Welcome to mirror list, hosted at ThFree Co, Russian Federation.

qr_solve.cpp « Firmware - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f19d989d41520582d9ec498c690885ff255c31c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
#include "qr_solve.h"

#ifdef AUTO_BED_LEVELING_GRID

#include <stdlib.h>
#include <math.h>

//# include "r8lib.h"

int i4_min ( int i1, int i2 )

/******************************************************************************/
/*
  Purpose:

    I4_MIN returns the smaller of two I4's.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    29 August 2006

  Author:

    John Burkardt

  Parameters:

    Input, int I1, I2, two integers to be compared.

    Output, int I4_MIN, the smaller of I1 and I2.
*/
{
  int value;

  if ( i1 < i2 )
  {
    value = i1;
  }
  else
  {
    value = i2;
  }
  return value;
}

double r8_epsilon ( void )

/******************************************************************************/
/*
  Purpose:

    R8_EPSILON returns the R8 round off unit.

  Discussion:

    R8_EPSILON is a number R which is a power of 2 with the property that,
    to the precision of the computer's arithmetic,
      1 < 1 + R
    but
      1 = ( 1 + R / 2 )

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    01 September 2012

  Author:

    John Burkardt

  Parameters:

    Output, double R8_EPSILON, the R8 round-off unit.
*/
{
  const double value = 2.220446049250313E-016;

  return value;
}

double r8_max ( double x, double y )

/******************************************************************************/
/*
  Purpose:

    R8_MAX returns the maximum of two R8's.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    07 May 2006

  Author:

    John Burkardt

  Parameters:

    Input, double X, Y, the quantities to compare.

    Output, double R8_MAX, the maximum of X and Y.
*/
{
  double value;

  if ( y < x )
  {
    value = x;
  }
  else
  {
    value = y;
  }
  return value;
}

double r8_abs ( double x )

/******************************************************************************/
/*
  Purpose:

    R8_ABS returns the absolute value of an R8.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    07 May 2006

  Author:

    John Burkardt

  Parameters:

    Input, double X, the quantity whose absolute value is desired.

    Output, double R8_ABS, the absolute value of X.
*/
{
  double value;

  if ( 0.0 <= x )
  {
    value = + x;
  }
  else
  {
    value = - x;
  }
  return value;
}

double r8_sign ( double x )

/******************************************************************************/
/*
  Purpose:

    R8_SIGN returns the sign of an R8.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    08 May 2006

  Author:

    John Burkardt

  Parameters:

    Input, double X, the number whose sign is desired.

    Output, double R8_SIGN, the sign of X.
*/
{
  double value;

  if ( x < 0.0 )
  {
    value = - 1.0;
  }
  else
  {
    value = + 1.0;
  }
  return value;
}

double r8mat_amax ( int m, int n, double a[] )

/******************************************************************************/
/*
  Purpose:

    R8MAT_AMAX returns the maximum absolute value entry of an R8MAT.

  Discussion:

    An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
    in column-major order.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    07 September 2012

  Author:

    John Burkardt

  Parameters:

    Input, int M, the number of rows in A.

    Input, int N, the number of columns in A.

    Input, double A[M*N], the M by N matrix.

    Output, double R8MAT_AMAX, the maximum absolute value entry of A.
*/
{
  int i;
  int j;
  double value;

  value = r8_abs ( a[0+0*m] );

  for ( j = 0; j < n; j++ )
  {
    for ( i = 0; i < m; i++ )
    {
      if ( value < r8_abs ( a[i+j*m] ) )
      {
        value = r8_abs ( a[i+j*m] );
      }
    }
  }
  return value;
}

double *r8mat_copy_new ( int m, int n, double a1[] )

/******************************************************************************/
/*
  Purpose:

    R8MAT_COPY_NEW copies one R8MAT to a "new" R8MAT.

  Discussion:

    An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
    in column-major order.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    26 July 2008

  Author:

    John Burkardt

  Parameters:

    Input, int M, N, the number of rows and columns.

    Input, double A1[M*N], the matrix to be copied.

    Output, double R8MAT_COPY_NEW[M*N], the copy of A1.
*/
{
  double *a2;
  int i;
  int j;

  a2 = ( double * ) malloc ( m * n * sizeof ( double ) );

  for ( j = 0; j < n; j++ )
  {
    for ( i = 0; i < m; i++ )
    {
      a2[i+j*m] = a1[i+j*m];
    }
  }

  return a2;
}

/******************************************************************************/

void daxpy ( int n, double da, double dx[], int incx, double dy[], int incy )

/******************************************************************************/
/*
  Purpose:

    DAXPY computes constant times a vector plus a vector.

  Discussion:

    This routine uses unrolled loops for increments equal to one.

  Licensing:

    This code is distributed under the GNU LGPL license. 

  Modified:

    30 March 2007

  Author:

    C version by John Burkardt

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979.

    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
    Basic Linear Algebra Subprograms for Fortran Usage,
    Algorithm 539, 
    ACM Transactions on Mathematical Software, 
    Volume 5, Number 3, September 1979, pages 308-323.

  Parameters:

    Input, int N, the number of elements in DX and DY.

    Input, double DA, the multiplier of DX.

    Input, double DX[*], the first vector.

    Input, int INCX, the increment between successive entries of DX.

    Input/output, double DY[*], the second vector.
    On output, DY[*] has been replaced by DY[*] + DA * DX[*].

