Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Marlin_main.cpp - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d2026f40dbbab2b01a101b781cce79dbabbdbe7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
/* -*- c++ -*- */

/*
    Reprap firmware based on Sprinter and grbl.
 Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 This firmware is a mashup between Sprinter and grbl.
  (https://github.com/kliment/Sprinter)
  (https://github.com/simen/grbl/tree)

 It has preliminary support for Matthew Roberts advance algorithm
    http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
 */









#include "Marlin.h"

#ifdef ENABLE_AUTO_BED_LEVELING
#include "vector_3.h"
  #ifdef AUTO_BED_LEVELING_GRID
    #include "qr_solve.h"
  #endif
#endif // ENABLE_AUTO_BED_LEVELING

#include "ultralcd.h"
#include "Configuration_prusa.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "motion_control.h"
#include "cardreader.h"
#include "watchdog.h"
#include "ConfigurationStore.h"
#include "language.h"
#include "pins_arduino.h"
#include "math.h"

#ifdef BLINKM
#include "BlinkM.h"
#include "Wire.h"
#endif

#ifdef ULTRALCD
#include "ultralcd.h"
#endif

#if NUM_SERVOS > 0
#include "Servo.h"
#endif

#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
#include <SPI.h>
#endif

#define VERSION_STRING  "1.0.2"


#include "ultralcd.h"



// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes

//Implemented Codes
//-------------------

// PRUSA CODES
// P F - Returns FW versions
// P R - Returns revision of printer

// G0  -> G1
// G1  - Coordinated Movement X Y Z E
// G2  - CW ARC
// G3  - CCW ARC
// G4  - Dwell S<seconds> or P<milliseconds>
// G10 - retract filament according to settings of M207
// G11 - retract recover filament according to settings of M208
// G28 - Home all Axis
// G29 - Detailed Z-Probe, probes the bed at 3 or more points.  Will fail if you haven't homed yet.
// G30 - Single Z Probe, probes bed at current XY location.
// G31 - Dock sled (Z_PROBE_SLED only)
// G32 - Undock sled (Z_PROBE_SLED only)
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to coordinates given

// M Codes
// M0   - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
// M1   - Same as M0
// M17  - Enable/Power all stepper motors
// M18  - Disable all stepper motors; same as M84
// M20  - List SD card
// M21  - Init SD card
// M22  - Release SD card
// M23  - Select SD file (M23 filename.g)
// M24  - Start/resume SD print
// M25  - Pause SD print
// M26  - Set SD position in bytes (M26 S12345)
// M27  - Report SD print status
// M28  - Start SD write (M28 filename.g)
// M29  - Stop SD write
// M30  - Delete file from SD (M30 filename.g)
// M31  - Output time since last M109 or SD card start to serial
// M32  - Select file and start SD print (Can be used _while_ printing from SD card files):
//        syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
//        Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
//        The '#' is necessary when calling from within sd files, as it stops buffer prereading
// M42  - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
// M80  - Turn on Power Supply
// M81  - Turn off Power Supply
// M82  - Set E codes absolute (default)
// M83  - Set E codes relative while in Absolute Coordinates (G90) mode
// M84  - Disable steppers until next move,
//        or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled.  S0 to disable the timeout.
// M85  - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92  - Set axis_steps_per_unit - same syntax as G92
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
//        Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
//        IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
// M112 - Emergency stop
// M114 - Output current position to serial port
// M115 - Capabilities string
// M117 - display message
// M119 - Output Endstop status to serial port
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M140 - Set bed target temp
// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
//        Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2  also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
// M205 -  advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
// M206 - set additional homing offset
// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
// M220 S<factor in percent>- set speed factor override percentage
// M221 S<factor in percent>- set extrude factor override percentage
// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
// M240 - Trigger a camera to take a photograph
// M250 - Set LCD contrast C<contrast value> (value 0..63)
// M280 - set servo position absolute. P: servo index, S: angle or microseconds
// M300 - Play beep sound S<frequency Hz> P<duration ms>
// M301 - Set PID parameters P I and D
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
// M304 - Set bed PID parameters P I and D
// M400 - Finish all moves
// M401 - Lower z-probe if present
// M402 - Raise z-probe if present
// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
// M405 - Turn on Filament Sensor extrusion control.  Optional D<delay in cm> to set delay in centimeters between sensor and extruder 
// M406 - Turn off Filament Sensor extrusion control 
// M407 - Displays measured filament diameter 
// M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings".  You still need to store them in EEPROM afterwards if you want to.
// M503 - print the current settings (from memory not from EEPROM)
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
// M665 - set delta configurations
// M666 - set delta endstop adjustment
// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
// M907 - Set digital trimpot motor current using axis codes.
// M908 - Control digital trimpot directly.
// M350 - Set microstepping mode.
// M351 - Toggle MS1 MS2 pins directly.

// ************ SCARA Specific - This can change to suit future G-code regulations
// M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
// M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
// M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
// M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
// M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
// M365 - SCARA calibration: Scaling factor, X, Y, Z axis
//************* SCARA End ***************

// M928 - Start SD logging (M928 filename.g) - ended by M29
// M999 - Restart after being stopped by error

//Stepper Movement Variables

//===========================================================================
//=============================imported variables============================
//===========================================================================


//===========================================================================
//=============================public variables=============================
//===========================================================================
#ifdef SDSUPPORT
CardReader card;
#endif


union Data
{
byte b[2];
int value;
};

int babystepLoad[3];

float homing_feedrate[] = HOMING_FEEDRATE;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
int feedmultiply=100; //100->1 200->2
int saved_feedmultiply;
int extrudemultiply=100; //100->1 200->2
int extruder_multiply[EXTRUDERS] = {100
  #if EXTRUDERS > 1
    , 100
    #if EXTRUDERS > 2
      , 100
    #endif
  #endif
};


int lcd_change_fil_state = 0;
int feedmultiplyBckp = 100;

bool volumetric_enabled = false;
float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  #if EXTRUDERS > 1
      , DEFAULT_NOMINAL_FILAMENT_DIA
    #if EXTRUDERS > 2
       , DEFAULT_NOMINAL_FILAMENT_DIA
    #endif
  #endif
};
float volumetric_multiplier[EXTRUDERS] = {1.0
  #if EXTRUDERS > 1
    , 1.0
    #if EXTRUDERS > 2
      , 1.0
    #endif
  #endif
};
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
float add_homing[3]={0,0,0};
#ifdef DELTA
float endstop_adj[3]={0,0,0};
#endif

float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
bool axis_known_position[3] = {false, false, false};
float zprobe_zoffset;

