Welcome to mirror list, hosted at ThFree Co, Russian Federation.

stepper.cpp « Firmware - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 919c5591821a2583b3f91f361c50fa72f740d8d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
/*
  stepper.c - stepper motor driver: executes motion plans using stepper motors
  Part of Grbl

  Copyright (c) 2009-2011 Simen Svale Skogsrud

  Grbl is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  Grbl is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
*/

/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
   and Philipp Tiefenbacher. */

#include "Marlin.h"
#include "stepper.h"
#include "planner.h"
#include "temperature.h"
#include "ultralcd.h"
#include "language.h"
#include "cardreader.h"
#include "speed_lookuptable.h"
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
#include <SPI.h>
#endif


//===========================================================================
//=============================public variables  ============================
//===========================================================================
block_t *current_block;  // A pointer to the block currently being traced


//===========================================================================
//=============================private variables ============================
//===========================================================================
//static makes it inpossible to be called from outside of this file by extern.!

// Variables used by The Stepper Driver Interrupt
static unsigned char out_bits;        // The next stepping-bits to be output
static int32_t counter_x,       // Counter variables for the bresenham line tracer
               counter_y,
               counter_z,
               counter_e;
volatile static uint32_t step_events_completed; // The number of step events executed in the current block
static int32_t  acceleration_time, deceleration_time;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static uint16_t acc_step_rate; // needed for deccelaration start point
static uint8_t  step_loops;
static uint16_t OCR1A_nominal;
static uint8_t  step_loops_nominal;

volatile long endstops_trigsteps[3]={0,0,0};
volatile long endstops_stepsTotal,endstops_stepsDone;
static volatile bool endstop_x_hit=false;
static volatile bool endstop_y_hit=false;
static volatile bool endstop_z_hit=false;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
bool abort_on_endstop_hit = false;
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
  int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
  int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
#endif

static bool old_x_min_endstop=false;
static bool old_x_max_endstop=false;
static bool old_y_min_endstop=false;
static bool old_y_max_endstop=false;
static bool old_z_min_endstop=false;
static bool old_z_max_endstop=false;

static bool check_endstops = true;
static bool check_z_endstop = false;

int8_t SilentMode;

volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};

//===========================================================================
//=============================functions         ============================
//===========================================================================

#define CHECK_ENDSTOPS  if(check_endstops)

// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
"r26" \
)

// intRes = longIn1 * longIn2 >> 24
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 48bit result
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"mov r27, r1 \n\t" \
"mul %B1, %C2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %C1, %C2 \n\t" \
"add %B0, r0 \n\t" \
"mul %C1, %B2 \n\t" \
"add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \
"mul %A1, %C2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %B2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %C1, %A2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %A2 \n\t" \
"add r27, r1 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r27 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (longIn1), \
"d" (longIn2) \
: \
"r26" , "r27" \
)

// Some useful constants

#define ENABLE_STEPPER_DRIVER_INTERRUPT()  TIMSK1 |= (1<<OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)


void checkHitEndstops()
{
 if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
   SERIAL_ECHO_START;
   SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
   if(endstop_x_hit) {
     SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
     LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("X")));
   }
   if(endstop_y_hit) {
     SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
     LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("Y")));
   }
   if(endstop_z_hit) {
     SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
     LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT,PSTR("Z")));
   }
   SERIAL_ECHOLN("");
   endstop_x_hit=false;
   endstop_y_hit=false;
   endstop_z_hit=false;
#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
   if (abort_on_endstop_hit)
   {
     card.sdprinting = false;
     card.closefile();
     quickStop();
     setTargetHotend0(0);
     setTargetHotend1(0);
     setTargetHotend2(0);
   }
#endif
 }
}

bool endstops_hit_on_purpose()
{
  bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
  endstop_x_hit=false;
  endstop_y_hit=false;
  endstop_z_hit=false;
  return hit;
}

bool endstop_z_hit_on_purpose()
{
  bool hit = endstop_z_hit;
  endstop_z_hit=false;
  return hit;
}

bool enable_endstops(bool check)
{
  bool old = check_endstops;
  check_endstops = check;
  return old;
}

bool enable_z_endstop(bool check)
{
  bool old = check_z_endstop;
  check_z_endstop = check;
  endstop_z_hit=false;
  return old;
}