    Input, int INCY, the increment between successive entries of DY.
*/
{
  int i;
  int ix;
  int iy;
  int m;

  if ( n <= 0 )
  {
    return;
  }

  if ( da == 0.0 )
  {
    return;
  }
/*
  Code for unequal increments or equal increments
  not equal to 1.
*/
  if ( incx != 1 || incy != 1 )
  {
    if ( 0 <= incx )
    {
      ix = 0;
    }
    else
    {
      ix = ( - n + 1 ) * incx;
    }

    if ( 0 <= incy )
    {
      iy = 0;
    }
    else
    {
      iy = ( - n + 1 ) * incy;
    }

    for ( i = 0; i < n; i++ )
    {
      dy[iy] = dy[iy] + da * dx[ix];
      ix = ix + incx;
      iy = iy + incy;
    }
  }
/*
  Code for both increments equal to 1.
*/
  else
  {
    m = n % 4;

    for ( i = 0; i < m; i++ )
    {
      dy[i] = dy[i] + da * dx[i];
    }

    for ( i = m; i < n; i = i + 4 )
    {
      dy[i  ] = dy[i  ] + da * dx[i  ];
      dy[i+1] = dy[i+1] + da * dx[i+1];
      dy[i+2] = dy[i+2] + da * dx[i+2];
      dy[i+3] = dy[i+3] + da * dx[i+3];
    }
  }
  return;
}
/******************************************************************************/

double ddot ( int n, double dx[], int incx, double dy[], int incy )

/******************************************************************************/
/*
  Purpose:

    DDOT forms the dot product of two vectors.

  Discussion:

    This routine uses unrolled loops for increments equal to one.

  Licensing:

    This code is distributed under the GNU LGPL license. 

  Modified:

    30 March 2007

  Author:

    C version by John Burkardt

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979.

    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
    Basic Linear Algebra Subprograms for Fortran Usage,
    Algorithm 539, 
    ACM Transactions on Mathematical Software, 
    Volume 5, Number 3, September 1979, pages 308-323.

  Parameters:

    Input, int N, the number of entries in the vectors.

    Input, double DX[*], the first vector.

    Input, int INCX, the increment between successive entries in DX.

    Input, double DY[*], the second vector.

    Input, int INCY, the increment between successive entries in DY.

    Output, double DDOT, the sum of the product of the corresponding
    entries of DX and DY.
*/
{
  double dtemp;
  int i;
  int ix;
  int iy;
  int m;

  dtemp = 0.0;

  if ( n <= 0 )
  {
    return dtemp;
  }
/*
  Code for unequal increments or equal increments
  not equal to 1.
*/
  if ( incx != 1 || incy != 1 )
  {
    if ( 0 <= incx )
    {
      ix = 0;
    }
    else
    {
      ix = ( - n + 1 ) * incx;
    }

    if ( 0 <= incy )
    {
      iy = 0;
    }
    else
    {
      iy = ( - n + 1 ) * incy;
    }

    for ( i = 0; i < n; i++ )
    {
      dtemp = dtemp + dx[ix] * dy[iy];
      ix = ix + incx;
      iy = iy + incy;
    }
  }
/*
  Code for both increments equal to 1.
*/
  else
  {
    m = n % 5;

    for ( i = 0; i < m; i++ )
    {
      dtemp = dtemp + dx[i] * dy[i];
    }

    for ( i = m; i < n; i = i + 5 )
    {
      dtemp = dtemp + dx[i  ] * dy[i  ] 
                    + dx[i+1] * dy[i+1] 
                    + dx[i+2] * dy[i+2] 
                    + dx[i+3] * dy[i+3] 
                    + dx[i+4] * dy[i+4];
    }
  }
  return dtemp;
}
/******************************************************************************/

double dnrm2 ( int n, double x[], int incx )

/******************************************************************************/
/*
  Purpose:

    DNRM2 returns the euclidean norm of a vector.

  Discussion:

     DNRM2 ( X ) = sqrt ( X' * X )

  Licensing:

    This code is distributed under the GNU LGPL license. 

  Modified:

    30 March 2007

  Author:

    C version by John Burkardt

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979.

    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
    Basic Linear Algebra Subprograms for Fortran Usage,
    Algorithm 539,
    ACM Transactions on Mathematical Software,
    Volume 5, Number 3, September 1979, pages 308-323.

  Parameters:

    Input, int N, the number of entries in the vector.

    Input, double X[*], the vector whose norm is to be computed.

    Input, int INCX, the increment between successive entries of X.

    Output, double DNRM2, the Euclidean norm of X.
*/
{
  double absxi;
  int i;
  int ix;
  double norm;
  double scale;
  double ssq;
  double value;

  if ( n < 1 || incx < 1 )
  {
    norm = 0.0;
  }
  else if ( n == 1 )
  {
    norm = r8_abs ( x[0] );
  }
  else
  {
    scale = 0.0;
    ssq = 1.0;
    ix = 0;

    for ( i = 0; i < n; i++ )
    {
      if ( x[ix] != 0.0 )
      {
        absxi = r8_abs ( x[ix] );
        if ( scale < absxi )
        {
          ssq = 1.0 + ssq * ( scale / absxi ) * ( scale / absxi );
          scale = absxi;
        }
        else
        {
          ssq = ssq + ( absxi / scale ) * ( absxi / scale );
        }
      }
      ix = ix + incx;
    }

    norm  = scale * sqrt ( ssq );
  }

  return norm;
}
/******************************************************************************/

void dqrank ( double a[], int lda, int m, int n, double tol, int *kr, 
  int jpvt[], double qraux[] )

/******************************************************************************/
/*
  Purpose:

    DQRANK computes the QR factorization of a rectangular matrix.