// Extruder offset
#if EXTRUDERS > 1
#ifndef DUAL_X_CARRIAGE
  #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
#else
  #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
#endif
float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
#endif
};
#endif
uint8_t active_extruder = 0;
int fanSpeed=0;
#ifdef SERVO_ENDSTOPS
  int servo_endstops[] = SERVO_ENDSTOPS;
  int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
#endif
#ifdef BARICUDA
int ValvePressure=0;
int EtoPPressure=0;
#endif

#ifdef FWRETRACT
  bool autoretract_enabled=false;
  bool retracted[EXTRUDERS]={false
    #if EXTRUDERS > 1
    , false
     #if EXTRUDERS > 2
      , false
     #endif
  #endif
  };
  bool retracted_swap[EXTRUDERS]={false
    #if EXTRUDERS > 1
    , false
     #if EXTRUDERS > 2
      , false
     #endif
  #endif
  };

  float retract_length = RETRACT_LENGTH;
  float retract_length_swap = RETRACT_LENGTH_SWAP;
  float retract_feedrate = RETRACT_FEEDRATE;
  float retract_zlift = RETRACT_ZLIFT;
  float retract_recover_length = RETRACT_RECOVER_LENGTH;
  float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
#endif

#ifdef ULTIPANEL
  #ifdef PS_DEFAULT_OFF
    bool powersupply = false;
  #else
	  bool powersupply = true;
  #endif
#endif

#ifdef DELTA
  float delta[3] = {0.0, 0.0, 0.0};
  #define SIN_60 0.8660254037844386
  #define COS_60 0.5
  // these are the default values, can be overriden with M665
  float delta_radius= DELTA_RADIUS;
  float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  float delta_tower1_y= -COS_60*delta_radius;	   
  float delta_tower2_x=  SIN_60*delta_radius; // front right tower
  float delta_tower2_y= -COS_60*delta_radius;	   
  float delta_tower3_x= 0.0;                  // back middle tower
  float delta_tower3_y= delta_radius;
  float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
#endif

#ifdef SCARA                              // Build size scaling
float axis_scaling[3]={1,1,1};  // Build size scaling, default to 1
#endif				

bool cancel_heatup = false ;

#ifdef FILAMENT_SENSOR
  //Variables for Filament Sensor input 
  float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA;  //Set nominal filament width, can be changed with M404 
  bool filament_sensor=false;  //M405 turns on filament_sensor control, M406 turns it off 
  float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter 
  signed char measurement_delay[MAX_MEASUREMENT_DELAY+1];  //ring buffer to delay measurement  store extruder factor after subtracting 100 
  int delay_index1=0;  //index into ring buffer
  int delay_index2=-1;  //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  float delay_dist=0; //delay distance counter  
  int meas_delay_cm = MEASUREMENT_DELAY_CM;  //distance delay setting
#endif

const char errormagic[] PROGMEM = "Error:";
const char echomagic[] PROGMEM = "echo:";

//===========================================================================
//=============================Private Variables=============================
//===========================================================================
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
static float destination[NUM_AXIS] = {  0.0, 0.0, 0.0, 0.0};

#ifndef DELTA
static float delta[3] = {0.0, 0.0, 0.0};
#endif

static float offset[3] = {0.0, 0.0, 0.0};
static bool home_all_axis = true;
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;

static bool relative_mode = false;  //Determines Absolute or Relative Coordinates

static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
static bool fromsd[BUFSIZE];
static int bufindr = 0;
static int bufindw = 0;
static int buflen = 0;
//static int i = 0;
static char serial_char;
static int serial_count = 0;
static boolean comment_mode = false;
static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc

const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42

//static float tt = 0;
//static float bt = 0;

//Inactivity shutdown variables
static unsigned long previous_millis_cmd = 0;
static unsigned long max_inactive_time = 0;
static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;

unsigned long starttime=0;
unsigned long stoptime=0;

static uint8_t tmp_extruder;


bool Stopped=false;

#if NUM_SERVOS > 0
  Servo servos[NUM_SERVOS];
#endif

bool CooldownNoWait = true;
bool target_direction;

//Insert variables if CHDK is defined
#ifdef CHDK
unsigned long chdkHigh = 0;
boolean chdkActive = false;
#endif

//===========================================================================
//=============================Routines======================================
//===========================================================================

void get_arc_coordinates();
bool setTargetedHotend(int code);

void serial_echopair_P(const char *s_P, float v)
    { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, double v)
    { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, unsigned long v)
    { serialprintPGM(s_P); SERIAL_ECHO(v); }

#ifdef SDSUPPORT
  #include "SdFatUtil.h"
  int freeMemory() { return SdFatUtil::FreeRam(); }
#else
  extern "C" {
    extern unsigned int __bss_end;
    extern unsigned int __heap_start;
    extern void *__brkval;

    int freeMemory() {
      int free_memory;

      if ((int)__brkval == 0)
        free_memory = ((int)&free_memory) - ((int)&__bss_end);
      else
        free_memory = ((int)&free_memory) - ((int)__brkval);

      return free_memory;
    }
  }
#endif //!SDSUPPORT




//adds an command to the main command buffer
//thats really done in a non-safe way.
//needs overworking someday
void enquecommand(const char *cmd)
{
  if(buflen < BUFSIZE)
  {
    //this is dangerous if a mixing of serial and this happens
    strcpy(&(cmdbuffer[bufindw][0]),cmd);
    SERIAL_ECHO_START;
    SERIAL_ECHOPGM(MSG_Enqueing);
    SERIAL_ECHO(cmdbuffer[bufindw]);
    SERIAL_ECHOLNPGM("\"");
    bufindw= (bufindw + 1)%BUFSIZE;
    buflen += 1;
  }
}

void enquecommand_P(const char *cmd)
{
  if(buflen < BUFSIZE)
  {
    //this is dangerous if a mixing of serial and this happens
    strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
    SERIAL_ECHO_START;
    SERIAL_ECHOPGM(MSG_Enqueing);
    SERIAL_ECHO(cmdbuffer[bufindw]);
    SERIAL_ECHOLNPGM("\"");
    bufindw= (bufindw + 1)%BUFSIZE;
    buflen += 1;
  }
}

void setup_killpin()
{
  #if defined(KILL_PIN) && KILL_PIN > -1
    SET_INPUT(KILL_PIN);
    WRITE(KILL_PIN,HIGH);
  #endif
}