//         __________________________
//        /|                        |\     _________________         ^
//       / |                        | \   /|               |\        |
//      /  |                        |  \ / |               | \       s
//     /   |                        |   |  |               |  \      p
//    /    |                        |   |  |               |   \     e
//   +-----+------------------------+---+--+---------------+----+    e
//   |               BLOCK 1            |      BLOCK 2          |    d
//
//                           time ----->
//
//  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
//  first block->accelerate_until step_events_completed, then keeps going at constant speed until
//  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
//  The slope of acceleration is calculated with the leib ramp alghorithm.

void st_wake_up() {
  //  TCNT1 = 0;
  ENABLE_STEPPER_DRIVER_INTERRUPT();
}

void step_wait(){
    for(int8_t i=0; i < 6; i++){
    }
}


FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  unsigned short timer;
  if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;

  if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
    step_rate = (step_rate >> 2)&0x3fff;
    step_loops = 4;
  }
  else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
    step_rate = (step_rate >> 1)&0x7fff;
    step_loops = 2;
  }
  else {
    step_loops = 1;
  }

  if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  step_rate -= (F_CPU/500000); // Correct for minimal speed
  if(step_rate >= (8*256)){ // higher step rate
    unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
    unsigned char tmp_step_rate = (step_rate & 0x00ff);
    unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
    MultiU16X8toH16(timer, tmp_step_rate, gain);
    timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  }
  else { // lower step rates
    unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
    table_address += ((step_rate)>>1) & 0xfffc;
    timer = (unsigned short)pgm_read_word_near(table_address);
    timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  }
  if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  return timer;
}

// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
FORCE_INLINE void trapezoid_generator_reset() {
  deceleration_time = 0;
  // step_rate to timer interval
  OCR1A_nominal = calc_timer(current_block->nominal_rate);
  // make a note of the number of step loops required at nominal speed
  step_loops_nominal = step_loops;
  acc_step_rate = current_block->initial_rate;
  acceleration_time = calc_timer(acc_step_rate);
  OCR1A = acceleration_time;

//    SERIAL_ECHO_START;
//    SERIAL_ECHOPGM("advance :");
//    SERIAL_ECHO(current_block->advance/256.0);
//    SERIAL_ECHOPGM("advance rate :");
//    SERIAL_ECHO(current_block->advance_rate/256.0);
//    SERIAL_ECHOPGM("initial advance :");
//  SERIAL_ECHO(current_block->initial_advance/256.0);
//    SERIAL_ECHOPGM("final advance :");
//    SERIAL_ECHOLN(current_block->final_advance/256.0);

}

// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect)
{
  // If there is no current block, attempt to pop one from the buffer
  if (current_block == NULL) {
    // Anything in the buffer?
    current_block = plan_get_current_block();
    if (current_block != NULL) {
      // The busy flag is set by the plan_get_current_block() call.
      // current_block->busy = true;
      trapezoid_generator_reset();
      counter_x = -(current_block->step_event_count >> 1);
      counter_y = counter_x;
      counter_z = counter_x;
      counter_e = counter_x;
      step_events_completed = 0;

      #ifdef Z_LATE_ENABLE
        if(current_block->steps_z > 0) {
          enable_z();
          OCR1A = 2000; //1ms wait
          return;
        }
      #endif
    }
    else {
        OCR1A=2000; // 1kHz.
    }
  }

  if (current_block != NULL) {
    // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
    out_bits = current_block->direction_bits;


    // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
    if((out_bits & (1<<X_AXIS))!=0){
        WRITE(X_DIR_PIN, INVERT_X_DIR);
      count_direction[X_AXIS]=-1;
    }
    else{
        WRITE(X_DIR_PIN, !INVERT_X_DIR);
      count_direction[X_AXIS]=1;
    }
    if((out_bits & (1<<Y_AXIS))!=0){
      WRITE(Y_DIR_PIN, INVERT_Y_DIR);
	  