  Discussion:

    This routine is used in conjunction with DQRLSS to solve
    overdetermined, underdetermined and singular linear systems
    in a least squares sense.

    DQRANK uses the LINPACK subroutine DQRDC to compute the QR
    factorization, with column pivoting, of an M by N matrix A.
    The numerical rank is determined using the tolerance TOL.

    Note that on output, ABS ( A(1,1) ) / ABS ( A(KR,KR) ) is an estimate
    of the condition number of the matrix of independent columns,
    and of R.  This estimate will be <= 1/TOL.

  Licensing:

    This code is distributed under the GNU LGPL license. 

  Modified:

    21 April 2012

  Author:

    C version by John Burkardt.

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979,
    ISBN13: 978-0-898711-72-1,
    LC: QA214.L56.

  Parameters:

    Input/output, double A[LDA*N].  On input, the matrix whose
    decomposition is to be computed.  On output, the information from DQRDC.
    The triangular matrix R of the QR factorization is contained in the
    upper triangle and information needed to recover the orthogonal
    matrix Q is stored below the diagonal in A and in the vector QRAUX.

    Input, int LDA, the leading dimension of A, which must
    be at least M.

    Input, int M, the number of rows of A.

    Input, int N, the number of columns of A.

    Input, double TOL, a relative tolerance used to determine the
    numerical rank.  The problem should be scaled so that all the elements
    of A have roughly the same absolute accuracy, EPS.  Then a reasonable
    value for TOL is roughly EPS divided by the magnitude of the largest
    element.

    Output, int *KR, the numerical rank.

    Output, int JPVT[N], the pivot information from DQRDC.
    Columns JPVT(1), ..., JPVT(KR) of the original matrix are linearly
    independent to within the tolerance TOL and the remaining columns
    are linearly dependent.

    Output, double QRAUX[N], will contain extra information defining
    the QR factorization.
*/
{
  int i;
  int j;
  int job;
  int k;
  double *work;

  for ( i = 0; i < n; i++ )
  {
    jpvt[i] = 0;
  }

  work = ( double * ) malloc ( n * sizeof ( double ) );
  job = 1;

  dqrdc ( a, lda, m, n, qraux, jpvt, work, job );

  *kr = 0;
  k = i4_min ( m, n );

  for ( j = 0; j < k; j++ )
  {
    if ( r8_abs ( a[j+j*lda] ) <= tol * r8_abs ( a[0+0*lda] ) )
    {
      return;
    }
    *kr = j + 1;
  }

  free ( work );

  return;
}
/******************************************************************************/

void dqrdc ( double a[], int lda, int n, int p, double qraux[], int jpvt[], 
  double work[], int job )

/******************************************************************************/
/*
  Purpose:

    DQRDC computes the QR factorization of a real rectangular matrix.

  Discussion:

    DQRDC uses Householder transformations.

    Column pivoting based on the 2-norms of the reduced columns may be
    performed at the user's option.

  Licensing:

    This code is distributed under the GNU LGPL license. 

  Modified:

    07 June 2005

  Author:

    C version by John Burkardt.

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    LINPACK User's Guide,
    SIAM, (Society for Industrial and Applied Mathematics),
    3600 University City Science Center,
    Philadelphia, PA, 19104-2688.
    ISBN 0-89871-172-X

  Parameters:

    Input/output, double A(LDA,P).  On input, the N by P matrix
    whose decomposition is to be computed.  On output, A contains in
    its upper triangle the upper triangular matrix R of the QR
    factorization.  Below its diagonal A contains information from
    which the orthogonal part of the decomposition can be recovered.
    Note that if pivoting has been requested, the decomposition is not that
    of the original matrix A but that of A with its columns permuted
    as described by JPVT.

    Input, int LDA, the leading dimension of the array A.  LDA must
    be at least N.

    Input, int N, the number of rows of the matrix A.

    Input, int P, the number of columns of the matrix A.

    Output, double QRAUX[P], contains further information required
    to recover the orthogonal part of the decomposition.

    Input/output, integer JPVT[P].  On input, JPVT contains integers that
    control the selection of the pivot columns.  The K-th column A(*,K) of A
    is placed in one of three classes according to the value of JPVT(K).
      > 0, then A(K) is an initial column.
      = 0, then A(K) is a free column.
      < 0, then A(K) is a final column.
    Before the decomposition is computed, initial columns are moved to
    the beginning of the array A and final columns to the end.  Both
    initial and final columns are frozen in place during the computation
    and only free columns are moved.  At the K-th stage of the
    reduction, if A(*,K) is occupied by a free column it is interchanged
    with the free column of largest reduced norm.  JPVT is not referenced
    if JOB == 0.  On output, JPVT(K) contains the index of the column of the
    original matrix that has been interchanged into the K-th column, if
    pivoting was requested.

    Workspace, double WORK[P].  WORK is not referenced if JOB == 0.