// Set home pin
void setup_homepin(void)
{
#if defined(HOME_PIN) && HOME_PIN > -1
   SET_INPUT(HOME_PIN);
   WRITE(HOME_PIN,HIGH);
#endif
}


void setup_photpin()
{
  #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
    SET_OUTPUT(PHOTOGRAPH_PIN);
    WRITE(PHOTOGRAPH_PIN, LOW);
  #endif
}

void setup_powerhold()
{
  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
    SET_OUTPUT(SUICIDE_PIN);
    WRITE(SUICIDE_PIN, HIGH);
  #endif
  #if defined(PS_ON_PIN) && PS_ON_PIN > -1
    SET_OUTPUT(PS_ON_PIN);
	#if defined(PS_DEFAULT_OFF)
	  WRITE(PS_ON_PIN, PS_ON_ASLEEP);
    #else
	  WRITE(PS_ON_PIN, PS_ON_AWAKE);
	#endif
  #endif
}

void suicide()
{
  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
    SET_OUTPUT(SUICIDE_PIN);
    WRITE(SUICIDE_PIN, LOW);
  #endif
}

void servo_init()
{
  #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
    servos[0].attach(SERVO0_PIN);
  #endif
  #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
    servos[1].attach(SERVO1_PIN);
  #endif
  #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
    servos[2].attach(SERVO2_PIN);
  #endif
  #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
    servos[3].attach(SERVO3_PIN);
  #endif
  #if (NUM_SERVOS >= 5)
    #error "TODO: enter initalisation code for more servos"
  #endif

  // Set position of Servo Endstops that are defined
  #ifdef SERVO_ENDSTOPS
  for(int8_t i = 0; i < 3; i++)
  {
    if(servo_endstops[i] > -1) {
      servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
    }
  }
  #endif

  #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  delay(PROBE_SERVO_DEACTIVATION_DELAY);
  servos[servo_endstops[Z_AXIS]].detach();
  #endif
}


void setup()
{
  setup_killpin();
  setup_powerhold();
  MYSERIAL.begin(BAUDRATE);
  SERIAL_PROTOCOLLNPGM("start");
  SERIAL_ECHO_START;

  // Check startup - does nothing if bootloader sets MCUSR to 0
  byte mcu = MCUSR;
  if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  MCUSR=0;

  SERIAL_ECHOPGM(MSG_MARLIN);
  SERIAL_ECHOLNPGM(VERSION_STRING);
  #ifdef STRING_VERSION_CONFIG_H
    #ifdef STRING_CONFIG_H_AUTHOR
      SERIAL_ECHO_START;
      SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
      SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
      SERIAL_ECHOPGM(MSG_AUTHOR);
      SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
      SERIAL_ECHOPGM("Compiled: ");
      SERIAL_ECHOLNPGM(__DATE__);
    #endif
  #endif
  SERIAL_ECHO_START;
  SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  SERIAL_ECHO(freeMemory());
  SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  for(int8_t i = 0; i < BUFSIZE; i++)
  {
    fromsd[i] = false;
  }

  // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  Config_RetrieveSettings();

  tp_init();    // Initialize temperature loop
  plan_init();  // Initialize planner;
  watchdog_init();
  st_init();    // Initialize stepper, this enables interrupts!
  setup_photpin();
  servo_init();
  

  lcd_init();
  _delay_ms(1000);	// wait 1sec to display the splash screen

  #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
    SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  #endif

  #ifdef DIGIPOT_I2C
    digipot_i2c_init();
  #endif
#ifdef Z_PROBE_SLED
  pinMode(SERVO0_PIN, OUTPUT);
  digitalWrite(SERVO0_PIN, LOW); // turn it off
#endif // Z_PROBE_SLED
  setup_homepin();
}


void loop()
{
  if(buflen < (BUFSIZE-1))
    get_command();
  #ifdef SDSUPPORT
  card.checkautostart(false);
  #endif
  if(buflen)
  {
    #ifdef SDSUPPORT
      if(card.saving)
      {
        if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
        {
          card.write_command(cmdbuffer[bufindr]);
          if(card.logging)
          {
            process_commands();
          }
          else
          {
            SERIAL_PROTOCOLLNPGM(MSG_OK);
          }
        }
        else
        {
          card.closefile();
          SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
        }
      }
      else
      {
        process_commands();
      }
    #else
      process_commands();
    #endif //SDSUPPORT
    buflen = (buflen-1);
    bufindr = (bufindr + 1)%BUFSIZE;
  }
  //check heater every n milliseconds
  manage_heater();
  manage_inactivity();
  checkHitEndstops();
  lcd_update();
}

void get_command()
{
  while( MYSERIAL.available() > 0  && buflen < BUFSIZE) {
    serial_char = MYSERIAL.read();
    if(serial_char == '\n' ||
       serial_char == '\r' ||
       (serial_char == ':' && comment_mode == false) ||
       serial_count >= (MAX_CMD_SIZE - 1) )
    {
      if(!serial_count) { //if empty line
        comment_mode = false; //for new command
        return;
      }
      cmdbuffer[bufindw][serial_count] = 0; //terminate string
      if(!comment_mode){
        comment_mode = false; //for new command
        fromsd[bufindw] = false;
        if(strchr(cmdbuffer[bufindw], 'N') != NULL)
        {
          strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
          gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
          if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
            SERIAL_ERROR_START;
            SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
            SERIAL_ERRORLN(gcode_LastN);
            //Serial.println(gcode_N);
            FlushSerialRequestResend();
            serial_count = 0;
            return;
          }

          if(strchr(cmdbuffer[bufindw], '*') != NULL)
          {
            byte checksum = 0;
            byte count = 0;
            while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
            strchr_pointer = strchr(cmdbuffer[bufindw], '*');

            if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
              SERIAL_ERROR_START;
              SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
              SERIAL_ERRORLN(gcode_LastN);
              FlushSerialRequestResend();
              serial_count = 0;
              return;
            }
            //if no errors, continue parsing
          }
          else
          {
            SERIAL_ERROR_START;
            SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
            SERIAL_ERRORLN(gcode_LastN);
            FlushSerialRequestResend();
            serial_count = 0;
            return;
          }

          gcode_LastN = gcode_N;
          //if no errors, continue parsing
        }
        else  // if we don't receive 'N' but still see '*'
        {
          if((strchr(cmdbuffer[bufindw], '*') != NULL))
          {
            SERIAL_ERROR_START;
            SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
            SERIAL_ERRORLN(gcode_LastN);
            serial_count = 0;
            return;
          }
        }
        if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
          strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
          switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
          case 0:
          case 1:
          case 2:
          case 3:
            if (Stopped == true) {
              SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
              LCD_MESSAGEPGM(MSG_STOPPED);
            }
            break;
          default:
            break;
          }