	  #ifdef Y_DUAL_STEPPER_DRIVERS
	    WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
	  #endif
	  
      count_direction[Y_AXIS]=-1;
    }
    else{
      WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
	  
	  #ifdef Y_DUAL_STEPPER_DRIVERS
	    WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
	  #endif
	  
      count_direction[Y_AXIS]=1;
    }

    // Set direction en check limit switches
    #ifndef COREXY
    if ((out_bits & (1<<X_AXIS)) != 0) {   // stepping along -X axis
    #else
    if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) {   //-X occurs for -A and -B
    #endif
      CHECK_ENDSTOPS
      {
        {
          #if defined(X_MIN_PIN) && X_MIN_PIN > -1
            bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
            if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
              endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
              endstop_x_hit=true;
              step_events_completed = current_block->step_event_count;
            }
            old_x_min_endstop = x_min_endstop;
          #endif
        }
      }
    }
    else { // +direction
      CHECK_ENDSTOPS
      {
        {
          #if defined(X_MAX_PIN) && X_MAX_PIN > -1
            bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
            if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
              endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
              endstop_x_hit=true;
              step_events_completed = current_block->step_event_count;
            }
            old_x_max_endstop = x_max_endstop;
          #endif
        }
      }
    }

    #ifndef COREXY
    if ((out_bits & (1<<Y_AXIS)) != 0) {   // -direction
    #else
    if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) {   // -Y occurs for -A and +B
    #endif
      CHECK_ENDSTOPS
      {
        #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
          bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
          if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
            endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
            endstop_y_hit=true;
            step_events_completed = current_block->step_event_count;
          }
          old_y_min_endstop = y_min_endstop;
        #endif
      }
    }
    else { // +direction
      CHECK_ENDSTOPS
      {
        #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
          bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
          if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
            endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
            endstop_y_hit=true;
            step_events_completed = current_block->step_event_count;
          }
          old_y_max_endstop = y_max_endstop;
        #endif
      }
    }

    if ((out_bits & (1<<Z_AXIS)) != 0) {   // -direction
      WRITE(Z_DIR_PIN,INVERT_Z_DIR);
      
      #ifdef Z_DUAL_STEPPER_DRIVERS
        WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
      #endif

      count_direction[Z_AXIS]=-1;
      if(check_endstops && ! check_z_endstop)
      {
        #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
          bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
          if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
            endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
            endstop_z_hit=true;
            step_events_completed = current_block->step_event_count;
          }
          old_z_min_endstop = z_min_endstop;
        #endif
      }
    }
    else { // +direction
      WRITE(Z_DIR_PIN,!INVERT_Z_DIR);

      #ifdef Z_DUAL_STEPPER_DRIVERS
        WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
      #endif

      count_direction[Z_AXIS]=1;
      CHECK_ENDSTOPS
      {
        #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
          bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
          if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
            endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
            endstop_z_hit=true;
            step_events_completed = current_block->step_event_count;
          }
          old_z_max_endstop = z_max_endstop;
        #endif
      }
    }

    // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
    #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
    if(check_z_endstop) {
        // Check the Z min end-stop no matter what.
        // Good for searching for the center of an induction target.
        bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
        if(z_min_endstop && old_z_min_endstop) {
          endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
          endstop_z_hit=true;
          step_events_completed = current_block->step_event_count;
        }
        old_z_min_endstop = z_min_endstop;
    }
    #endif

    if ((out_bits & (1<<E_AXIS)) != 0) {  // -direction
      REV_E_DIR();
      count_direction[E_AXIS]=-1;
    }
    else { // +direction
      NORM_E_DIR();
      count_direction[E_AXIS]=1;
    }

    for(uint8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
      #ifndef AT90USB
      MSerial.checkRx(); // Check for serial chars.
      #endif

        counter_x += current_block->steps_x;
        if (counter_x > 0) {
          WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
          counter_x -= current_block->step_event_count;
          count_position[X_AXIS]+=count_direction[X_AXIS];   
          WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
        }

        counter_y += current_block->steps_y;
        if (counter_y > 0) {
          WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
		  