    Input, int JOB, initiates column pivoting.
    0, no pivoting is done.
    nonzero, pivoting is done.
*/
{
  int j;
  int jp;
  int l;
  int lup;
  int maxj;
  double maxnrm;
  double nrmxl;
  int pl;
  int pu;
  int swapj;
  double t;
  double tt;

  pl = 1;
  pu = 0;
/*
  If pivoting is requested, rearrange the columns.
*/
  if ( job != 0 )
  {
    for ( j = 1; j <= p; j++ )
    {
      swapj = ( 0 < jpvt[j-1] );

      if ( jpvt[j-1] < 0 )
      {
        jpvt[j-1] = -j;
      }
      else
      {
        jpvt[j-1] = j;
      }

      if ( swapj )
      {
        if ( j != pl )
        {
          dswap ( n, a+0+(pl-1)*lda, 1, a+0+(j-1), 1 );
        }
        jpvt[j-1] = jpvt[pl-1];
        jpvt[pl-1] = j;
        pl = pl + 1;
      }
    }
    pu = p;

    for ( j = p; 1 <= j; j-- )
    {
      if ( jpvt[j-1] < 0 )
      {
        jpvt[j-1] = -jpvt[j-1];

        if ( j != pu )
        {
          dswap ( n, a+0+(pu-1)*lda, 1, a+0+(j-1)*lda, 1 );
          jp = jpvt[pu-1];
          jpvt[pu-1] = jpvt[j-1];
          jpvt[j-1] = jp;
        }
        pu = pu - 1;
      }
    }
  }
/*
  Compute the norms of the free columns.
*/
  for ( j = pl; j <= pu; j++ )
  {
    qraux[j-1] = dnrm2 ( n, a+0+(j-1)*lda, 1 );
  }

  for ( j = pl; j <= pu; j++ )
  {
    work[j-1] = qraux[j-1];
  }
/*
  Perform the Householder reduction of A.
*/
  lup = i4_min ( n, p );

  for ( l = 1; l <= lup; l++ )
  {
/*
  Bring the column of largest norm into the pivot position.
*/
    if ( pl <= l && l < pu )
    {
      maxnrm = 0.0;
      maxj = l;
      for ( j = l; j <= pu; j++ )
      {
        if ( maxnrm < qraux[j-1] )
        {
          maxnrm = qraux[j-1];
          maxj = j;
        }
      }

      if ( maxj != l )
      {
        dswap ( n, a+0+(l-1)*lda, 1, a+0+(maxj-1)*lda, 1 );
        qraux[maxj-1] = qraux[l-1];
        work[maxj-1] = work[l-1];
        jp = jpvt[maxj-1];
        jpvt[maxj-1] = jpvt[l-1];
        jpvt[l-1] = jp;
      }
    }
/*
  Compute the Householder transformation for column L.
*/
    qraux[l-1] = 0.0;

    if ( l != n )
    {
      nrmxl = dnrm2 ( n-l+1, a+l-1+(l-1)*lda, 1 );

      if ( nrmxl != 0.0 )
      {
        if ( a[l-1+(l-1)*lda] != 0.0 )
        {
          nrmxl = nrmxl * r8_sign ( a[l-1+(l-1)*lda] );
        }

        dscal ( n-l+1, 1.0 / nrmxl, a+l-1+(l-1)*lda, 1 );
        a[l-1+(l-1)*lda] = 1.0 + a[l-1+(l-1)*lda];
/*
  Apply the transformation to the remaining columns, updating the norms.
*/
        for ( j = l + 1; j <= p; j++ )
        {
          t = -ddot ( n-l+1, a+l-1+(l-1)*lda, 1, a+l-1+(j-1)*lda, 1 ) 
            / a[l-1+(l-1)*lda];
          daxpy ( n-l+1, t, a+l-1+(l-1)*lda, 1, a+l-1+(j-1)*lda, 1 );

          if ( pl <= j && j <= pu )
          {
            if ( qraux[j-1] != 0.0 )
            {
              tt = 1.0 - pow ( r8_abs ( a[l-1+(j-1)*lda] ) / qraux[j-1], 2 );
              tt = r8_max ( tt, 0.0 );
              t = tt;
              tt = 1.0 + 0.05 * tt * pow ( qraux[j-1] / work[j-1], 2 );

              if ( tt != 1.0 )
              {
                qraux[j-1] = qraux[j-1] * sqrt ( t );
              }
              else
              {
                qraux[j-1] = dnrm2 ( n-l, a+l+(j-1)*lda, 1 );
                work[j-1] = qraux[j-1];
              }
            }
          }
        }
/*
  Save the transformation.
*/
        qraux[l-1] = a[l-1+(l-1)*lda];
        a[l-1+(l-1)*lda] = -nrmxl;
      }
    }
  }
  return;
}
/******************************************************************************/

int dqrls ( double a[], int lda, int m, int n, double tol, int *kr, double b[], 
  double x[], double rsd[], int jpvt[], double qraux[], int itask )

/******************************************************************************/
/*
  Purpose:

    DQRLS factors and solves a linear system in the least squares sense.

  Discussion:

    The linear system may be overdetermined, underdetermined or singular.
    The solution is obtained using a QR factorization of the
    coefficient matrix.

    DQRLS can be efficiently used to solve several least squares
    problems with the same matrix A.  The first system is solved
    with ITASK = 1.  The subsequent systems are solved with
    ITASK = 2, to avoid the recomputation of the matrix factors.
    The parameters KR, JPVT, and QRAUX must not be modified
    between calls to DQRLS.

    DQRLS is used to solve in a least squares sense
    overdetermined, underdetermined and singular linear systems.
    The system is A*X approximates B where A is M by N.
    B is a given M-vector, and X is the N-vector to be computed.
    A solution X is found which minimimzes the sum of squares (2-norm)
    of the residual,  A*X - B.