        }

        //If command was e-stop process now
        if(strcmp(cmdbuffer[bufindw], "M112") == 0)
          kill();
        
        bufindw = (bufindw + 1)%BUFSIZE;
        buflen += 1;
      }
      serial_count = 0; //clear buffer
    }
    else
    {
      if(serial_char == ';') comment_mode = true;
      if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
    }
  }
  #ifdef SDSUPPORT
  if(!card.sdprinting || serial_count!=0){
    return;
  }

  //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing

  static bool stop_buffering=false;
  if(buflen==0) stop_buffering=false;

  while( !card.eof()  && buflen < BUFSIZE && !stop_buffering) {
    int16_t n=card.get();
    serial_char = (char)n;
    if(serial_char == '\n' ||
       serial_char == '\r' ||
       (serial_char == '#' && comment_mode == false) ||
       (serial_char == ':' && comment_mode == false) ||
       serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
    {
      if(card.eof()){
        SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
        stoptime=millis();
        char time[30];
        unsigned long t=(stoptime-starttime)/1000;
        int hours, minutes;
        minutes=(t/60)%60;
        hours=t/60/60;
        sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
        SERIAL_ECHO_START;
        SERIAL_ECHOLN(time);
        lcd_setstatus(time);
        card.printingHasFinished();
        card.checkautostart(true);

      }
      if(serial_char=='#')
        stop_buffering=true;

      if(!serial_count)
      {
        comment_mode = false; //for new command
        return; //if empty line
      }
      cmdbuffer[bufindw][serial_count] = 0; //terminate string
//      if(!comment_mode){
        fromsd[bufindw] = true;
        buflen += 1;
        bufindw = (bufindw + 1)%BUFSIZE;
//      }
      comment_mode = false; //for new command
      serial_count = 0; //clear buffer
    }
    else
    {
      if(serial_char == ';') comment_mode = true;
      if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
    }
  }

  #endif //SDSUPPORT

}


float code_value()
{
  return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
}

long code_value_long()
{
  return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
}

bool code_seen(char code)
{
  strchr_pointer = strchr(cmdbuffer[bufindr], code);
  return (strchr_pointer != NULL);  //Return True if a character was found
}

#define DEFINE_PGM_READ_ANY(type, reader)       \
    static inline type pgm_read_any(const type *p)  \
    { return pgm_read_##reader##_near(p); }

DEFINE_PGM_READ_ANY(float,       float);
DEFINE_PGM_READ_ANY(signed char, byte);

#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
static const PROGMEM type array##_P[3] =        \
    { X_##CONFIG, Y_##CONFIG, Z_##CONFIG };     \
static inline type array(int axis)          \
    { return pgm_read_any(&array##_P[axis]); }

XYZ_CONSTS_FROM_CONFIG(float, base_min_pos,    MIN_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos,    MAX_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos,   HOME_POS);
XYZ_CONSTS_FROM_CONFIG(float, max_length,      MAX_LENGTH);
XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir,  HOME_DIR);

#ifdef DUAL_X_CARRIAGE
  #if EXTRUDERS == 1 || defined(COREXY) \
      || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
      || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
      || !defined(X_MAX_PIN) || X_MAX_PIN < 0
    #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  #endif
  #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
    #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  #endif

#define DXC_FULL_CONTROL_MODE 0
#define DXC_AUTO_PARK_MODE    1
#define DXC_DUPLICATION_MODE  2
static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;

static float x_home_pos(int extruder) {
  if (extruder == 0)
    return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  else
    // In dual carriage mode the extruder offset provides an override of the
    // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
    // This allow soft recalibration of the second extruder offset position without firmware reflash
    // (through the M218 command).
    return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
}

static int x_home_dir(int extruder) {
  return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
}

static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
static bool active_extruder_parked = false; // used in mode 1 & 2
static float raised_parked_position[NUM_AXIS]; // used in mode 1
static unsigned long delayed_move_time = 0; // used in mode 1
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
static float duplicate_extruder_temp_offset = 0; // used in mode 2
bool extruder_duplication_enabled = false; // used in mode 2
#endif //DUAL_X_CARRIAGE

static void axis_is_at_home(int axis) {
#ifdef DUAL_X_CARRIAGE
  if (axis == X_AXIS) {
    if (active_extruder != 0) {
      current_position[X_AXIS] = x_home_pos(active_extruder);
      min_pos[X_AXIS] =          X2_MIN_POS;
      max_pos[X_AXIS] =          max(extruder_offset[X_AXIS][1], X2_MAX_POS);
      return;
    }
    else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
      current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
      min_pos[X_AXIS] =          base_min_pos(X_AXIS) + add_homing[X_AXIS];
      max_pos[X_AXIS] =          min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
                                  max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
      return;
    }
  }
#endif
#ifdef SCARA
   float homeposition[3];
   char i;
   
   if (axis < 2)
   {
   
     for (i=0; i<3; i++)
     {
        homeposition[i] = base_home_pos(i); 
     }  
	// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
   //  SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
   // Works out real Homeposition angles using inverse kinematics, 
   // and calculates homing offset using forward kinematics
     calculate_delta(homeposition);
     
    // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
    // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
     
     for (i=0; i<2; i++)
     {
        delta[i] -= add_homing[i];
     } 
     
    // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
	// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
    // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
    // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
      
     calculate_SCARA_forward_Transform(delta);
     
    // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
    // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
     
    current_position[axis] = delta[axis];
    
    // SCARA home positions are based on configuration since the actual limits are determined by the 
    // inverse kinematic transform.
    min_pos[axis] =          base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
    max_pos[axis] =          base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
   } 
   else
   {
      current_position[axis] = base_home_pos(axis) + add_homing[axis];
      min_pos[axis] =          base_min_pos(axis) + add_homing[axis];
      max_pos[axis] =          base_max_pos(axis) + add_homing[axis];
   }
#else
  current_position[axis] = base_home_pos(axis) + add_homing[axis];
  min_pos[axis] =          base_min_pos(axis) + add_homing[axis];
  max_pos[axis] =          base_max_pos(axis) + add_homing[axis];
#endif
}