		  #ifdef Y_DUAL_STEPPER_DRIVERS
			WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
		  #endif
		  
          counter_y -= current_block->step_event_count;
          count_position[Y_AXIS]+=count_direction[Y_AXIS];
          WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
		  
		  #ifdef Y_DUAL_STEPPER_DRIVERS
			WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
		  #endif
        }

      counter_z += current_block->steps_z;
      if (counter_z > 0) {
        WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
        
        #ifdef Z_DUAL_STEPPER_DRIVERS
          WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
        #endif

        counter_z -= current_block->step_event_count;
        count_position[Z_AXIS]+=count_direction[Z_AXIS];
        WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
        
        #ifdef Z_DUAL_STEPPER_DRIVERS
          WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
        #endif
      }

        counter_e += current_block->steps_e;
        if (counter_e > 0) {
          WRITE_E_STEP(!INVERT_E_STEP_PIN);
          counter_e -= current_block->step_event_count;
          count_position[E_AXIS]+=count_direction[E_AXIS];
          WRITE_E_STEP(INVERT_E_STEP_PIN);
        }
      step_events_completed += 1;
      if(step_events_completed >= current_block->step_event_count) break;
    }
    // Calculare new timer value
    unsigned short timer;
    unsigned short step_rate;
    if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
      // v = t * a   ->   acc_step_rate = acceleration_time * current_block->acceleration_rate
      MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
      acc_step_rate += current_block->initial_rate;

      // upper limit
      if(acc_step_rate > current_block->nominal_rate)
        acc_step_rate = current_block->nominal_rate;

      // step_rate to timer interval
      timer = calc_timer(acc_step_rate);
      OCR1A = timer;
      acceleration_time += timer;
    }
    else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
      MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);

      if(step_rate > acc_step_rate) { // Check step_rate stays positive
        step_rate = current_block->final_rate;
      }
      else {
        step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
      }

      // lower limit
      if(step_rate < current_block->final_rate)
        step_rate = current_block->final_rate;

      // step_rate to timer interval
      timer = calc_timer(step_rate);
      OCR1A = timer;
      deceleration_time += timer;
    }
    else {
      OCR1A = OCR1A_nominal;
      // ensure we're running at the correct step rate, even if we just came off an acceleration
      step_loops = step_loops_nominal;
    }

    // If current block is finished, reset pointer
    if (step_events_completed >= current_block->step_event_count) {
      current_block = NULL;
      plan_discard_current_block();
    }
  }
}

void st_init()
{
  digipot_init(); //Initialize Digipot Motor Current
  microstep_init(); //Initialize Microstepping Pins

  //Initialize Dir Pins
  #if defined(X_DIR_PIN) && X_DIR_PIN > -1
    SET_OUTPUT(X_DIR_PIN);
  #endif
  #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
    SET_OUTPUT(X2_DIR_PIN);
  #endif
  #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
    SET_OUTPUT(Y_DIR_PIN);
		
	#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
	  SET_OUTPUT(Y2_DIR_PIN);
	#endif
  #endif
  #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
    SET_OUTPUT(Z_DIR_PIN);

    #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
      SET_OUTPUT(Z2_DIR_PIN);
    #endif
  #endif
  #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
    SET_OUTPUT(E0_DIR_PIN);
  #endif
  #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
    SET_OUTPUT(E1_DIR_PIN);
  #endif
  #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
    SET_OUTPUT(E2_DIR_PIN);
  #endif

  //Initialize Enable Pins - steppers default to disabled.