    The numerical rank of A is determined using the tolerance TOL.

    DQRLS uses the LINPACK subroutine DQRDC to compute the QR
    factorization, with column pivoting, of an M by N matrix A.

  Licensing:

    This code is distributed under the GNU LGPL license. 

  Modified:

    10 September 2012

  Author:

    C version by John Burkardt.

  Reference:

    David Kahaner, Cleve Moler, Steven Nash,
    Numerical Methods and Software,
    Prentice Hall, 1989,
    ISBN: 0-13-627258-4,
    LC: TA345.K34.

  Parameters:

    Input/output, double A[LDA*N], an M by N matrix.
    On input, the matrix whose decomposition is to be computed.
    In a least squares data fitting problem, A(I,J) is the
    value of the J-th basis (model) function at the I-th data point.
    On output, A contains the output from DQRDC.  The triangular matrix R
    of the QR factorization is contained in the upper triangle and
    information needed to recover the orthogonal matrix Q is stored
    below the diagonal in A and in the vector QRAUX.

    Input, int LDA, the leading dimension of A.

    Input, int M, the number of rows of A.

    Input, int N, the number of columns of A.

    Input, double TOL, a relative tolerance used to determine the
    numerical rank.  The problem should be scaled so that all the elements
    of A have roughly the same absolute accuracy EPS.  Then a reasonable
    value for TOL is roughly EPS divided by the magnitude of the largest
    element.

    Output, int *KR, the numerical rank.

    Input, double B[M], the right hand side of the linear system.

    Output, double X[N], a least squares solution to the linear
    system.

    Output, double RSD[M], the residual, B - A*X.  RSD may
    overwrite B.

    Workspace, int JPVT[N], required if ITASK = 1.
    Columns JPVT(1), ..., JPVT(KR) of the original matrix are linearly
    independent to within the tolerance TOL and the remaining columns
    are linearly dependent.  ABS ( A(1,1) ) / ABS ( A(KR,KR) ) is an estimate
    of the condition number of the matrix of independent columns,
    and of R.  This estimate will be <= 1/TOL.

    Workspace, double QRAUX[N], required if ITASK = 1.

    Input, int ITASK.
    1, DQRLS factors the matrix A and solves the least squares problem.
    2, DQRLS assumes that the matrix A was factored with an earlier
       call to DQRLS, and only solves the least squares problem.

    Output, int DQRLS, error code.
    0:  no error
    -1: LDA < M   (fatal error)
    -2: N < 1     (fatal error)
    -3: ITASK < 1 (fatal error)
*/
{
  int ind;

  if ( lda < m )
  {
    /*fprintf ( stderr, "\n" );
    fprintf ( stderr, "DQRLS - Fatal error!\n" );
    fprintf ( stderr, "  LDA < M.\n" );*/
    ind = -1;
    return ind;
  }

  if ( n <= 0 )
  {
    /*fprintf ( stderr, "\n" );
    fprintf ( stderr, "DQRLS - Fatal error!\n" );
    fprintf ( stderr, "  N <= 0.\n" );*/
    ind = -2;
    return ind;
  }

  if ( itask < 1 )
  {
    /*fprintf ( stderr, "\n" );
    fprintf ( stderr, "DQRLS - Fatal error!\n" );
    fprintf ( stderr, "  ITASK < 1.\n" );*/
    ind = -3;
    return ind;
  }

  ind = 0;
/*
  Factor the matrix.
*/
  if ( itask == 1 )
  {
    dqrank ( a, lda, m, n, tol, kr, jpvt, qraux );
  }
/*
  Solve the least-squares problem.
*/
  dqrlss ( a, lda, m, n, *kr, b, x, rsd, jpvt, qraux );

  return ind;
}
/******************************************************************************/

void dqrlss ( double a[], int lda, int m, int n, int kr, double b[], double x[], 
  double rsd[], int jpvt[], double qraux[] )

/******************************************************************************/
/*
  Purpose:

    DQRLSS solves a linear system in a least squares sense.

  Discussion:

    DQRLSS must be preceded by a call to DQRANK.

    The system is to be solved is
      A * X = B
    where
      A is an M by N matrix with rank KR, as determined by DQRANK,
      B is a given M-vector,
      X is the N-vector to be computed.

    A solution X, with at most KR nonzero components, is found which
    minimizes the 2-norm of the residual (A*X-B).

    Once the matrix A has been formed, DQRANK should be
    called once to decompose it.  Then, for each right hand
    side B, DQRLSS should be called once to obtain the
    solution and residual.

  Licensing:

    This code is distributed under the GNU LGPL license. 

  Modified:

    10 September 2012

  Author:

    C version by John Burkardt

  Parameters:

    Input, double A[LDA*N], the QR factorization information
    from DQRANK.  The triangular matrix R of the QR factorization is
    contained in the upper triangle and information needed to recover
    the orthogonal matrix Q is stored below the diagonal in A and in
    the vector QRAUX.

    Input, int LDA, the leading dimension of A, which must
    be at least M.

    Input, int M, the number of rows of A.

    Input, int N, the number of columns of A.

    Input, int KR, the rank of the matrix, as estimated by DQRANK.

    Input, double B[M], the right hand side of the linear system.

    Output, double X[N], a least squares solution to the
    linear system.

    Output, double RSD[M], the residual, B - A*X.  RSD may
    overwrite B.