#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
{
    vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
    planeNormal.debug("planeNormal");
    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
    //bedLevel.debug("bedLevel");

    //plan_bed_level_matrix.debug("bed level before");
    //vector_3 uncorrected_position = plan_get_position_mm();
    //uncorrected_position.debug("position before");

    vector_3 corrected_position = plan_get_position();
//    corrected_position.debug("position after");
    current_position[X_AXIS] = corrected_position.x;
    current_position[Y_AXIS] = corrected_position.y;
    current_position[Z_AXIS] = corrected_position.z;

    // put the bed at 0 so we don't go below it.
    current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure

    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}

#else // not AUTO_BED_LEVELING_GRID

static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {

    plan_bed_level_matrix.set_to_identity();

    vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
    vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
    vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);

    vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
    vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
    vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
    planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));

    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);

    vector_3 corrected_position = plan_get_position();
    current_position[X_AXIS] = corrected_position.x;
    current_position[Y_AXIS] = corrected_position.y;
    current_position[Z_AXIS] = corrected_position.z;

    // put the bed at 0 so we don't go below it.
    current_position[Z_AXIS] = zprobe_zoffset;

    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);

}

#endif // AUTO_BED_LEVELING_GRID

static void run_z_probe() {
    plan_bed_level_matrix.set_to_identity();
    feedrate = homing_feedrate[Z_AXIS];

    // move down until you find the bed
    float zPosition = -10;
    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
    st_synchronize();

        // we have to let the planner know where we are right now as it is not where we said to go.
    zPosition = st_get_position_mm(Z_AXIS);
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);

    // move up the retract distance
    zPosition += home_retract_mm(Z_AXIS);
    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
    st_synchronize();

    // move back down slowly to find bed
    feedrate = homing_feedrate[Z_AXIS]/4;
    zPosition -= home_retract_mm(Z_AXIS) * 2;
    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
    st_synchronize();

    current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
    // make sure the planner knows where we are as it may be a bit different than we last said to move to
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}

static void do_blocking_move_to(float x, float y, float z) {
    float oldFeedRate = feedrate;

    feedrate = homing_feedrate[Z_AXIS];

    current_position[Z_AXIS] = z;
    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
    st_synchronize();

    feedrate = XY_TRAVEL_SPEED;

    current_position[X_AXIS] = x;
    current_position[Y_AXIS] = y;
    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
    st_synchronize();

    feedrate = oldFeedRate;
}

static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
    do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
}

static void setup_for_endstop_move() {
    saved_feedrate = feedrate;
    saved_feedmultiply = feedmultiply;
    feedmultiply = 100;
    previous_millis_cmd = millis();

    enable_endstops(true);
}

static void clean_up_after_endstop_move() {
#ifdef ENDSTOPS_ONLY_FOR_HOMING
    enable_endstops(false);
#endif

    feedrate = saved_feedrate;
    feedmultiply = saved_feedmultiply;
    previous_millis_cmd = millis();
}

static void engage_z_probe() {
    // Engage Z Servo endstop if enabled
    #ifdef SERVO_ENDSTOPS
    if (servo_endstops[Z_AXIS] > -1) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
        servos[servo_endstops[Z_AXIS]].attach(0);
#endif
        servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
        delay(PROBE_SERVO_DEACTIVATION_DELAY);
        servos[servo_endstops[Z_AXIS]].detach();
#endif
    }
    #endif
}

static void retract_z_probe() {
    // Retract Z Servo endstop if enabled
    #ifdef SERVO_ENDSTOPS
    if (servo_endstops[Z_AXIS] > -1) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
        servos[servo_endstops[Z_AXIS]].attach(0);
#endif
        servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
        delay(PROBE_SERVO_DEACTIVATION_DELAY);
        servos[servo_endstops[Z_AXIS]].detach();
#endif
    }
    #endif
}

/// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before) {
  // move to right place
  do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);

#ifndef Z_PROBE_SLED
  engage_z_probe();   // Engage Z Servo endstop if available
#endif // Z_PROBE_SLED
  run_z_probe();
  float measured_z = current_position[Z_AXIS];
#ifndef Z_PROBE_SLED
  retract_z_probe();
#endif // Z_PROBE_SLED

  SERIAL_PROTOCOLPGM(MSG_BED);
  SERIAL_PROTOCOLPGM(" x: ");
  SERIAL_PROTOCOL(x);
  SERIAL_PROTOCOLPGM(" y: ");
  SERIAL_PROTOCOL(y);
  SERIAL_PROTOCOLPGM(" z: ");
  SERIAL_PROTOCOL(measured_z);
  SERIAL_PROTOCOLPGM("\n");
  return measured_z;
}

#endif // #ifdef ENABLE_AUTO_BED_LEVELING

static void homeaxis(int axis) {
#define HOMEAXIS_DO(LETTER) \
  ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))

  if (axis==X_AXIS ? HOMEAXIS_DO(X) :
      axis==Y_AXIS ? HOMEAXIS_DO(Y) :
      axis==Z_AXIS ? HOMEAXIS_DO(Z) :
      0) {
    int axis_home_dir = home_dir(axis);
#ifdef DUAL_X_CARRIAGE
    if (axis == X_AXIS)
      axis_home_dir = x_home_dir(active_extruder);
#endif

    current_position[axis] = 0;
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);


#ifndef Z_PROBE_SLED
    // Engage Servo endstop if enabled
    #ifdef SERVO_ENDSTOPS
      #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
        if (axis==Z_AXIS) {
          engage_z_probe();
        }
	    else
      #endif
      if (servo_endstops[axis] > -1) {
        servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
      }
    #endif
#endif // Z_PROBE_SLED
    destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
    feedrate = homing_feedrate[axis];
    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
    st_synchronize();

    current_position[axis] = 0;
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
    destination[axis] = -home_retract_mm(axis) * axis_home_dir;
    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
    st_synchronize();

    destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
#ifdef DELTA
    feedrate = homing_feedrate[axis]/10;
#else
    feedrate = homing_feedrate[axis]/2 ;
#endif
    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
    st_synchronize();
#ifdef DELTA
    // retrace by the amount specified in endstop_adj
    if (endstop_adj[axis] * axis_home_dir < 0) {
      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
      destination[axis] = endstop_adj[axis];
      plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
      st_synchronize();
    }
#endif
    axis_is_at_home(axis);
    destination[axis] = current_position[axis];
    feedrate = 0.0;
    endstops_hit_on_purpose();
    axis_known_position[axis] = true;