  #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
    SET_OUTPUT(X_ENABLE_PIN);
    if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  #endif
  #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
    SET_OUTPUT(X2_ENABLE_PIN);
    if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  #endif
  #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
    SET_OUTPUT(Y_ENABLE_PIN);
    if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
	
	#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
	  SET_OUTPUT(Y2_ENABLE_PIN);
	  if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
	#endif
  #endif
  #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
    SET_OUTPUT(Z_ENABLE_PIN);
    if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);

    #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
      SET_OUTPUT(Z2_ENABLE_PIN);
      if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
    #endif
  #endif
  #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
    SET_OUTPUT(E0_ENABLE_PIN);
    if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  #endif
  #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
    SET_OUTPUT(E1_ENABLE_PIN);
    if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  #endif
  #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
    SET_OUTPUT(E2_ENABLE_PIN);
    if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  #endif

  //endstops and pullups

  #if defined(X_MIN_PIN) && X_MIN_PIN > -1
    SET_INPUT(X_MIN_PIN);
    #ifdef ENDSTOPPULLUP_XMIN
      WRITE(X_MIN_PIN,HIGH);
    #endif
  #endif

  #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
    SET_INPUT(Y_MIN_PIN);
    #ifdef ENDSTOPPULLUP_YMIN
      WRITE(Y_MIN_PIN,HIGH);
    #endif
  #endif

  #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
    SET_INPUT(Z_MIN_PIN);
    #ifdef ENDSTOPPULLUP_ZMIN
      WRITE(Z_MIN_PIN,HIGH);
    #endif
  #endif

  #if defined(X_MAX_PIN) && X_MAX_PIN > -1
    SET_INPUT(X_MAX_PIN);
    #ifdef ENDSTOPPULLUP_XMAX
      WRITE(X_MAX_PIN,HIGH);
    #endif
  #endif

  #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
    SET_INPUT(Y_MAX_PIN);
    #ifdef ENDSTOPPULLUP_YMAX
      WRITE(Y_MAX_PIN,HIGH);
    #endif
  #endif

  #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
    SET_INPUT(Z_MAX_PIN);
    #ifdef ENDSTOPPULLUP_ZMAX
      WRITE(Z_MAX_PIN,HIGH);
    #endif
  #endif


  //Initialize Step Pins
  #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
    SET_OUTPUT(X_STEP_PIN);
    WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
    disable_x();
  #endif
  #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
    SET_OUTPUT(X2_STEP_PIN);
    WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
    disable_x();
  #endif
  #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
    SET_OUTPUT(Y_STEP_PIN);
    WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
    #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
      SET_OUTPUT(Y2_STEP_PIN);
      WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
    #endif
    disable_y();
  #endif
  #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
    SET_OUTPUT(Z_STEP_PIN);
    WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
    #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
      SET_OUTPUT(Z2_STEP_PIN);
      WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
    #endif
    disable_z();
  #endif
  #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
    SET_OUTPUT(E0_STEP_PIN);
    WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
    disable_e0();
  #endif
  #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
    SET_OUTPUT(E1_STEP_PIN);
    WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
    disable_e1();
  #endif
  #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
    SET_OUTPUT(E2_STEP_PIN);
    WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
    disable_e2();
  #endif

  // waveform generation = 0100 = CTC
  TCCR1B &= ~(1<<WGM13);
  TCCR1B |=  (1<<WGM12);
  TCCR1A &= ~(1<<WGM11);
  TCCR1A &= ~(1<<WGM10);

  // output mode = 00 (disconnected)
  TCCR1A &= ~(3<<COM1A0);
  TCCR1A &= ~(3<<COM1B0);

  // Set the timer pre-scaler
  // Generally we use a divider of 8, resulting in a 2MHz timer
  // frequency on a 16MHz MCU. If you are going to change this, be
  // sure to regenerate speed_lookuptable.h with
  // create_speed_lookuptable.py
  TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);

  OCR1A = 0x4000;
  TCNT1 = 0;
  ENABLE_STEPPER_DRIVER_INTERRUPT();

  enable_endstops(true); // Start with endstops active. After homing they can be disabled
  sei();
}