    Input, int JPVT[N], the pivot information from DQRANK.
    Columns JPVT[0], ..., JPVT[KR-1] of the original matrix are linearly
    independent to within the tolerance TOL and the remaining columns
    are linearly dependent.

    Input, double QRAUX[N], auxiliary information from DQRANK
    defining the QR factorization.
*/
{
  int i;
  int info;
  int j;
  int job;
  int k;
  double t;

  if ( kr != 0 )
  {
    job = 110;
    info = dqrsl ( a, lda, m, kr, qraux, b, rsd, rsd, x, rsd, rsd, job );
  }

  for ( i = 0; i < n; i++ )
  {
    jpvt[i] = - jpvt[i];
  }

  for ( i = kr; i < n; i++ )
  {
    x[i] = 0.0;
  }

  for ( j = 1; j <= n; j++ )
  {
    if ( jpvt[j-1] <= 0 )
    {
      k = - jpvt[j-1];
      jpvt[j-1] = k;

      while ( k != j )
      {
        t = x[j-1];
        x[j-1] = x[k-1];
        x[k-1] = t;
        jpvt[k-1] = -jpvt[k-1];
        k = jpvt[k-1];
      }
    }
  }
  return;
}
/******************************************************************************/

int dqrsl ( double a[], int lda, int n, int k, double qraux[], double y[], 
  double qy[], double qty[], double b[], double rsd[], double ab[], int job )

/******************************************************************************/
/*
  Purpose:

    DQRSL computes transformations, projections, and least squares solutions.

  Discussion:

    DQRSL requires the output of DQRDC.

    For K <= min(N,P), let AK be the matrix

      AK = ( A(JPVT[0]), A(JPVT(2)), ..., A(JPVT(K)) )

    formed from columns JPVT[0], ..., JPVT(K) of the original
    N by P matrix A that was input to DQRDC.  If no pivoting was
    done, AK consists of the first K columns of A in their
    original order.  DQRDC produces a factored orthogonal matrix Q
    and an upper triangular matrix R such that

      AK = Q * (R)
               (0)

    This information is contained in coded form in the arrays
    A and QRAUX.

    The parameters QY, QTY, B, RSD, and AB are not referenced
    if their computation is not requested and in this case
    can be replaced by dummy variables in the calling program.
    To save storage, the user may in some cases use the same
    array for different parameters in the calling sequence.  A
    frequently occurring example is when one wishes to compute
    any of B, RSD, or AB and does not need Y or QTY.  In this
    case one may identify Y, QTY, and one of B, RSD, or AB, while
    providing separate arrays for anything else that is to be
    computed.

    Thus the calling sequence

      dqrsl ( a, lda, n, k, qraux, y, dum, y, b, y, dum, 110, info )

    will result in the computation of B and RSD, with RSD
    overwriting Y.  More generally, each item in the following
    list contains groups of permissible identifications for
    a single calling sequence.

      1. (Y,QTY,B) (RSD) (AB) (QY)

      2. (Y,QTY,RSD) (B) (AB) (QY)

      3. (Y,QTY,AB) (B) (RSD) (QY)

      4. (Y,QY) (QTY,B) (RSD) (AB)

      5. (Y,QY) (QTY,RSD) (B) (AB)

      6. (Y,QY) (QTY,AB) (B) (RSD)

    In any group the value returned in the array allocated to
    the group corresponds to the last member of the group.

  Licensing:

    This code is distributed under the GNU LGPL license. 

  Modified:

    07 June 2005

  Author:

    C version by John Burkardt.

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    LINPACK User's Guide,
    SIAM, (Society for Industrial and Applied Mathematics),
    3600 University City Science Center,
    Philadelphia, PA, 19104-2688.
    ISBN 0-89871-172-X

  Parameters:

    Input, double A[LDA*P], contains the output of DQRDC.

    Input, int LDA, the leading dimension of the array A.

    Input, int N, the number of rows of the matrix AK.  It must
    have the same value as N in DQRDC.

    Input, int K, the number of columns of the matrix AK.  K
    must not be greater than min(N,P), where P is the same as in the
    calling sequence to DQRDC.

    Input, double QRAUX[P], the auxiliary output from DQRDC.

    Input, double Y[N], a vector to be manipulated by DQRSL.

    Output, double QY[N], contains Q * Y, if requested.

    Output, double QTY[N], contains Q' * Y, if requested.

    Output, double B[K], the solution of the least squares problem
      minimize norm2 ( Y - AK * B),
    if its computation has been requested.  Note that if pivoting was
    requested in DQRDC, the J-th component of B will be associated with
    column JPVT(J) of the original matrix A that was input into DQRDC.

    Output, double RSD[N], the least squares residual Y - AK * B,
    if its computation has been requested.  RSD is also the orthogonal
    projection of Y onto the orthogonal complement of the column space
    of AK.

    Output, double AB[N], the least squares approximation Ak * B,
    if its computation has been requested.  AB is also the orthogonal
    projection of Y onto the column space of A.

    Input, integer JOB, specifies what is to be computed.  JOB has
    the decimal expansion ABCDE, with the following meaning:

      if A != 0, compute QY.
      if B != 0, compute QTY.
      if C != 0, compute QTY and B.
      if D != 0, compute QTY and RSD.
      if E != 0, compute QTY and AB.

    Note that a request to compute B, RSD, or AB automatically triggers
    the computation of QTY, for which an array must be provided in the
    calling sequence.

