polygons = to_polygons(lower_layer.slices.expolygons); if (lower_layer_offset == 0.f) { // Support everything. diff_polygons = diff(layerm_polygons, lower_layer_polygons); } else { // Get the regions needing a suport, collapse very tiny spots. //FIXME cache the lower layer offset if this layer has multiple regions. diff_polygons = offset2( diff(layerm_polygons, offset(lower_layer_polygons, lower_layer_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS)), -0.1f*fw, +0.1f*fw); if (diff_polygons.empty()) continue; // Offset the support regions back to a full overhang, restrict them to the full overhang. diff_polygons = diff( intersection(offset(diff_polygons, lower_layer_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS), layerm_polygons), lower_layer_polygons); } if (diff_polygons.empty()) continue; #ifdef SLIC3R_DEBUG { ::Slic3r::SVG svg(debug_out_path("support-top-contacts-raw-run%d-layer%d-region%d.svg", iRun, layer_id, it_layerm - layer.regions.begin()), get_extents(diff_polygons)); Slic3r::ExPolygons expolys = union_ex(diff_polygons, false); svg.draw(expolys); } #endif /* SLIC3R_DEBUG */ if (m_object_config->dont_support_bridges) { // compute the area of bridging perimeters // Note: this is duplicate code from GCode.pm, we need to refactor if (true) { Polygons bridged_perimeters; { Flow bridge_flow = layerm.flow(frPerimeter, true); coordf_t nozzle_diameter = m_print_config->nozzle_diameter.get_at(layerm.region()->config.perimeter_extruder-1); Polygons lower_grown_slices = offset(lower_layer_polygons, 0.5f*float(scale_(nozzle_diameter)), SUPPORT_SURFACES_OFFSET_PARAMETERS); // Collect perimeters of this layer. // TODO: split_at_first_point() could split a bridge mid-way Polylines overhang_perimeters; for (ExtrusionEntitiesPtr::const_iterator it_island = layerm.perimeters.entities.begin(); it_island != layerm.perimeters.entities.end(); ++ it_island) { const ExtrusionEntityCollection *island = dynamic_cast(*it_island); assert(island != NULL); for (size_t i = 0; i < island->entities.size(); ++ i) { ExtrusionEntity *entity = island->entities[i]; ExtrusionLoop *loop = dynamic_cast(entity); overhang_perimeters.push_back(loop ? loop->as_polyline() : dynamic_cast(entity)->polyline); } } // workaround for Clipper bug, see Slic3r::Polygon::clip_as_polyline() for (Polylines::iterator it = overhang_perimeters.begin(); it != overhang_perimeters.end(); ++ it) it->points[0].x += 1; // Trim the perimeters of this layer by the lower layer to get the unsupported pieces of perimeters. overhang_perimeters = diff_pl(overhang_perimeters, lower_grown_slices); // only consider straight overhangs // only consider overhangs having endpoints inside layer's slices // convert bridging polylines into polygons by inflating them with their thickness // since we're dealing with bridges, we can't assume width is larger than spacing, // so we take the largest value and also apply safety offset to be ensure no gaps // are left in between float w = float(std::max(bridge_flow.scaled_width(), bridge_flow.scaled_spacing())); for (Polylines::iterator it = overhang_perimeters.begin(); it != overhang_perimeters.end(); ++ it) { if (it->is_straight()) { // This is a bridge it->extend_start(fw); it->extend_end(fw); if (layer.slices.contains(it->first_point()) && layer.slices.contains(it->last_point())) // Offset a polyline into a polygon. polygons_append(bridged_perimeters, offset(*it, 0.5f * w + 10.f)); } } bridged_perimeters = union_(bridged_perimeters); } // remove the entire bridges and only support the unsupported edges Polygons bridges; for (Surfaces::const_iterator it = layerm.fill_surfaces.surfaces.begin(); it != layerm.fill_surfaces.surfaces.end(); ++ it) if (it->surface_type == stBottomBridge && it->bridge_angle != -1) polygons_append(bridges, it->expolygon); diff_polygons = diff(diff_polygons, bridges, true); polygons_append(bridges, bridged_perimeters); polygons_append(diff_polygons, intersection( // Offset unsupported edges into polygons. offset(layerm.unsupported_bridge_edges.polylines, scale_(SUPPORT_MATERIAL_MARGIN), SUPPORT_SURFACES_OFFSET_PARAMETERS), bridges)); } else { // just remove bridged areas diff_polygons = diff(diff_polygons, layerm.bridged, true); } } // if (m_objconfig->dont_support_bridges) if (buildplate_only) { // Don't support overhangs above the top surfaces. // This step is done before the contact surface is calculated by growing the overhang region. diff_polygons = diff(diff_polygons, buildplate_only_top_surfaces); } if (diff_polygons.empty()) continue; #ifdef SLIC3R_DEBUG Slic3r::SVG::export_expolygons( debug_out_path("support-top-contacts-filtered-run%d-layer%d-region%d.svg", iRun, layer_id, it_layerm - layer.regions.begin()), union_ex(diff_polygons, false)); #endif /* SLIC3R_DEBUG */ if (this->has_contact_loops()) polygons_append(overhang_polygons, diff_polygons); // Let's define the required contact area by using a max gap of half the upper // extrusion width and extending the area according to the configured margin. // We increment the area in steps because we don't want our support to overflow // on the other side of the object (if it's very thin). { //FIMXE 1) Make the offset configurable, 2) Make the Z span configurable. float slices_margin_offset = float(0.5*fw); if (slices_margin_cached_offset != slices_margin_offset) { slices_margin_cached_offset = slices_margin_offset; slices_margin_cached = offset(lower_layer.slices.expolygons, slices_margin_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS); if (buildplate_only) { // Trim the inflated contact surfaces by the top surfaces as well. polygons_append(slices_margin_cached, buildplate_only_top_surfaces); slices_margin_cached = union_(slices_margin_cached); } } // Offset the contact polygons outside. for (size_t i = 0; i < NUM_MARGIN_STEPS; ++ i) { diff_polygons = diff( offset( diff_polygons, SUPPORT_MATERIAL_MARGIN / NUM_MARGIN_STEPS, ClipperLib::jtRound, // round mitter limit scale_(0.05)), slices_margin_cached); } } polygons_append(contact_polygons, diff_polygons); } // for each layer.region } // end of Generate overhang/contact_polygons for non-raft layers. // now apply the contact areas to the layer were they need to be made if (! contact_polygons.empty()) { // get the average nozzle diameter used on this layer MyLayer &new_layer = layer_allocate(layer_storage, sltTopContact); const Layer *layer_below = (layer_id > 0) ? object.layers[layer_id - 1] : NULL; new_layer.idx_object_layer_above = layer_id; if (m_slicing_params.soluble_interface) { // Align the contact surface height with a layer immediately below the supported layer. new_layer.height = layer_below ? // Interface layer will be synchronized with the object. object.layers[layer_id-1]->height : // Don't know the thickness of the raft layer yet. 0.; new_layer.print_z = layer.print_z - layer.height; new_layer.bottom_z = new_layer.print_z - new_layer.height; } else { // Contact layer will be printed with a normal flow, but // it will support layers printed with a bridging flow. //FIXME Probably printing with the bridge flow? How about the unsupported perimeters? Are they printed with the bridging flow? // In the future we may switch to a normal extrusion flow for the supported bridges. // Get the average nozzle diameter used on this layer. coordf_t nozzle_dmr = 0.; size_t n_nozzle_dmrs = 0; for (LayerRegionPtrs::const_iterator it_region_ptr = layer.regions.begin(); it_region_ptr != layer.regions.end(); ++ it_region_ptr) { const PrintRegion ®ion = *(*it_region_ptr)->region(); nozzle_dmr += m_print_config->nozzle_diameter.get_at(region.config.perimeter_extruder.value - 1); nozzle_dmr += m_print_config->nozzle_diameter.get_at(region.config.infill_extruder.value - 1); nozzle_dmr += m_print_config->nozzle_diameter.get_at(region.config.solid_infill_extruder.value - 1); n_nozzle_dmrs += 3; } nozzle_dmr /= coordf_t(n_nozzle_dmrs); new_layer.print_z = layer.print_z - nozzle_dmr - m_object_config->support_material_contact_distance; new_layer.bottom_z = new_layer.print_z; new_layer.height = 0.; if (this->synchronize_layers()) { // Align bottom of this layer with a top of the closest object layer // while not trespassing into the 1st layer and keeping the support layer thickness bounded. int layer_id_below = int(layer_id) - 1; for (; layer_id_below >= 0; -- layer_id_below) { layer_below = object.layers[layer_id_below]; if (layer_below->print_z <= new_layer.print_z - m_support_layer_height_min) { // This is a feasible support layer height. new_layer.bottom_z = layer_below->print_z; new_layer.height = new_layer.print_z - new_layer.bottom_z; assert(new_layer.height <= m_support_layer_height_max); break; } } if (layer_id_below == -1) { // Could not align with any of the top surfaces of object layers. if (this->has_raft()) { // If having a raft, all the other layers will be aligned one with the other. } else { // Give up, ignore this layer. continue; } } } else { // Don't know the height of the top contact layer yet. The top contact layer is printed with a normal flow and // its height will be set adaptively later on. } } // Ignore this contact area if it's too low. // Don't want to print a layer below the first layer height as it may not stick well. //FIXME there may be a need for a single layer support, then one may decide to print it either as a bottom contact or a top contact // and it may actually make sense to do it with a thinner layer than the first layer height. if (new_layer.print_z < this->first_layer_height() + m_support_layer_height_min) continue; #if 1 { // Create an EdgeGrid, initialize it with projection, initialize signed distance field. Slic3r::EdgeGrid::Grid grid; coordf_t support_spacing = m_object_config->support_material_spacing.value + m_support_material_flow.spacing(); coord_t grid_resolution = scale_(support_spacing); // scale_(1.5f); BoundingBox bbox = get_extents(contact_polygons); bbox.offset(20); bbox.align_to_grid(grid_resolution); grid.set_bbox(bbox); grid.create(contact_polygons, grid_resolution); grid.calculate_sdf(); // Extract a bounding contour from the grid, trim by the object. contact_polygons = diff( grid.contours_simplified(m_support_material_flow.scaled_spacing()/2 + 5), slices_margin_cached, true); } #endif new_layer.polygons = std::move(contact_polygons); // Store the overhang polygons as the aux_polygons. // The overhang polygons are used in the path generator for planning of the contact loops. // if (this->has_contact_loops()) new_layer.aux_polygons = new Polygons(std::move(overhang_polygons)); contact_out.push_back(&new_layer); if (0) { // Slic3r::SVG::output("out\\contact_" . $contact_z . ".svg", // green_expolygons => union_ex($buildplate_only_top_surfaces), // blue_expolygons => union_ex(\@contact), // red_expolygons => union_ex(\@overhang), // ); } } } return contact_out; } // Generate bottom contact layers supporting the top contact layers. // For a soluble interface material synchronize the layer heights with the object, // otherwise set the layer height to a bridging flow of a support interface nozzle. PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::bottom_contact_layers_and_layer_support_areas( const PrintObject &object, const MyLayersPtr &top_contacts, MyLayerStorage &layer_storage, std::vector &layer_support_areas) const { #ifdef SLIC3R_DEBUG static int iRun = 0; ++ iRun; #endif /* SLIC3R_DEBUG */ // Allocate empty surface areas, one per object layer. layer_support_areas.assign(object.total_layer_count(), Polygons()); // find object top surfaces // we'll use them to clip our support and detect where does it stick MyLayersPtr bottom_contacts; if (! top_contacts.empty()) { // There is some support to be built, if there are non-empty top surfaces detected. // Sum of unsupported contact areas above the current layer.print_z. Polygons projection; // Last top contact layer visited when collecting the projection of contact areas. int contact_idx = int(top_contacts.size()) - 1; for (int layer_id = int(object.total_layer_count()) - 2; layer_id >= 0; -- layer_id) { BOOST_LOG_TRIVIAL(trace) << "Support generator - bottom_contact_layers - layer " << layer_id; const Layer &layer = *object.get_layer(layer_id); // Top surfaces of this layer, to be used to stop the surface volume from growing down. Polygons top; if (! m_object_config->support_material_buildplate_only) top = collect_region_slices_by_type(layer, stTop); // Collect projections of all contact areas above or at the same level as this top surface. for (; contact_idx >= 0 && top_contacts[contact_idx]->print_z >= layer.print_z; -- contact_idx) { Polygons polygons_new; // Contact surfaces are expanded away from the object, trimmed by the object. // Use a slight positive offset to overlap the touching regions. polygons_append(polygons_new, offset(top_contacts[contact_idx]->polygons, SCALED_EPSILON)); // These are the overhang surfaces. They are touching the object and they are not expanded away from the object. // Use a slight positive offset to overlap the touching regions. polygons_append(polygons_new, offset(*top_contacts[contact_idx]->aux_polygons, SCALED_EPSILON)); polygons_append(projection, union_(polygons_new)); } if (projection.empty()) continue; projection = union_(projection); #ifdef SLIC3R_DEBUG { BoundingBox bbox = get_extents(projection); bbox.merge(get_extents(top)); ::Slic3r::SVG svg(debug_out_path("support-bottom-layers-raw-%d-%lf.svg", iRun, layer.print_z), bbox); svg.draw(union_ex(top, false), "blue", 0.5f); svg.draw(union_ex(projection, true), "red", 0.5f); svg.draw_outline(union_ex(projection, true), "red", "blue", scale_(0.1f)); svg.draw(layer.slices.expolygons, "green", 0.5f); } #endif /* SLIC3R_DEBUG */ // Now find whether any projection of the contact surfaces above layer.print_z not yet supported by any // top surfaces above layer.print_z falls onto this top surface. // Touching are the contact surfaces supported exclusively by this top surfaces. // Don't use a safety offset as it has been applied during insertion of polygons. if (! top.empty()) { Polygons touching = intersection(top, projection, false); if (! touching.empty()) { // Allocate a new bottom contact layer. MyLayer &layer_new = layer_allocate(layer_storage, sltBottomContact); bottom_contacts.push_back(&layer_new); // Grow top surfaces so that interface and support generation are generated // with some spacing from object - it looks we don't need the actual // top shapes so this can be done here layer_new.height = m_slicing_params.soluble_interface ? // Align the interface layer with the object's layer height. object.get_layer(layer_id + 1)->height : // Place a bridge flow interface layer over the top surface. m_support_material_interface_flow.nozzle_diameter; layer_new.print_z = layer.print_z + layer_new.height + (m_slicing_params.soluble_interface ? 