// Block until all buffered steps are executed
void st_synchronize()
{
    while( blocks_queued()) {
    manage_heater();
    // Vojtech: Don't disable motors inside the planner!
    manage_inactivity(true);
    lcd_update();
  }
}

void st_set_position(const long &x, const long &y, const long &z, const long &e)
{
  CRITICAL_SECTION_START;
  count_position[X_AXIS] = x;
  count_position[Y_AXIS] = y;
  count_position[Z_AXIS] = z;
  count_position[E_AXIS] = e;
  CRITICAL_SECTION_END;
}

void st_set_e_position(const long &e)
{
  CRITICAL_SECTION_START;
  count_position[E_AXIS] = e;
  CRITICAL_SECTION_END;
}

long st_get_position(uint8_t axis)
{
  long count_pos;
  CRITICAL_SECTION_START;
  count_pos = count_position[axis];
  CRITICAL_SECTION_END;
  return count_pos;
}


float st_get_position_mm(uint8_t axis)
{
  float steper_position_in_steps = st_get_position(axis);
  return steper_position_in_steps / axis_steps_per_unit[axis];
}


void finishAndDisableSteppers()
{
  st_synchronize();
  disable_x();
  disable_y();
  disable_z();
  disable_e0();
  disable_e1();
  disable_e2();
}

void quickStop()
{
  DISABLE_STEPPER_DRIVER_INTERRUPT();
  while (blocks_queued()) plan_discard_current_block(); 
  current_block = NULL;
  ENABLE_STEPPER_DRIVER_INTERRUPT();
}

#ifdef BABYSTEPPING


void babystep(const uint8_t axis,const bool direction)
{
  //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
    //store initial pin states
  switch(axis)
  {
  case X_AXIS:
  {
    enable_x();   
    uint8_t old_x_dir_pin= READ(X_DIR_PIN);  //if dualzstepper, both point to same direction.
   
    //setup new step
    WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
    
    //perform step 
    WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); 
    {
    volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
    }
    WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);

    //get old pin state back.
    WRITE(X_DIR_PIN,old_x_dir_pin);
  }
  break;
  case Y_AXIS:
  {
    enable_y();   
    uint8_t old_y_dir_pin= READ(Y_DIR_PIN);  //if dualzstepper, both point to same direction.
   
    //setup new step
    WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
    
    //perform step 
    WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); 
    {
    volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
    }
    WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);

    //get old pin state back.
    WRITE(Y_DIR_PIN,old_y_dir_pin);

  }
  break;
 
  case Z_AXIS:
  {
    enable_z();
    uint8_t old_z_dir_pin= READ(Z_DIR_PIN);  //if dualzstepper, both point to same direction.
    //setup new step
    WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
    #ifdef Z_DUAL_STEPPER_DRIVERS
      WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
    #endif
    //perform step 
    WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); 
    #ifdef Z_DUAL_STEPPER_DRIVERS
      WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
    #endif
    //wait a tiny bit
    {
    volatile float x=1./float(axis+1); //absolutely useless
    }
    WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
    #ifdef Z_DUAL_STEPPER_DRIVERS
      WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
    #endif

    //get old pin state back.
    WRITE(Z_DIR_PIN,old_z_dir_pin);
    #ifdef Z_DUAL_STEPPER_DRIVERS
      WRITE(Z2_DIR_PIN,old_z_dir_pin);
    #endif

  }
  break;
 
  default:    break;
  }
}
#endif //BABYSTEPPING

void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
{
  #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
    digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
    SPI.transfer(address); //  send in the address and value via SPI:
    SPI.transfer(value);
    digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
    //delay(10);
  #endif
}

void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
{
    do
    {
        *value = eeprom_read_byte((unsigned char*)pos);
        pos++;
        value++;
    }while(--size);
}


void digipot_init() //Initialize Digipot Motor Current
{

  EEPROM_read_st(EEPROM_SILENT,(uint8_t*)&SilentMode,sizeof(SilentMode));