    Output, int DQRSL, is zero unless the computation of B has
    been requested and R is exactly singular.  In this case, INFO is the
    index of the first zero diagonal element of R, and B is left unaltered.
*/
{
  int cab;
  int cb;
  int cqty;
  int cqy;
  int cr;
  int i;
  int info;
  int j;
  int jj;
  int ju;
  double t;
  double temp;
/*
  Set INFO flag.
*/
  info = 0;
/*
  Determine what is to be computed.
*/
  cqy =  (   job / 10000          != 0 );
  cqty = ( ( job %  10000 )       != 0 );
  cb =   ( ( job %   1000 ) / 100 != 0 );
  cr =   ( ( job %    100 ) /  10 != 0 );
  cab =  ( ( job %     10 )       != 0 );

  ju = i4_min ( k, n-1 );
/*
  Special action when N = 1.
*/
  if ( ju == 0 )
  {
    if ( cqy )
    {
      qy[0] = y[0];
    }

    if ( cqty )
    {
      qty[0] = y[0];
    }

    if ( cab )
    {
      ab[0] = y[0];
    }

    if ( cb )
    {
      if ( a[0+0*lda] == 0.0 )
      {
        info = 1;
      }
      else
      {
        b[0] = y[0] / a[0+0*lda];
      }
    }

    if ( cr )
    {
      rsd[0] = 0.0;
    }
    return info;
  }
/*
  Set up to compute QY or QTY.
*/
  if ( cqy )
  {
    for ( i = 1; i <= n; i++ )
    {
      qy[i-1] = y[i-1];
    }
  }

  if ( cqty )
  {
    for ( i = 1; i <= n; i++ )
    {
      qty[i-1] = y[i-1];
    }
  }
/*
  Compute QY.
*/
  if ( cqy )
  {
    for ( jj = 1; jj <= ju; jj++ )
    {
      j = ju - jj + 1;

      if ( qraux[j-1] != 0.0 )
      {
        temp = a[j-1+(j-1)*lda];
        a[j-1+(j-1)*lda] = qraux[j-1];
        t = -ddot ( n-j+1, a+j-1+(j-1)*lda, 1, qy+j-1, 1 ) / a[j-1+(j-1)*lda];
        daxpy ( n-j+1, t, a+j-1+(j-1)*lda, 1, qy+j-1, 1 );
        a[j-1+(j-1)*lda] = temp;
      }
    }
  }
/*
  Compute Q'*Y.
*/
  if ( cqty )
  {
    for ( j = 1; j <= ju; j++ )
    {
      if ( qraux[j-1] != 0.0 )
      {
        temp = a[j-1+(j-1)*lda];
        a[j-1+(j-1)*lda] = qraux[j-1];
        t = -ddot ( n-j+1, a+j-1+(j-1)*lda, 1, qty+j-1, 1 ) / a[j-1+(j-1)*lda];
        daxpy ( n-j+1, t, a+j-1+(j-1)*lda, 1, qty+j-1, 1 );
        a[j-1+(j-1)*lda] = temp;
      }
    }
  }
/*
  Set up to compute B, RSD, or AB.
*/
  if ( cb )
  {
    for ( i = 1; i <= k; i++ )
    {
      b[i-1] = qty[i-1];
    }
  }

  if ( cab )
  {
    for ( i = 1; i <= k; i++ )
    {
      ab[i-1] = qty[i-1];
    }
  }

  if ( cr && k < n )
  {
    for ( i = k+1; i <= n; i++ )
    {
      rsd[i-1] = qty[i-1];
    }
  }

  if ( cab && k+1 <= n )
  {
    for ( i = k+1; i <= n; i++ )
    {
      ab[i-1] = 0.0;
    }
  }

  if ( cr )
  {
    for ( i = 1; i <= k; i++ )
    {
      rsd[i-1] = 0.0;
    }
  }
/*
  Compute B.
*/
  if ( cb )
  {
    for ( jj = 1; jj <= k; jj++ )
    {
      j = k - jj + 1;

      if ( a[j-1+(j-1)*lda] == 0.0 )
      {
        info = j;
        break;
      }

      b[j-1] = b[j-1] / a[j-1+(j-1)*lda];

      if ( j != 1 )
      {
        t = -b[j-1];
        daxpy ( j-1, t, a+0+(j-1)*lda, 1, b, 1 );
      }
    }
  }
/*
  Compute RSD or AB as required.
*/
  if ( cr || cab )
  {
    for ( jj = 1; jj <= ju; jj++ )
    {
      j = ju - jj + 1;

      if ( qraux[j-1] != 0.0 )
      {
        temp = a[j-1+(j-1)*lda];
        a[j-1+(j-1)*lda] = qraux[j-1];

        if ( cr )
        {
          t = -ddot ( n-j+1, a+j-1+(j-1)*lda, 1, rsd+j-1, 1 ) 
            / a[j-1+(j-1)*lda];
          daxpy ( n-j+1, t, a+j-1+(j-1)*lda, 1, rsd+j-1, 1 );
        }

        if ( cab )
        {
          t = -ddot ( n-j+1, a+j-1+(j-1)*lda, 1, ab+j-1, 1 ) 
            / a[j-1+(j-1)*lda];
          daxpy ( n-j+1, t, a+j-1+(j-1)*lda, 1, ab+j-1, 1 );
        }
        a[j-1+(j-1)*lda] = temp;
      }
    }
  }

  return info;
}
/******************************************************************************/

/******************************************************************************/

void dscal ( int n, double sa, double x[], int incx )

/******************************************************************************/
/*
  Purpose:

    DSCAL scales a vector by a constant.