0. : m_object_config->support_material_contact_distance.value); layer_new.bottom_z = layer.print_z; layer_new.idx_object_layer_below = layer_id; layer_new.bridging = ! m_slicing_params.soluble_interface; //FIXME how much to inflate the top surface? layer_new.polygons = offset(touching, float(m_support_material_flow.scaled_width()), SUPPORT_SURFACES_OFFSET_PARAMETERS); #ifdef SLIC3R_DEBUG Slic3r::SVG::export_expolygons( debug_out_path("support-bottom-contacts-%d-%lf.svg", iRun, layer_new.print_z), union_ex(layer_new.polygons, false)); #endif /* SLIC3R_DEBUG */ } } // ! top.empty() remove_sticks(projection); remove_degenerate(projection); // Create an EdgeGrid, initialize it with projection, initialize signed distance field. Slic3r::EdgeGrid::Grid grid; coordf_t support_spacing = m_object_config->support_material_spacing.value + m_support_material_flow.spacing(); coord_t grid_resolution = scale_(support_spacing); // scale_(1.5f); BoundingBox bbox = get_extents(projection); bbox.offset(20); bbox.align_to_grid(grid_resolution); grid.set_bbox(bbox); grid.create(projection, grid_resolution); grid.calculate_sdf(); // Extract a bounding contour from the grid. Polygons projection_simplified = grid.contours_simplified(-5); #ifdef SLIC3R_DEBUG { BoundingBox bbox = get_extents(projection); bbox.merge(get_extents(projection_simplified)); ::Slic3r::SVG svg(debug_out_path("support-bottom-contacts-simplified-%d-%d.svg", iRun, layer_id), bbox); svg.draw(union_ex(projection, false), "blue", 0.5); svg.draw(union_ex(projection_simplified, false), "red", 0.5); #ifdef SLIC3R_GUI bbox.min.x -= scale_(5.f); bbox.min.y -= scale_(5.f); bbox.max.x += scale_(5.f); bbox.max.y += scale_(5.f); EdgeGrid::save_png(grid, bbox, scale_(0.1f), debug_out_path("support-bottom-contacts-df-%d-%d.png", iRun, layer_id).c_str()); #endif /* SLIC3R_GUI */ } #endif /* SLIC3R_DEBUG */ // Cache the slice of a support volume. The support volume is expanded by 1/2 of support material flow spacing // to allow a placement of suppot zig-zag snake along the grid lines. layer_support_areas[layer_id] = diff( grid.contours_simplified(m_support_material_flow.scaled_spacing()/2 + 5), to_polygons(layer.slices.expolygons), true); // Remove the areas that touched from the projection that will continue on next, lower, top surfaces. // projection = diff(projection, touching); projection = diff(projection_simplified, to_polygons(layer.slices.expolygons), true); // layer_support_areas[layer_id] = projection; } std::reverse(bottom_contacts.begin(), bottom_contacts.end()); } // ! top_contacts.empty() trim_support_layers_by_object(object, bottom_contacts, m_support_layer_height_min, 0., m_gap_xy); return bottom_contacts; } // Trim the top_contacts layers with the bottom_contacts layers if they overlap, so there would not be enough vertical space for both of them. void PrintObjectSupportMaterial::trim_top_contacts_by_bottom_contacts( const PrintObject &object, const MyLayersPtr &bottom_contacts, MyLayersPtr &top_contacts) const { size_t idx_top_first = 0; // For all bottom contact layers: for (size_t idx_bottom = 0; idx_bottom < bottom_contacts.size() && idx_top_first < top_contacts.size(); ++ idx_bottom) { const MyLayer &layer_bottom = *bottom_contacts[idx_bottom]; // Find the first top layer overlapping with layer_bottom. while (idx_top_first < top_contacts.size() && top_contacts[idx_top_first]->print_z <= layer_bottom.print_z - layer_bottom.height) ++ idx_top_first; // For all top contact layers overlapping with the thick bottom contact layer: for (size_t idx_top = idx_top_first; idx_top < top_contacts.size(); ++ idx_top) { MyLayer &layer_top = *top_contacts[idx_top]; coordf_t interface_z = (layer_top.print_z == layer_top.bottom_z) ? // Layer height has not been decided yet. (layer_top.bottom_z - m_support_layer_height_min) : // Layer height has already been assigned. (layer_top.bottom_z + EPSILON); if (interface_z < layer_bottom.print_z) { // Layers overlap. Trim layer_top with layer_bottom. layer_top.polygons = diff(layer_top.polygons, layer_bottom.polygons); } else break; } } } // A helper for sorting the top / bottom contact layers by their contact with the touching support layer: // Top contact surfaces (those supporting overhangs) are sorted by their bottom print Z, // bottom contact surfaces (those supported by top object surfaces) are sorted by their top print Z. struct LayerExtreme { LayerExtreme(PrintObjectSupportMaterial::MyLayer *alayer, bool ais_top) : layer(alayer), is_top(ais_top) {} PrintObjectSupportMaterial::MyLayer *layer; // top or bottom extreme bool is_top; coordf_t z() const { return is_top ? layer->print_z : layer->print_z - layer->height; } bool operator<(const LayerExtreme &other) const { return z() < other.z(); } }; PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::raft_and_intermediate_support_layers( const PrintObject &object, const MyLayersPtr &bottom_contacts, const MyLayersPtr &top_contacts, MyLayerStorage &layer_storage, const coordf_t max_object_layer_height) const { MyLayersPtr intermediate_layers; // Collect and sort the extremes (bottoms of the top contacts and tops of the bottom contacts). std::vector extremes; extremes.reserve(top_contacts.size() + bottom_contacts.size()); for (size_t i = 0; i < top_contacts.size(); ++ i) // Bottoms of the top contact layers. In case of non-soluble supports, // the top contact layer thickness is not known yet. extremes.push_back(LayerExtreme(top_contacts[i], false)); for (size_t i = 0; i < bottom_contacts.size(); ++ i) // Tops of the bottom contact layers. extremes.push_back(LayerExtreme(bottom_contacts[i], true)); if (extremes.empty()) return intermediate_layers; std::sort(extremes.begin(), extremes.end()); assert(extremes.front().z() > m_slicing_params.raft_interface_top_z && extremes.front().z() >= m_slicing_params.first_print_layer_height); bool synchronize = m_slicing_params.soluble_interface || this->synchronize_layers(); // Generate intermediate layers. // The first intermediate layer is the same as the 1st layer if there is no raft, // or the bottom of the first intermediate layer is aligned with the bottom of the raft contact layer. // Intermediate layers are always printed with a normal etrusion flow (non-bridging). size_t idx_layer_object = 0; for (size_t idx_extreme = 0; idx_extreme < extremes.size(); ++ idx_extreme) { LayerExtreme *extr1 = (idx_extreme == 0) ? NULL : &extremes[idx_extreme-1]; coordf_t extr1z = (extr1 == NULL) ? m_slicing_params.raft_interface_top_z : extr1->z(); LayerExtreme &extr2 = extremes[idx_extreme]; coordf_t extr2z = extr2.z(); coordf_t dist = extr2z - extr1z; assert(dist >= 0.); if (dist == 0.) continue; // Insert intermediate layers. size_t n_layers_extra = size_t(ceil(dist / m_support_layer_height_max)); assert(n_layers_extra > 0); coordf_t step = dist / coordf_t(n_layers_extra); if (! synchronize && extr2.layer->layer_type == sltTopContact) { // This is a top interface layer, which does not have a height assigned yet. Do it now. assert(extr2.layer->height == 0.); extr2.layer->height = step; extr2.layer->bottom_z = extr2z = extr2.layer->print_z - step; -- n_layers_extra; if (extr2.layer->bottom_z < this->first_layer_height()) { // Split the span into two layers: the top layer up to the first layer height, // and the new intermediate layer below. // 1) Adjust the bottom of this top layer. assert(n_layers_extra == 0); extr2.layer->bottom_z = extr2z = this->first_layer_height(); extr2.layer->height = extr2.layer->print_z - extr2.layer->bottom_z; // 2) Insert a new intermediate layer. MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate); layer_new.bottom_z = extr1z; layer_new.print_z = this->first_layer_height(); layer_new.height = layer_new.print_z - layer_new.bottom_z; intermediate_layers.push_back(&layer_new); continue; } } else if (extr1z + step < this->first_layer_height()) { MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate); layer_new.bottom_z = extr1z; layer_new.print_z = extr1z = this->first_layer_height(); layer_new.height = layer_new.print_z - layer_new.bottom_z; intermediate_layers.push_back(&layer_new); dist = extr2z - extr1z; assert(dist >= 0.); n_layers_extra = size_t(ceil(dist / m_support_layer_height_max)); step = dist / coordf_t(n_layers_extra); } coordf_t extr2z_large_steps = extr2z; if (synchronize) { // Synchronize support layers with the object layers. if (object.layers.front()->print_z - extr1z > m_support_layer_height_max) { // Generate the initial couple of layers before reaching the 1st object layer print_z level. extr2z_large_steps = object.layers.front()->print_z; dist = extr2z_large_steps - extr1z; assert(dist >= 0.); n_layers_extra = size_t(ceil(dist / m_support_layer_height_max)); step = dist / coordf_t(n_layers_extra); } } // Take the largest allowed step in the Z axis until extr2z_large_steps is reached. for (size_t i = 0; i < n_layers_extra; ++ i) { MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate); if (i + 1 == n_layers_extra) { // Last intermediate layer added. Align the last entered layer with extr2z_large_steps exactly. layer_new.bottom_z = (i == 0) ? extr1z : intermediate_layers.back()->print_z; layer_new.print_z = extr2z_large_steps; layer_new.height = layer_new.print_z - layer_new.bottom_z; } else { // Intermediate layer, not the last added. layer_new.height = step; layer_new.bottom_z = extr1z + i * step; layer_new.print_z = layer_new.bottom_z + step; } intermediate_layers.push_back(&layer_new); } if (synchronize) { // Emit support layers synchronized with object layers. extr1z = extr2z_large_steps; while (extr1z < extr2z) { //while (idx_layer_object < object.layers.size() && object.layers[idx_layer_object].print_z < extr1z) // idx_layer_object } } } #ifdef _DEBUG for (size_t i = 0; i < top_contacts.size(); ++i) assert(top_contacts[i]->height > 0.); #endif /* _DEBUG */ return intermediate_layers; } // At this stage there shall be intermediate_layers allocated between bottom_contacts and top_contacts, but they have no polygons assigned. // Also the bottom/top_contacts shall have a layer thickness assigned already. void PrintObjectSupportMaterial::generate_base_layers( const PrintObject &object, const MyLayersPtr &bottom_contacts, const MyLayersPtr &top_contacts, MyLayersPtr &intermediate_layers, std::vector &layer_support_areas) const { #ifdef SLIC3R_DEBUG static int iRun = 0; #endif /* SLIC3R_DEBUG */ if (top_contacts.empty()) // No top contacts -> no intermediate layers will be produced. return; // coordf_t fillet_radius_scaled = scale_(m_object_config->support_material_spacing); int idx_top_contact_above = int(top_contacts.size()) - 1; int idx_bottom_contact_overlapping = int(bottom_contacts.size()) - 1; int idx_object_layer_above = int(object.total_layer_count()) - 1; for (int idx_intermediate = int(intermediate_layers.size()) - 1; idx_intermediate >= 0; -- idx_intermediate) { BOOST_LOG_TRIVIAL(trace) << "Support generator - generate_base_layers - creating layer " << idx_intermediate << " of " << intermediate_layers.size(); MyLayer &layer_intermediate = *intermediate_layers[idx_intermediate]; // Find a top_contact layer touching the layer_intermediate from above, if any, and collect its polygons into polygons_new. while (idx_top_contact_above >= 0 && top_contacts[idx_top_contact_above]->bottom_z > layer_intermediate.print_z + EPSILON) -- idx_top_contact_above; // New polygons for layer_intermediate. Polygons polygons_new; // Use the precomputed layer_support_areas. while (idx_object_layer_above > 0 && object.get_layer(idx_object_layer_above - 1)->print_z > layer_intermediate.print_z - EPSILON) -- idx_object_layer_above; polygons_new = layer_support_areas[idx_object_layer_above]; // Polygons to trim polygons_new. Polygons polygons_trimming; // Find the first top_contact layer intersecting with this layer. int idx_top_contact_overlapping = idx_top_contact_above; while (idx_top_contact_overlapping >= 0 && top_contacts[idx_top_contact_overlapping]->bottom_z > layer_intermediate.print_z - EPSILON) -- idx_top_contact_overlapping; // Collect all the top_contact layer intersecting with this layer. for (; idx_top_contact_overlapping >= 0; -- idx_top_contact_overlapping) { MyLayer &layer_top_overlapping = *top_contacts[idx_top_contact_overlapping]; if (layer_top_overlapping.print_z < layer_intermediate.bottom_z + EPSILON) break; polygons_append(polygons_trimming, layer_top_overlapping.polygons); } // Find the first bottom_contact layer intersecting with this layer. while (idx_bottom_contact_overlapping >= 0 && bottom_contacts[idx_bottom_contact_overlapping]->bottom_z > layer_intermediate.print_z - EPSILON) -- idx_bottom_contact_overlapping; // Collect all the top_contact layer intersecting with this layer. for (int i = idx_bottom_contact_overlapping; i >= 0; -- i) { MyLayer &layer_bottom_overlapping = *bottom_contacts[i]; if (layer_bottom_overlapping.print_z < layer_intermediate.print_z - layer_intermediate.height + EPSILON) break; polygons_append(polygons_trimming, layer_bottom_overlapping.polygons); } #ifdef SLIC3R_DEBUG { BoundingBox bbox = get_extents(polygons_new); bbox.merge(get_extents(polygons_trimming)); ::Slic3r::SVG svg(debug_out_path("support-intermediate-layers-raw-%d-%lf.svg", iRun, layer_intermediate.print_z), bbox); svg.draw(union_ex(polygons_new, false), "blue", 0.5f); svg.draw(union_ex(polygons_trimming, true), "red", 0.5f); } #endif /* SLIC3R_DEBUG */ // Trim the polygons, store them. if (polygons_trimming.empty()) layer_intermediate.polygons = std::move(polygons_new); else layer_intermediate.polygons = diff( polygons_new, polygons_trimming, true); // safety offset to merge the touching source polygons layer_intermediate.layer_type = sltBase; /* if (0) { // Fillet the base polygons and trim them again with the top, interface and contact layers. $base->{$i} = diff( offset2( $base->{$i}, $fillet_radius_scaled, -$fillet_radius_scaled, # Use a geometric offsetting for filleting. JT_ROUND, 0.2*$fillet_radius_scaled), $trim_polygons, false); // don't apply the safety offset. } */ } #ifdef SLIC3R_DEBUG for (MyLayersPtr::const_iterator it = intermediate_layers.begin(); it != intermediate_layers.end(); ++it) ::Slic3r::SVG::export_expolygons( debug_out_path("support-intermediate-layers-untrimmed-%d-%lf.svg", iRun, (*it)->print_z), union_ex((*it)->polygons, false)); ++ iRun; #endif /* SLIC3R_DEBUG */ trim_support_layers_by_object(object, intermediate_layers, m_support_layer_height_min, m_support_layer_height_min, m_gap_xy); } void PrintObjectSupportMaterial::trim_support_layers_by_object( const PrintObject &object, MyLayersPtr &support_layers, const coordf_t gap_extra_above, const coordf_t gap_extra_below, const coordf_t gap_xy) const { //FIXME This could be trivially parallelized. const coord_t gap_xy_scaled = scale_(gap_xy); size_t idx_object_layer_overlapping = 0; // For all intermediate support layers: for (MyLayersPtr::iterator it_layer = support_layers.begin(); it_layer != support_layers.end(); ++ it_layer) { BOOST_LOG_TRIVIAL(trace) << "Support generator - trim_support_layers_by_object - trimmming layer " << (it_layer - support_layers.begin()) << " of " << support_layers.size(); MyLayer &support_layer = *(*it_layer); if (support_layer.polygons.empty()) // Empty support layer, nothing to trim. continue; // Find the overlapping object layers including the extra above / below gap. while (idx_object_layer_overlapping < object.layer_count() && object.get_layer(idx_object_layer_overlapping)->print_z < support_layer.print_z - support_layer.height - gap_extra_below + EPSILON) ++ idx_object_layer_overlapping; // Collect all the object layers intersecting with this layer. Polygons polygons_trimming; for (int i = idx_object_layer_overlapping; i < object.layer_count(); ++ i) { const Layer &object_layer = *object.get_layer(i); if (object_layer.print_z - object_layer.height > support_layer.print_z + gap_extra_above - EPSILON) break; polygons_append(polygons_trimming, (Polygons)object_layer.slices); } // $layer->slices contains the full shape of layer, thus including // perimeter's width. $support contains the full shape of support // material, thus including the width of its foremost extrusion. // We leave a gap equal to a full extrusion width. support_layer.polygons = diff( support_layer.polygons, offset(polygons_trimming, gap_xy_scaled, SUPPORT_SURFACES_OFFSET_PARAMETERS)); } } PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_raft_base( const