  #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
    if(SilentMode == 0){
    const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT_LOUD;
    }else{
      const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
    }
    SPI.begin();
    pinMode(DIGIPOTSS_PIN, OUTPUT);
    for(int i=0;i<=4;i++)
      //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
      digipot_current(i,digipot_motor_current[i]);
  #endif
  #ifdef MOTOR_CURRENT_PWM_XY_PIN
    pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
    pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
    pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
    if((SilentMode == 0) || (farm_mode) ){

     motor_current_setting[0] = motor_current_setting_loud[0];
     motor_current_setting[1] = motor_current_setting_loud[1];
     motor_current_setting[2] = motor_current_setting_loud[2];

    }else{

     motor_current_setting[0] = motor_current_setting_silent[0];
     motor_current_setting[1] = motor_current_setting_silent[1];
     motor_current_setting[2] = motor_current_setting_silent[2];

    }
    digipot_current(0, motor_current_setting[0]);
    digipot_current(1, motor_current_setting[1]);
    digipot_current(2, motor_current_setting[2]);
    //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
    TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  #endif
}




void digipot_current(uint8_t driver, int current)
{
  #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
    const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
    digitalPotWrite(digipot_ch[driver], current);
  #endif
  #ifdef MOTOR_CURRENT_PWM_XY_PIN
  if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  #endif
}

void microstep_init()
{
  const uint8_t microstep_modes[] = MICROSTEP_MODES;

  #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  pinMode(E1_MS1_PIN,OUTPUT);
  pinMode(E1_MS2_PIN,OUTPUT); 
  #endif

  #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  pinMode(X_MS1_PIN,OUTPUT);
  pinMode(X_MS2_PIN,OUTPUT);  
  pinMode(Y_MS1_PIN,OUTPUT);
  pinMode(Y_MS2_PIN,OUTPUT);
  pinMode(Z_MS1_PIN,OUTPUT);
  pinMode(Z_MS2_PIN,OUTPUT);
  pinMode(E0_MS1_PIN,OUTPUT);
  pinMode(E0_MS2_PIN,OUTPUT);
  for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  #endif
}

void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
{
  if(ms1 > -1) switch(driver)
  {
    case 0: digitalWrite( X_MS1_PIN,ms1); break;
    case 1: digitalWrite( Y_MS1_PIN,ms1); break;
    case 2: digitalWrite( Z_MS1_PIN,ms1); break;
    case 3: digitalWrite(E0_MS1_PIN,ms1); break;
    #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
    case 4: digitalWrite(E1_MS1_PIN,ms1); break;
    #endif
  }
  if(ms2 > -1) switch(driver)
  {
    case 0: digitalWrite( X_MS2_PIN,ms2); break;
    case 1: digitalWrite( Y_MS2_PIN,ms2); break;
    case 2: digitalWrite( Z_MS2_PIN,ms2); break;
    case 3: digitalWrite(E0_MS2_PIN,ms2); break;
    #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
    case 4: digitalWrite(E1_MS2_PIN,ms2); break;
    #endif
  }
}

void microstep_mode(uint8_t driver, uint8_t stepping_mode)
{
  switch(stepping_mode)
  {
    case 1: microstep_ms(driver,MICROSTEP1); break;
    case 2: microstep_ms(driver,MICROSTEP2); break;
    case 4: microstep_ms(driver,MICROSTEP4); break;
    case 8: microstep_ms(driver,MICROSTEP8); break;
    case 16: microstep_ms(driver,MICROSTEP16); break;
  }
}

void microstep_readings()
{
      SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
      SERIAL_PROTOCOLPGM("X: ");
      SERIAL_PROTOCOL(   digitalRead(X_MS1_PIN));
      SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
      SERIAL_PROTOCOLPGM("Y: ");
      SERIAL_PROTOCOL(   digitalRead(Y_MS1_PIN));
      SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
      SERIAL_PROTOCOLPGM("Z: ");
      SERIAL_PROTOCOL(   digitalRead(Z_MS1_PIN));
      SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
      SERIAL_PROTOCOLPGM("E0: ");
      SERIAL_PROTOCOL(   digitalRead(E0_MS1_PIN));
      SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
      #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
      SERIAL_PROTOCOLPGM("E1: ");
      SERIAL_PROTOCOL(   digitalRead(E1_MS1_PIN));
      SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
      #endif
}