    // Retract Servo endstop if enabled
    #ifdef SERVO_ENDSTOPS
      if (servo_endstops[axis] > -1) {
        servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
      }
    #endif
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  #ifndef Z_PROBE_SLED
    if (axis==Z_AXIS) retract_z_probe();
  #endif
#endif

  }
}
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)

void refresh_cmd_timeout(void)
{
  previous_millis_cmd = millis();
}

#ifdef FWRETRACT
  void retract(bool retracting, bool swapretract = false) {
    if(retracting && !retracted[active_extruder]) {
      destination[X_AXIS]=current_position[X_AXIS];
      destination[Y_AXIS]=current_position[Y_AXIS];
      destination[Z_AXIS]=current_position[Z_AXIS];
      destination[E_AXIS]=current_position[E_AXIS];
      if (swapretract) {
        current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
      } else {
        current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
      }
      plan_set_e_position(current_position[E_AXIS]);
      float oldFeedrate = feedrate;
      feedrate=retract_feedrate*60;
      retracted[active_extruder]=true;
      prepare_move();
      current_position[Z_AXIS]-=retract_zlift;
#ifdef DELTA
      calculate_delta(current_position); // change cartesian kinematic to  delta kinematic;
      plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#else
      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#endif
      prepare_move();
      feedrate = oldFeedrate;
    } else if(!retracting && retracted[active_extruder]) {
      destination[X_AXIS]=current_position[X_AXIS];
      destination[Y_AXIS]=current_position[Y_AXIS];
      destination[Z_AXIS]=current_position[Z_AXIS];
      destination[E_AXIS]=current_position[E_AXIS];
      current_position[Z_AXIS]+=retract_zlift;
#ifdef DELTA
      calculate_delta(current_position); // change cartesian kinematic  to  delta kinematic;
      plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#else
      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#endif
      //prepare_move();
      if (swapretract) {
        current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder]; 
      } else {
        current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder]; 
      }
      plan_set_e_position(current_position[E_AXIS]);
      float oldFeedrate = feedrate;
      feedrate=retract_recover_feedrate*60;
      retracted[active_extruder]=false;
      prepare_move();
      feedrate = oldFeedrate;
    }
  } //retract
#endif //FWRETRACT

#ifdef Z_PROBE_SLED
//
// Method to dock/undock a sled designed by Charles Bell.
//
// dock[in]     If true, move to MAX_X and engage the electromagnet
// offset[in]   The additional distance to move to adjust docking location
//
static void dock_sled(bool dock, int offset=0) {
 int z_loc;
 
 if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
   LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
   SERIAL_ECHO_START;
   SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
   return;
 }

 if (dock) {
   do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
                       current_position[Y_AXIS],
                       current_position[Z_AXIS]);
   // turn off magnet
   digitalWrite(SERVO0_PIN, LOW);
 } else {
   if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
     z_loc = Z_RAISE_BEFORE_PROBING;
   else
     z_loc = current_position[Z_AXIS];
   do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
                       Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
   // turn on magnet
   digitalWrite(SERVO0_PIN, HIGH);
 }
}
#endif

void process_commands()
{
  #ifdef FILAMENT_RUNOUT_SUPPORT
    SET_INPUT(FR_SENS);
  #endif
  
  
  unsigned long codenum; //throw away variable
  char *starpos = NULL;
#ifdef ENABLE_AUTO_BED_LEVELING
  float x_tmp, y_tmp, z_tmp, real_z;
#endif

  // PRUSA GCODES

  if(code_seen('PRUSA')){
    if(code_seen('Fir')){

      SERIAL_PROTOCOLLN(FW_version);

    } else if(code_seen('Rev')){

      SERIAL_PROTOCOLLN(REVISION);

    }

  }
  else if(code_seen('G'))
  {
    switch((int)code_value())
    {
    case 0: // G0 -> G1
    case 1: // G1
      if(Stopped == false) {

        #ifdef FILAMENT_RUNOUT_SUPPORT
            
            if(READ(FR_SENS)){

                        feedmultiplyBckp=feedmultiply;
                        float target[4];
                        float lastpos[4];
                        target[X_AXIS]=current_position[X_AXIS];
                        target[Y_AXIS]=current_position[Y_AXIS];
                        target[Z_AXIS]=current_position[Z_AXIS];
                        target[E_AXIS]=current_position[E_AXIS];
                        lastpos[X_AXIS]=current_position[X_AXIS];
                        lastpos[Y_AXIS]=current_position[Y_AXIS];
                        lastpos[Z_AXIS]=current_position[Z_AXIS];
                        lastpos[E_AXIS]=current_position[E_AXIS];
                        //retract by E
                        
                        target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
                        
                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);


                        target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;

                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);

                        target[X_AXIS]= FILAMENTCHANGE_XPOS ;
                        
                        target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
                         
                 
                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);

                        target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
                          

                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);

                        //finish moves
                        st_synchronize();
                        //disable extruder steppers so filament can be removed
                        disable_e0();
                        disable_e1();
                        disable_e2();
                        delay(100);
                        
                        //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
                        uint8_t cnt=0;
                        int counterBeep = 0;
                        lcd_wait_interact();
                        while(!lcd_clicked()){
                          cnt++;
                          manage_heater();
                          manage_inactivity(true);
                          //lcd_update();
                          if(cnt==0)
                          {
                          #if BEEPER > 0
                          
                            if (counterBeep== 500){
                              counterBeep = 0;
                              
                            }
                          
                            
                            SET_OUTPUT(BEEPER);
                            if (counterBeep== 0){
                              WRITE(BEEPER,HIGH);
                            }
                            
                            if (counterBeep== 20){
                              WRITE(BEEPER,LOW);
                            }
                            
                            
                            
                          
                            counterBeep++;
                          #else
                      #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
                              lcd_buzz(1000/6,100);
                      #else
                        lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
                      #endif
                          #endif
                          }
                        }
                        
                        WRITE(BEEPER,LOW);
                        
                        target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); 
                        
                        
                        target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
                        
                 
                        
                        
                        
                        lcd_change_fil_state = 0;
                        lcd_loading_filament();
                        while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
                        
                          lcd_change_fil_state = 0;
                          lcd_alright();
                          switch(lcd_change_fil_state){
                          
                             case 2:
                                     target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder); 
                        