PrintObject &object, const MyLayersPtr &top_contacts, MyLayersPtr &intermediate_layers, MyLayerStorage &layer_storage) const { // Areas covered by the raft, supporting the raft interface and the support columns. Polygons raft_polygons; // How much to inflate the support columns to be stable. This also applies to the 1st layer, if no raft layers are to be printed. const float inflate_factor = scale_(3.); MyLayer *contacts = top_contacts.empty() ? nullptr : top_contacts.front(); MyLayer *columns_base = intermediate_layers.empty() ? nullptr : intermediate_layers.front(); if (contacts != nullptr && contacts->print_z > m_slicing_params.raft_contact_top_z + EPSILON) // This is not the raft contact layer. contacts = nullptr; // Output vector. MyLayersPtr raft_layers; // Expand the 1st intermediate layer, which contains the bases of the support columns. Polygons base; if (columns_base != nullptr) { base = offset(columns_base->polygons, inflate_factor); // Modify the 1st intermediate layer with the expanded support columns. columns_base->polygons = diff( base, offset(m_object->layers.front()->slices.expolygons, scale_(m_gap_xy), SUPPORT_SURFACES_OFFSET_PARAMETERS)); if (contacts != nullptr) columns_base->polygons = diff(columns_base->polygons, contacts->polygons); } if (m_slicing_params.has_raft() && contacts != nullptr) { // Merge the untrimmed columns base with the expanded raft interface, to be used for the support base and interface. base = union_(base, offset(contacts->polygons, inflate_factor, SUPPORT_SURFACES_OFFSET_PARAMETERS)); } if (m_slicing_params.has_raft() && m_slicing_params.raft_layers() > 1 && ! base.empty()) { // Do not add the raft contact layer, only add the raft layers below the contact layer. // Insert the 1st layer. { MyLayer &new_layer = layer_allocate(layer_storage, (m_slicing_params.base_raft_layers > 0) ? sltRaftBase : sltRaftInterface); raft_layers.push_back(&new_layer); new_layer.print_z = m_slicing_params.first_print_layer_height; new_layer.height = m_slicing_params.first_print_layer_height; new_layer.bottom_z = 0.; new_layer.polygons = base; } // Insert the base layers. for (size_t i = 1; i < m_slicing_params.base_raft_layers; ++ i) { coordf_t print_z = raft_layers.back()->print_z; MyLayer &new_layer = layer_allocate(layer_storage, sltRaftBase); raft_layers.push_back(&new_layer); new_layer.print_z = print_z + m_slicing_params.base_raft_layer_height; new_layer.height = m_slicing_params.base_raft_layer_height; new_layer.bottom_z = print_z; new_layer.polygons = base; } // Insert the interface layers. for (size_t i = 1; i < m_slicing_params.interface_raft_layers; ++ i) { coordf_t print_z = raft_layers.back()->print_z; MyLayer &new_layer = layer_allocate(layer_storage, sltRaftInterface); raft_layers.push_back(&new_layer); new_layer.print_z = print_z + m_slicing_params.interface_raft_layer_height; new_layer.height = m_slicing_params.interface_raft_layer_height; new_layer.bottom_z = print_z; new_layer.polygons = base; } } return raft_layers; } // Convert some of the intermediate layers into top/bottom interface layers. PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_interface_layers( const PrintObject &object, const MyLayersPtr &bottom_contacts, const MyLayersPtr &top_contacts, MyLayersPtr &intermediate_layers, MyLayerStorage &layer_storage) const { // Old comment: // Compute interface area on this layer as diff of upper contact area // (or upper interface area) and layer slices. // This diff is responsible of the contact between support material and // the top surfaces of the object. We should probably offset the top // surfaces vertically before performing the diff, but this needs // investigation. // my $area_threshold = $self->interface_flow->scaled_spacing ** 2; MyLayersPtr interface_layers; // Contact layer is considered an interface layer, therefore run the following block only if support_material_interface_layers > 1. if (! intermediate_layers.empty() && m_object_config->support_material_interface_layers.value > 1) { // Index of the first top contact layer intersecting the current intermediate layer. size_t idx_top_contact_first = 0; // Index of the first bottom contact layer intersecting the current intermediate layer. size_t idx_bottom_contact_first = 0; // For all intermediate layers, collect top contact surfaces, which are not further than support_material_interface_layers. //FIXME this could be parallelized. for (size_t idx_intermediate_layer = 0; idx_intermediate_layer < intermediate_layers.size(); ++ idx_intermediate_layer) { MyLayer &intermediate_layer = *intermediate_layers[idx_intermediate_layer]; // Top / bottom Z coordinate of a slab, over which we are collecting the top / bottom contact surfaces. coordf_t top_z = intermediate_layers[std::min(intermediate_layers.size()-1, idx_intermediate_layer + m_object_config->support_material_interface_layers - 1)]->print_z; coordf_t bottom_z = intermediate_layers[std::max(0, int(idx_intermediate_layer) - int(m_object_config->support_material_interface_layers) + 1)]->bottom_z; // Move idx_top_contact_first up until above the current print_z. while (idx_top_contact_first < top_contacts.size() && top_contacts[idx_top_contact_first]->print_z < intermediate_layer.print_z) ++ idx_top_contact_first; // Collect the top contact areas above this intermediate layer, below top_z. Polygons polygons_top_contact_projected; for (size_t idx_top_contact = idx_top_contact_first; idx_top_contact < top_contacts.size(); ++ idx_top_contact) { const MyLayer &top_contact_layer = *top_contacts[idx_top_contact]; if (top_contact_layer.bottom_z - EPSILON > top_z) break; polygons_append(polygons_top_contact_projected, top_contact_layer.polygons); } // Move idx_bottom_contact_first up until touching bottom_z. while (idx_bottom_contact_first < bottom_contacts.size() && bottom_contacts[idx_bottom_contact_first]->print_z + EPSILON < bottom_z) ++ idx_bottom_contact_first; // Collect the top contact areas above this intermediate layer, below top_z. Polygons polygons_bottom_contact_projected; for (size_t idx_bottom_contact = idx_bottom_contact_first; idx_bottom_contact < bottom_contacts.size(); ++ idx_bottom_contact) { const MyLayer &bottom_contact_layer = *bottom_contacts[idx_bottom_contact]; if (bottom_contact_layer.print_z - EPSILON > intermediate_layer.bottom_z) break; polygons_append(polygons_bottom_contact_projected, bottom_contact_layer.polygons); } if (polygons_top_contact_projected.empty() && polygons_bottom_contact_projected.empty()) continue; // Insert a new layer into top_interface_layers. MyLayer &layer_new = layer_allocate(layer_storage, polygons_top_contact_projected.empty() ? sltBottomInterface : sltTopInterface); layer_new.print_z = intermediate_layer.print_z; layer_new.bottom_z = intermediate_layer.bottom_z; layer_new.height = intermediate_layer.height; layer_new.bridging = intermediate_layer.bridging; interface_layers.push_back(&layer_new); polygons_append(polygons_top_contact_projected, polygons_bottom_contact_projected); polygons_top_contact_projected = union_(polygons_top_contact_projected, true); layer_new.polygons = intersection(intermediate_layer.polygons, polygons_top_contact_projected); //FIXME filter layer_new.polygons islands by a minimum area? // $interface_area = [ grep abs($_->area) >= $area_threshold, @$interface_area ]; intermediate_layer.polygons = diff(intermediate_layer.polygons, polygons_top_contact_projected, false); } } return interface_layers; } static inline void fill_expolygons_generate_paths( ExtrusionEntitiesPtr &dst, const ExPolygons &expolygons, Fill *filler, float density, ExtrusionRole role, const Flow &flow) { FillParams fill_params; fill_params.density = density; fill_params.complete = true; fill_params.dont_adjust = true; for (ExPolygons::const_iterator it_expolygon = expolygons.begin(); it_expolygon != expolygons.end(); ++ it_expolygon) { Surface surface(stInternal, *it_expolygon); extrusion_entities_append_paths( dst, filler->fill_surface(&surface, fill_params), role, flow.mm3_per_mm(), flow.width, flow.height); } } static inline void fill_expolygons_generate_paths( ExtrusionEntitiesPtr &dst, ExPolygons &&expolygons, Fill *filler, float density, ExtrusionRole role, const Flow &flow) { FillParams fill_params; fill_params.density = density; fill_params.complete = true; fill_params.dont_adjust = true; for (ExPolygons::iterator it_expolygon = expolygons.begin(); it_expolygon != expolygons.end(); ++ it_expolygon) { Surface surface(stInternal, std::move(*it_expolygon)); extrusion_entities_append_paths( dst, filler->fill_surface(&surface, fill_params), role, flow.mm3_per_mm(), flow.width, flow.height); } } // Support layers, partially processed. struct MyLayerExtruded { MyLayerExtruded() : layer(nullptr) {} bool empty() const { return layer == nullptr || layer->polygons.empty(); } bool could_merge(const MyLayerExtruded &other) const { return ! this->empty() && ! other.empty() && this->layer->height == other.layer->height && this->layer->bridging == other.layer->bridging; } // Merge regions, perform boolean union over the merged polygons. void merge(MyLayerExtruded &&other) { assert(could_merge(other)); Slic3r::polygons_append(layer->polygons, std::move(other.layer->polygons)); layer->polygons = union_(layer->polygons, true); other.layer->polygons.clear(); } void polygons_append(Polygons &dst) const { if (layer != NULL && ! layer->polygons.empty()) Slic3r::polygons_append(dst, layer->polygons); } // The source layer. It carries the height and extrusion type (bridging / non bridging, extrusion height). PrintObjectSupportMaterial::MyLayer *layer; // Collect extrusions. They will be exported sorted by the bottom height. ExtrusionEntitiesPtr extrusions; }; typedef std::vector MyLayerExtrudedPtrs; struct LoopInterfaceProcessor { LoopInterfaceProcessor(coordf_t circle_r) : n_contact_loops(0), circle_radius(circle_r), circle_distance(circle_r * 3.) { // Shape of the top contact area. circle.points.reserve(6); for (size_t i = 0; i < 6; ++ i) { double angle = double(i) * M_PI / 3.; circle.points.push_back(Point(circle_radius * cos(angle), circle_radius * sin(angle))); } } // Generate loop contacts at the top_contact_layer, // trim the top_contact_layer->polygons with the areas covered by the loops. void generate(MyLayerExtruded &top_contact_layer, const Flow &interface_flow_src); int n_contact_loops; coordf_t circle_radius; coordf_t circle_distance; Polygon circle; }; void LoopInterfaceProcessor::generate(MyLayerExtruded &top_contact_layer, const Flow &interface_flow_src) { if (n_contact_loops == 0 || top_contact_layer.empty()) return; Flow flow = interface_flow_src; flow.height = float(top_contact_layer.layer->height); Polygons overhang_polygons; // if (top_contact_layer.layer->aux_polygons != nullptr) overhang_polygons = std::move(*top_contact_layer.layer->aux_polygons); // Generate the outermost loop. // Find centerline of the external loop (or any other kind of extrusions should the loop be skipped) Polygons top_contact_polygons = offset(top_contact_layer.layer->polygons, - 0.5f * flow.scaled_width()); Polygons loops0; { // find centerline of the external loop of the contours // only consider the loops facing the overhang Polygons external_loops; // Positions of the loop centers. Polygons circles; Polygons overhang_with_margin = offset(overhang_polygons, 0.5f * flow.scaled_width()); for (Polygons::const_iterator it_contact = top_contact_polygons.begin(); it_contact != top_contact_polygons.end(); ++ it_contact) if (! intersection_pl(it_contact->split_at_first_point(), overhang_with_margin).empty()) { external_loops.push_back(*it_contact); Points positions_new = it_contact->equally_spaced_points(circle_distance); for (Points::const_iterator it_center = positions_new.begin(); it_center != positions_new.end(); ++ it_center) { circles.push_back(circle); Polygon &circle_new = circles.back(); for (size_t i = 0; i < circle_new.points.size(); ++ i) circle_new.points[i].translate(*it_center); } } // Apply a pattern to the loop. loops0 = diff(external_loops, circles); } Polylines loop_lines; { // make more loops Polygons loop_polygons = loops0; for (size_t i = 1; i < n_contact_loops; ++ i) polygons_append(loop_polygons, offset2( loops0, - int(i) * flow.scaled_spacing() - 0.5f * flow.scaled_spacing(), 0.5f * flow.scaled_spacing())); // clip such loops to the side oriented towards the object loop_lines.reserve(loop_polygons.size()); for (Polygons::const_iterator it = loop_polygons.begin(); it != loop_polygons.end(); ++ it) loop_lines.push_back(it->split_at_first_point()); loop_lines = intersection_pl(loop_lines, offset(overhang_polygons, scale_(SUPPORT_MATERIAL_MARGIN))); } // add the contact infill area to the interface area // note that growing loops by $circle_radius ensures no tiny // extrusions are left inside the circles; however it creates // a very large gap between loops and contact_infill_polygons, so maybe another // solution should be found to achieve both goals top_contact_layer.layer->polygons = diff(top_contact_layer.layer->polygons, offset(loop_lines, float(circle_radius * 1.1))); // Transform loops into ExtrusionPath objects. extrusion_entities_append_paths( top_contact_layer.extrusions, STDMOVE(loop_lines), erSupportMaterialInterface, flow.mm3_per_mm(), flow.width, flow.height); } void PrintObjectSupportMaterial::generate_toolpaths( const PrintObject &object, const MyLayersPtr &raft_layers, const MyLayersPtr &bottom_contacts, const MyLayersPtr &top_contacts, const MyLayersPtr &intermediate_layers, const MyLayersPtr &interface_layers) const { // Slic3r::debugf "Generating patterns\n"; // loop_interface_processor with a given circle radius. LoopInterfaceProcessor loop_interface_processor(1.5 * m_support_material_interface_flow.scaled_width()); // Prepare fillers. SupportMaterialPattern support_pattern = m_object_config->support_material_pattern; bool with_sheath = m_object_config->support_material_with_sheath; InfillPattern infill_pattern; std::vector angles; angles.push_back(m_object_config->support_material_angle); switch (support_pattern) { case smpRectilinearGrid: angles.push_back(angles[0] + 90.); // fall through case smpRectilinear: infill_pattern = ipRectilinear; break; case smpHoneycomb: case smpPillars: infill_pattern = ipHoneycomb; break; } std::unique_ptr filler_interface = std::unique_ptr(Fill::new_from_type(ipRectilinear)); std::unique_ptr filler_support = std::unique_ptr(Fill::new_from_type(infill_pattern)); { // BoundingBox bbox_object = object.bounding_box(); BoundingBox bbox_object(Point(-scale_(1.), -scale_(1.0)), Point(scale_(1.), scale_(1.))); filler_interface->set_bounding_box(bbox_object); filler_support->set_bounding_box(bbox_object); } coordf_t interface_angle = m_object_config->support_material_angle + 90.; coordf_t interface_spacing = m_object_config->support_material_interface_spacing.value + m_support_material_interface_flow.spacing(); coordf_t interface_density = std::min(1., m_support_material_interface_flow.spacing() / interface_spacing); coordf_t support_spacing = m_object_config->support_material_spacing.value + m_support_material_flow.spacing(); coordf_t support_density = std::min(1., m_support_material_flow.spacing() / support_spacing); if (m_object_config->support_material_interface_layers.value == 0) { // No interface layers allowed, print everything with the base support pattern. interface_spacing = support_spacing; interface_density = support_density; } //FIXME Parallelize the support generator: /* Slic3r::parallelize( threads => $self->print_config->threads, items => [ 0 .. n_$object.support_layers} ], thread_cb => sub { my $q = shift; while (defined (my $layer_id = $q->dequeue)) { $process_layer->($layer_id); } }, no_threads_cb => sub { $process_layer->($_) for 0 .. n_{$object.support_layers}; }, ); */ // Insert the raft base layers. size_t support_layer_id = 0; for (; support_layer_id < size_t(std::max(0, int(m_slicing_params.raft_layers()) - 1)); ++ support_layer_id) { assert(support_layer_id < raft_layers.size()); SupportLayer &support_layer = *object.support_layers[support_layer_id]; assert(support_layer.support_fills.entities.empty()); assert(support_layer.support_interface_fills.entities.empty()); assert(support_layer.support_islands.expolygons.empty()); MyLayer &raft_layer = *raft_layers[support_layer_id]; //FIXME When paralellizing, each thread shall have its own copy of the fillers. Fill *filler = filler_support.get(); filler->angle = 0.; // We don't use $base_flow->spacing because we need a constant spacing // value that guarantees that all layers are correctly aligned. Flow flow(m_support_material_flow.width, raft_layer.height, m_support_material_flow.nozzle_diameter, raft_layer.bridging); filler->spacing = m_support_material_flow.spacing(); float density = support_density; // find centerline of the external loop/extrusions ExPolygons to_infill = (support_layer_id == 0 || ! with_sheath) ? // union_ex(base_polygons, true) : offset2_ex(raft_layer.polygons, SCALED_EPSILON, - SCALED_EPSILON) : offset2_ex(raft_layer.polygons, SCALED_EPSILON, - SCALED_EPSILON - 0.5*flow.scaled_width()); if (support_layer_id == 0) { // Base flange. filler = filler_interface.get(); filler->angle = m_object_config->support_material_angle + 90.; density = 0.5f; flow = m_first_layer_flow; // use the proper spacing for first layer as we don't need to align // its pattern to the other layers //FIXME When paralellizing, each thread shall have its own copy of the fillers. filler->spacing = flow.spacing(); } else if (with_sheath) { // Draw a perimeter all around the support infill. This makes the support stable, but difficult to remove. // TODO: use brim ordering algorithm Polygons to_infill_polygons = to_polygons(to_infill); // TODO: use offset2_ex() to_infill = offset_ex(to_infill, - flow.scaled_spacing()); extrusion_entities_append_paths( support_layer.support_fills.entities, to_polylines(STDMOVE(to_infill_polygons)), erSupportMaterial, flow.mm3_per_mm(), flow.width, flow.height); } fill_expolygons_generate_paths( // Destination support_layer.support_fills.entities, // Regions to fill STDMOVE(to_infill), // Filler and its parameters filler, density, // Extrusion parameters erSupportMaterial, flow); } // Indices of the 1st layer in their respective container at the support layer height. size_t idx_layer_bottom_contact = 0; size_t idx_layer_top_contact = 0; size_t idx_layer_intermediate = 0; size_t idx_layer_inteface = 0; for (; support_layer_id < object.support_layers.size(); ++ support_layer_id) { SupportLayer &support_layer = *object.support_layers[support_layer_id]; // Find polygons with the same print_z. MyLayerExtruded bottom_contact_layer; MyLayerExtruded top_contact_layer; MyLayerExtruded base_layer; MyLayerExtruded interface_layer; MyLayerExtrudedPtrs mylayers; // Increment the layer indices to find a layer at support_layer.print_z. for (; idx_layer_bottom_contact < bottom_contacts .size() && bottom_contacts [idx_layer_bottom_contact]->print_z < support_layer.print_z - EPSILON; ++ idx_layer_bottom_contact) ; for (; idx_layer_top_contact < top_contacts .size() && top_contacts [idx_layer_top_contact ]->print_z < support_layer.print_z - EPSILON; ++ idx_layer_top_contact ) ; for (; idx_layer_intermediate < intermediate_layers.size() && intermediate_layers[idx_layer_intermediate ]->print_z < support_layer.print_z - EPSILON; ++ idx_layer_intermediate ) ; for (; idx_layer_inteface < interface_layers .size() && interface_layers [idx_layer_inteface ]->print_z < support_layer.print_z - EPSILON; ++ idx_layer_inteface ) ; // Copy polygons from the layers. mylayers.reserve(4); if (idx_layer_bottom_contact < bottom_contacts.size() && bottom_contacts[idx_layer_bottom_contact]->print_z < support_layer.print_z + EPSILON) { bottom_contact_layer.layer = bottom_contacts[idx_layer_bottom_contact]; mylayers.push_back(&bottom_contact_layer); } if (idx_layer_top_contact < top_contacts.size() && top_contacts[idx_layer_top_contact]->print_z < support_layer.print_z + EPSILON) { top_contact_layer.layer = top_contacts[idx_layer_top_contact]; mylayers.push_back(&top_contact_layer); } if (idx_layer_inteface < interface_layers.size() && interface_layers[idx_layer_inteface]->print_z < support_layer.print_z + EPSILON) { interface_layer.layer = interface_layers[idx_layer_inteface]; mylayers.push_back(&interface_layer); } if (idx_layer_intermediate < intermediate_layers.size() && intermediate_layers[idx_layer_intermediate]->print_z < support_layer.print_z + EPSILON) { base_layer.layer = intermediate_layers[idx_layer_intermediate]; mylayers.push_back(&base_layer); } // Sort the layers with the same print_z coordinate by their heights, thickest first. std::sort(mylayers.begin(), mylayers.end(), [](const MyLayerExtruded *p1, const MyLayerExtruded *p2) { return p1->layer->height > p2->layer->height; }); /* { require "Slic3r/SVG.pm"; Slic3r::SVG::output("out\\layer_" . $z . ".svg", blue_expolygons => union_ex($base), red_expolygons => union_ex($contact), green_expolygons => union_ex($interface), ); } */ if (m_object_config->support_material_interface_layers == 0) { // If no interface layers were requested, we treat the contact layer exactly as a generic base layer. if (base_layer.could_merge(top_contact_layer)) base_layer.merge(std::move(top_contact_layer)); else if (base_layer.empty() && !top_contact_layer.empty() && !top_contact_layer.layer->bridging) std::swap(base_layer, top_contact_layer); if (base_layer.could_merge(bottom_contact_layer)) base_layer.merge(std::move(bottom_contact_layer)); else if (base_layer.empty() && !bottom_contact_layer.empty() && !bottom_contact_layer.layer->bridging) std::swap(base_layer, bottom_contact_layer); } else { loop_interface_processor.generate(top_contact_layer, m_support_material_interface_flow); // If no loops are allowed, we treat the contact layer exactly as a generic interface layer. if (interface_layer.could_merge(top_contact_layer)) interface_layer.merge(std::move(top_contact_layer)); } if (! interface_layer.empty() && ! base_layer.empty()) { // turn base support into interface when it's contained in our holes // (this way we get wider interface anchoring) //FIXME one wants to fill in the inner most holes of the interfaces, not all the holes. Polygons islands = top_level_islands(interface_layer.layer->polygons); polygons_append(interface_layer.layer->polygons, intersection(base_layer.layer->polygons, islands)); base_layer.layer->polygons = diff(base_layer.layer->polygons, islands); } // interface and contact infill if (! top_contact_layer.empty()) { //FIXME When paralellizing, each thread shall have its own copy of the fillers. Flow interface_flow( top_contact_layer.layer->bridging ? top_contact_layer.layer->height : m_support_material_interface_flow.width, top_contact_layer.layer->height, m_support_material_interface_flow.nozzle_diameter, top_contact_layer.layer->bridging); filler_interface->angle = interface_angle; filler_interface->spacing = m_support_material_interface_flow.spacing(); fill_expolygons_generate_paths( // Destination support_layer.support_fills.entities, // Regions to fill union_ex(top_contact_layer.layer->polygons, true), // Filler and its parameters filler_interface.get(), interface_density, // Extrusion parameters erSupportMaterialInterface, interface_flow); } // interface and contact infill if (! interface_layer.empty()) { //FIXME When paralellizing, each thread shall have its own copy