  Licensing:

    This code is distributed under the GNU LGPL license. 

  Modified:

    30 March 2007

  Author:

    C version by John Burkardt

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979.

    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
    Basic Linear Algebra Subprograms for Fortran Usage,
    Algorithm 539,
    ACM Transactions on Mathematical Software,
    Volume 5, Number 3, September 1979, pages 308-323.

  Parameters:

    Input, int N, the number of entries in the vector.

    Input, double SA, the multiplier.

    Input/output, double X[*], the vector to be scaled.

    Input, int INCX, the increment between successive entries of X.
*/
{
  int i;
  int ix;
  int m;

  if ( n <= 0 )
  {
  }
  else if ( incx == 1 )
  {
    m = n % 5;

    for ( i = 0; i < m; i++ )
    {
      x[i] = sa * x[i];
    }

    for ( i = m; i < n; i = i + 5 )
    {
      x[i]   = sa * x[i];
      x[i+1] = sa * x[i+1];
      x[i+2] = sa * x[i+2];
      x[i+3] = sa * x[i+3];
      x[i+4] = sa * x[i+4];
    }
  }
  else
  {
    if ( 0 <= incx )
    {
      ix = 0;
    }
    else
    {
      ix = ( - n + 1 ) * incx;
    }

    for ( i = 0; i < n; i++ )
    {
      x[ix] = sa * x[ix];
      ix = ix + incx;
    }
  }
  return;
}
/******************************************************************************/


void dswap ( int n, double x[], int incx, double y[], int incy )

/******************************************************************************/
/*
  Purpose:

    DSWAP interchanges two vectors.

  Licensing:

    This code is distributed under the GNU LGPL license. 

  Modified:

    30 March 2007

  Author:

    C version by John Burkardt

  Reference:

    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979.

    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
    Basic Linear Algebra Subprograms for Fortran Usage,
    Algorithm 539, 
    ACM Transactions on Mathematical Software, 
    Volume 5, Number 3, September 1979, pages 308-323.

  Parameters:

    Input, int N, the number of entries in the vectors.

    Input/output, double X[*], one of the vectors to swap.

    Input, int INCX, the increment between successive entries of X.

    Input/output, double Y[*], one of the vectors to swap.

    Input, int INCY, the increment between successive elements of Y.
*/
{
  int i;
  int ix;
  int iy;
  int m;
  double temp;

  if ( n <= 0 )
  {
  }
  else if ( incx == 1 && incy == 1 )
  {
    m = n % 3;

    for ( i = 0; i < m; i++ )
    {
      temp = x[i];
      x[i] = y[i];
      y[i] = temp;
    }

    for ( i = m; i < n; i = i + 3 )
    {
      temp = x[i];
      x[i] = y[i];
      y[i] = temp;

      temp = x[i+1];
      x[i+1] = y[i+1];
      y[i+1] = temp;

      temp = x[i+2];
      x[i+2] = y[i+2];
      y[i+2] = temp;
    }
  }
  else
  {
    if ( 0 <= incx )
    {
      ix = 0;
    }
    else
    {
      ix = ( - n + 1 ) * incx;
    }

    if ( 0 <= incy )
    {
      iy = 0;
    }
    else
    {
      iy = ( - n + 1 ) * incy;
    }

    for ( i = 0; i < n; i++ )
    {
      temp = x[ix];
      x[ix] = y[iy];
      y[iy] = temp;
      ix = ix + incx;
      iy = iy + incy;
    }

  }

  return;
}
/******************************************************************************/

/******************************************************************************/

double *qr_solve ( int m, int n, double a[], double b[] )

/******************************************************************************/
/*
  Purpose:

    QR_SOLVE solves a linear system in the least squares sense.

  Discussion:

    If the matrix A has full column rank, then the solution X should be the
    unique vector that minimizes the Euclidean norm of the residual.

    If the matrix A does not have full column rank, then the solution is
    not unique; the vector X will minimize the residual norm, but so will
    various other vectors.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    11 September 2012

  Author:

    John Burkardt

  Reference:

    David Kahaner, Cleve Moler, Steven Nash,
    Numerical Methods and Software,
    Prentice Hall, 1989,
    ISBN: 0-13-627258-4,
    LC: TA345.K34.

  Parameters:

    Input, int M, the number of rows of A.

    Input, int N, the number of columns of A.

    Input, double A[M*N], the matrix.

    Input, double B[M], the right hand side.

    Output, double QR_SOLVE[N], the least squares solution.
*/
{
  double *a_qr;
  int ind;
  int itask;
  int *jpvt;
  int kr;
  int lda;
  double *qraux;
  double *r;
  double tol;
  double *x;

  a_qr = r8mat_copy_new ( m, n, a );
  lda = m;
  tol = r8_epsilon ( ) / r8mat_amax ( m, n, a_qr );
  x = ( double * ) malloc ( n * sizeof ( double ) );
  jpvt = ( int * ) malloc ( n * sizeof ( int ) );
  qraux = ( double * ) malloc ( n * sizeof ( double ) );
  r = ( double * ) malloc ( m * sizeof ( double ) );
  itask = 1;

  ind = dqrls ( a_qr, lda, m, n, tol, &kr, b, x, r, jpvt, qraux, itask );

  free ( a_qr );
  free ( jpvt );
  free ( qraux ); 
  free ( r );

  return x;
}
/******************************************************************************/

#endif