                        
                                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
                                      
                                     
                                     lcd_loading_filament();
                                     break;
                             case 3:
                                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
                                     lcd_loading_color();
                                     break;
                                          
                             default:
                                     lcd_change_success();
                                     break;
                          }
                          
                        }
                        

                        
                      target[E_AXIS]+= 5;
                      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
                        
                      target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
                      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
                        

                        //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
                        //plan_set_e_position(current_position[E_AXIS]);
                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
                        
                        
                        target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
                        
                      
                             
                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
                        
                        
                        plan_set_e_position(lastpos[E_AXIS]);
                        
                        feedmultiply=feedmultiplyBckp;
                        
                     
                        
                        char cmd[9];

                        sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
                        enquecommand(cmd);

            }



        #endif


        get_coordinates(); // For X Y Z E F
          #ifdef FWRETRACT
            if(autoretract_enabled)
            if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
              float echange=destination[E_AXIS]-current_position[E_AXIS];

              if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
                  current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
                  plan_set_e_position(current_position[E_AXIS]); //AND from the planner
                  retract(!retracted);
                  return;
              }


            }
          #endif //FWRETRACT
        prepare_move();
        //ClearToSend();
      }
      break;
#ifndef SCARA //disable arc support
    case 2: // G2  - CW ARC
      if(Stopped == false) {
        get_arc_coordinates();
        prepare_arc_move(true);
      }
      break;
    case 3: // G3  - CCW ARC
      if(Stopped == false) {
        get_arc_coordinates();
        prepare_arc_move(false);
      }
      break;
#endif
    case 4: // G4 dwell
      LCD_MESSAGEPGM(MSG_DWELL);
      codenum = 0;
      if(code_seen('P')) codenum = code_value(); // milliseconds to wait
      if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait

      st_synchronize();
      codenum += millis();  // keep track of when we started waiting
      previous_millis_cmd = millis();
      while(millis() < codenum) {
        manage_heater();
        manage_inactivity();
        lcd_update();
      }
      break;
      #ifdef FWRETRACT
      case 10: // G10 retract
       #if EXTRUDERS > 1
        retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
        retract(true,retracted_swap[active_extruder]);
       #else
        retract(true);
       #endif
      break;
      case 11: // G11 retract_recover
       #if EXTRUDERS > 1
        retract(false,retracted_swap[active_extruder]);
       #else
        retract(false);
       #endif 
      break;
      #endif //FWRETRACT
    case 28: //G28 Home all Axis one at a time
#ifdef ENABLE_AUTO_BED_LEVELING
      plan_bed_level_matrix.set_to_identity();  //Reset the plane ("erase" all leveling data)
#endif //ENABLE_AUTO_BED_LEVELING

      saved_feedrate = feedrate;
      saved_feedmultiply = feedmultiply;
      feedmultiply = 100;
      previous_millis_cmd = millis();

      enable_endstops(true);

      for(int8_t i=0; i < NUM_AXIS; i++) {
        destination[i] = current_position[i];
      }
      feedrate = 0.0;

#ifdef DELTA
          // A delta can only safely home all axis at the same time
          // all axis have to home at the same time

          // Move all carriages up together until the first endstop is hit.
          current_position[X_AXIS] = 0;
          current_position[Y_AXIS] = 0;
          current_position[Z_AXIS] = 0;
          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);

          destination[X_AXIS] = 3 * Z_MAX_LENGTH;
          destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
          destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
          feedrate = 1.732 * homing_feedrate[X_AXIS];
          plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
          st_synchronize();
          endstops_hit_on_purpose();

          current_position[X_AXIS] = destination[X_AXIS];
          current_position[Y_AXIS] = destination[Y_AXIS];
          current_position[Z_AXIS] = destination[Z_AXIS];

          // take care of back off and rehome now we are all at the top
          HOMEAXIS(X);
          HOMEAXIS(Y);
          HOMEAXIS(Z);

          calculate_delta(current_position);
          plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);

#else // NOT DELTA

      home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));

      #if Z_HOME_DIR > 0                      // If homing away from BED do Z first
      if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
        HOMEAXIS(Z);
      }
      #endif

      #ifdef QUICK_HOME
      if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) )  //first diagonal move
      {
        current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;

       #ifndef DUAL_X_CARRIAGE
        int x_axis_home_dir = home_dir(X_AXIS);
       #else
        int x_axis_home_dir = x_home_dir(active_extruder);
        extruder_duplication_enabled = false;
       #endif

        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
        destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
        feedrate = homing_feedrate[X_AXIS];
        if(homing_feedrate[Y_AXIS]<feedrate)
          feedrate = homing_feedrate[Y_AXIS];
        if (max_length(X_AXIS) > max_length(Y_AXIS)) {
          feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
        } else {
          feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
        }
        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
        st_synchronize();

        axis_is_at_home(X_AXIS);
        axis_is_at_home(Y_AXIS);
        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
        destination[X_AXIS] = current_position[X_AXIS];
        destination[Y_AXIS] = current_position[Y_AXIS];
        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
        feedrate = 0.0;
        st_synchronize();
        endstops_hit_on_purpose();

        current_position[X_AXIS] = destination[X_AXIS];
        current_position[Y_AXIS] = destination[Y_AXIS];
		#ifndef SCARA
        current_position[Z_AXIS] = destination[Z_AXIS];
		#endif
      }
      #endif

      if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
      {
      #ifdef DUAL_X_CARRIAGE
        int tmp_extruder = active_extruder;
        extruder_duplication_enabled = false;
        active_extruder = !active_extruder;
        HOMEAXIS(X);
        inactive_extruder_x_pos = current_position[X_AXIS];
        active_extruder = tmp_extruder;
        HOMEAXIS(X);
        // reset state used by the different modes
        memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
        delayed_move_time = 0;
        active_extruder_parked = true;
      #else
        HOMEAXIS(X);
      #endif
      }

      if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
        HOMEAXIS(Y);
      }

      if(code_seen(axis_codes[X_AXIS]))
      {
        if(code_value_long() != 0) {
		#ifdef SCARA
		   current_position[X_AXIS]=code_value();
		#else
		   current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
		#endif
        }
      }

      if(code_seen(axis_codes[Y_AXIS])) {
        if(code_value_long() != 0) {
         #ifdef SCARA
		   current_position[Y_AXIS]=code_value();
		#else
		   current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
		#endif
        }
      }