of the fillers. Flow interface_flow( interface_layer.layer->bridging ? interface_layer.layer->height : m_support_material_interface_flow.width, interface_layer.layer->height, m_support_material_interface_flow.nozzle_diameter, interface_layer.layer->bridging); filler_interface->angle = interface_angle; filler_interface->spacing = m_support_material_interface_flow.spacing(); fill_expolygons_generate_paths( // Destination support_layer.support_fills.entities, // Regions to fill union_ex(interface_layer.layer->polygons, true), // Filler and its parameters filler_interface.get(), interface_density, // Extrusion parameters erSupportMaterialInterface, interface_flow); } // support or flange if (! base_layer.empty()) { //FIXME When paralellizing, each thread shall have its own copy of the fillers. Fill *filler = filler_support.get(); filler->angle = angles[support_layer_id % angles.size()]; // We don't use $base_flow->spacing because we need a constant spacing // value that guarantees that all layers are correctly aligned. Flow flow(m_support_material_flow.width, base_layer.layer->height, m_support_material_flow.nozzle_diameter, base_layer.layer->bridging); filler->spacing = m_support_material_flow.spacing(); float density = support_density; // find centerline of the external loop/extrusions ExPolygons to_infill = (support_layer_id == 0 || ! with_sheath) ? // union_ex(base_polygons, true) : offset2_ex(base_layer.layer->polygons, SCALED_EPSILON, - SCALED_EPSILON) : offset2_ex(base_layer.layer->polygons, SCALED_EPSILON, - SCALED_EPSILON - 0.5*flow.scaled_width()); /* { require "Slic3r/SVG.pm"; Slic3r::SVG::output("out\\to_infill_base" . $z . ".svg", red_expolygons => union_ex($contact), green_expolygons => union_ex($interface), blue_expolygons => $to_infill, ); } */ if (base_layer.layer->bottom_z < EPSILON) { // Base flange. filler = filler_interface.get(); filler->angle = m_object_config->support_material_angle + 90.; density = 0.5f; flow = m_first_layer_flow; // use the proper spacing for first layer as we don't need to align // its pattern to the other layers //FIXME When paralellizing, each thread shall have its own copy of the fillers. filler->spacing = flow.spacing(); } else if (with_sheath) { // Draw a perimeter all around the support infill. This makes the support stable, but difficult to remove. // TODO: use brim ordering algorithm Polygons to_infill_polygons = to_polygons(to_infill); // TODO: use offset2_ex() to_infill = offset_ex(to_infill, - flow.scaled_spacing()); extrusion_entities_append_paths( support_layer.support_fills.entities, to_polylines(STDMOVE(to_infill_polygons)), erSupportMaterial, flow.mm3_per_mm(), flow.width, flow.height); } fill_expolygons_generate_paths( // Destination support_layer.support_fills.entities, // Regions to fill STDMOVE(to_infill), // Filler and its parameters filler, density, // Extrusion parameters erSupportMaterial, flow); } // support or flange if (! bottom_contact_layer.empty()) { //FIXME When paralellizing, each thread shall have its own copy of the fillers. Flow interface_flow( bottom_contact_layer.layer->bridging ? bottom_contact_layer.layer->height : m_support_material_interface_flow.width, bottom_contact_layer.layer->height, m_support_material_interface_flow.nozzle_diameter, bottom_contact_layer.layer->bridging); filler_interface->angle = (m_object_config->support_material_interface_layers.value == 0) ? // If zero interface layers are configured, use the same angle as for the base layers. angles[support_layer_id % angles.size()] : // Use interface angle for the interface layers. interface_angle; filler_interface->spacing = m_support_material_interface_flow.spacing(); fill_expolygons_generate_paths( // Destination support_layer.support_fills.entities, // Regions to fill union_ex(bottom_contact_layer.layer->polygons, true), // Filler and its parameters filler_interface.get(), interface_density, // Extrusion parameters erSupportMaterial, interface_flow); } // Collect the support areas with this print_z into islands, as there is no need // for retraction over these islands. Polygons polys; // Collect the extrusions, sorted by the bottom extrusion height. for (MyLayerExtrudedPtrs::iterator it = mylayers.begin(); it != mylayers.end(); ++ it) { (*it)->polygons_append(polys); std::move(std::begin((*it)->extrusions), std::end((*it)->extrusions), std::back_inserter(support_layer.support_fills.entities)); } if (! polys.empty()) expolygons_append(support_layer.support_islands.expolygons, union_ex(polys)); /* { require "Slic3r/SVG.pm"; Slic3r::SVG::output("islands_" . $z . ".svg", red_expolygons => union_ex($contact), green_expolygons => union_ex($interface), green_polylines => [ map $_->unpack->polyline, @{$layer->support_contact_fills} ], polylines => [ map $_->unpack->polyline, @{$layer->support_fills} ], ); } */ } // for each support_layer_id } /* void PrintObjectSupportMaterial::clip_by_pillars( const PrintObject &object, LayersPtr &bottom_contacts, LayersPtr &top_contacts, LayersPtr &intermediate_contacts); { // this prevents supplying an empty point set to BoundingBox constructor if (top_contacts.empty()) return; coord_t pillar_size = scale_(PILLAR_SIZE); coord_t pillar_spacing = scale_(PILLAR_SPACING); // A regular grid of pillars, filling the 2D bounding box. Polygons grid; { // Rectangle with a side of 2.5x2.5mm. Polygon pillar; pillar.points.push_back(Point(0, 0)); pillar.points.push_back(Point(pillar_size, 0)); pillar.points.push_back(Point(pillar_size, pillar_size)); pillar.points.push_back(Point(0, pillar_size)); // 2D bounding box of the projection of all contact polygons. BoundingBox bbox; for (LayersPtr::const_iterator it = top_contacts.begin(); it != top_contacts.end(); ++ it) bbox.merge(get_extents((*it)->polygons)); grid.reserve(size_t(ceil(bb.size().x / pillar_spacing)) * size_t(ceil(bb.size().y / pillar_spacing))); for (coord_t x = bb.min.x; x <= bb.max.x - pillar_size; x += pillar_spacing) { for (coord_t y = bb.min.y; y <= bb.max.y - pillar_size; y += pillar_spacing) { grid.push_back(pillar); for (size_t i = 0; i < pillar.points.size(); ++ i) grid.back().points[i].translate(Point(x, y)); } } } // add pillars to every layer for my $i (0..n_support_z) { $shape->[$i] = [ @$grid ]; } // build capitals for my $i (0..n_support_z) { my $z = $support_z->[$i]; my $capitals = intersection( $grid, $contact->{$z} // [], ); // work on one pillar at time (if any) to prevent the capitals from being merged // but store the contact area supported by the capital because we need to make // sure nothing is left my $contact_supported_by_capitals = []; foreach my $capital (@$capitals) { // enlarge capital tops $capital = offset([$capital], +($pillar_spacing - $pillar_size)/2); push @$contact_supported_by_capitals, @$capital; for (my $j = $i-1; $j >= 0; $j--) { my $jz = $support_z->[$j]; $capital = offset($capital, -$self->interface_flow->scaled_width/2); last if !@$capitals; push @{ $shape->[$j] }, @$capital; } } // Capitals will not generally cover the whole contact area because there will be // remainders. For now we handle this situation by projecting such unsupported // areas to the ground, just like we would do with a normal support. my $contact_not_supported_by_capitals = diff( $contact->{$z} // [], $contact_supported_by_capitals, ); if (@$contact_not_supported_by_capitals) { for (my $j = $i-1; $j >= 0; $j--) { push @{ $shape->[$j] }, @$contact_not_supported_by_capitals; } } } } sub clip_with_shape { my ($self, $support, $shape) = @_; foreach my $i (keys %$support) { // don't clip bottom layer with shape so that we // can generate a continuous base flange // also don't clip raft layers next if $i == 0; next if $i < $self->object_config->raft_layers; $support->{$i} = intersection( $support->{$i}, $shape->[$i], ); } } */ } // namespace Slic3r