      #if Z_HOME_DIR < 0                      // If homing towards BED do Z last
        #ifndef Z_SAFE_HOMING
          if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
            #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
              destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
              feedrate = max_feedrate[Z_AXIS];
              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
              st_synchronize();
            #endif
            HOMEAXIS(Z);
          }
        #else                      // Z Safe mode activated.
          if(home_all_axis) {
            destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
            destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
            destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
            feedrate = XY_TRAVEL_SPEED/60;
            current_position[Z_AXIS] = 0;

            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
            plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
            st_synchronize();
            current_position[X_AXIS] = destination[X_AXIS];
            current_position[Y_AXIS] = destination[Y_AXIS];

            HOMEAXIS(Z);
          }
                                                // Let's see if X and Y are homed and probe is inside bed area.
          if(code_seen(axis_codes[Z_AXIS])) {
            if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
              && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
              && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
              && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
              && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {

              current_position[Z_AXIS] = 0;
              plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
              destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
              feedrate = max_feedrate[Z_AXIS];
              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
              st_synchronize();

              HOMEAXIS(Z);
            } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
                LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
                SERIAL_ECHO_START;
                SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
            } else {
                LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
                SERIAL_ECHO_START;
                SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
            }
          }
        #endif
      #endif



      if(code_seen(axis_codes[Z_AXIS])) {
        if(code_value_long() != 0) {
          current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
        }
      }
      #ifdef ENABLE_AUTO_BED_LEVELING
        if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
          current_position[Z_AXIS] += zprobe_zoffset;  //Add Z_Probe offset (the distance is negative)
        }
      #endif
      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#endif // else DELTA

#ifdef SCARA
	  calculate_delta(current_position);
      plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#endif // SCARA

      #ifdef ENDSTOPS_ONLY_FOR_HOMING
        enable_endstops(false);
      #endif

      feedrate = saved_feedrate;
      feedmultiply = saved_feedmultiply;
      previous_millis_cmd = millis();
      endstops_hit_on_purpose();

      if(card.sdprinting) {
        EEPROM_read_B(4089,&babystepLoad[2]);

        if(babystepLoad[2] != 0){

          lcd_adjust_z();

        }

      }
      
      

      break;

#ifdef ENABLE_AUTO_BED_LEVELING
    case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
        {
            #if Z_MIN_PIN == -1
            #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
            #endif

            // Prevent user from running a G29 without first homing in X and Y
            if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
            {
                LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
                SERIAL_ECHO_START;
                SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
                break; // abort G29, since we don't know where we are
            }

#ifdef Z_PROBE_SLED
            dock_sled(false);
#endif // Z_PROBE_SLED
            st_synchronize();
            // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
            //vector_3 corrected_position = plan_get_position_mm();
            //corrected_position.debug("position before G29");
            plan_bed_level_matrix.set_to_identity();
            vector_3 uncorrected_position = plan_get_position();
            //uncorrected_position.debug("position durring G29");
            current_position[X_AXIS] = uncorrected_position.x;
            current_position[Y_AXIS] = uncorrected_position.y;
            current_position[Z_AXIS] = uncorrected_position.z;
            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
            setup_for_endstop_move();

            feedrate = homing_feedrate[Z_AXIS];
#ifdef AUTO_BED_LEVELING_GRID
            // probe at the points of a lattice grid

            int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
            int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);


            // solve the plane equation ax + by + d = z
            // A is the matrix with rows [x y 1] for all the probed points
            // B is the vector of the Z positions
            // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
            // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z

            // "A" matrix of the linear system of equations
            double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
            // "B" vector of Z points
            double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];


            int probePointCounter = 0;
            bool zig = true;

            for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
            {
              int xProbe, xInc;
              if (zig)
              {
                xProbe = LEFT_PROBE_BED_POSITION;
                //xEnd = RIGHT_PROBE_BED_POSITION;
                xInc = xGridSpacing;
                zig = false;
              } else // zag
              {
                xProbe = RIGHT_PROBE_BED_POSITION;
                //xEnd = LEFT_PROBE_BED_POSITION;
                xInc = -xGridSpacing;
                zig = true;
              }

              for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
              {
                float z_before;
                if (probePointCounter == 0)
                {
                  // raise before probing
                  z_before = Z_RAISE_BEFORE_PROBING;
                } else
                {
                  // raise extruder
                  z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
                }

                float measured_z = probe_pt(xProbe, yProbe, z_before);

                eqnBVector[probePointCounter] = measured_z;

                eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
                eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
                eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
                probePointCounter++;
                xProbe += xInc;
              }
            }
            clean_up_after_endstop_move();

            // solve lsq problem
            double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);

            SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
            SERIAL_PROTOCOL(plane_equation_coefficients[0]);
            SERIAL_PROTOCOLPGM(" b: ");
            SERIAL_PROTOCOL(plane_equation_coefficients[1]);
            SERIAL_PROTOCOLPGM(" d: ");
            SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);


            set_bed_level_equation_lsq(plane_equation_coefficients);

            free(plane_equation_coefficients);

#else // AUTO_BED_LEVELING_GRID not defined

            // Probe at 3 arbitrary points
            // probe 1
            float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);

            // probe 2
            float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);

            // probe 3
            float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);

            clean_up_after_endstop_move();

            set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);


#endif // AUTO_BED_LEVELING_GRID
            st_synchronize();

            // The following code correct the Z height difference from z-probe position and hotend tip position.
            // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
            // When the bed is uneven, this height must be corrected.
            real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS];  //get the real Z (since the auto bed leveling is already correcting the plane)
            x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
            y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
            z_tmp = current_position[Z_AXIS];

            apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);         //Apply the correction sending the probe offset
            current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS];   //The difference is added to current position and sent to planner.
            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#ifdef Z_PROBE_SLED
            dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
#endif // Z_PROBE_SLED
        }
        break;
#ifndef Z_PROBE_SLED
    case 30: // G30 Single Z Probe
        {
            engage_z_probe(); // Engage Z Servo endstop if available
            st_synchronize();
            // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
            setup_for_endstop_move();

            feedrate = homing_feedrate[Z_AXIS];

            run_z_probe();
            SERIAL_PROTOCOLPGM(MSG_BED);
            SERIAL_PROTOCOLPGM(" X: ");
            SERIAL_PROTOCOL(current_position[X_AXIS]);
            SERIAL_PROTOCOLPGM(" Y: ");
            SERIAL_PROTOCOL(current_position[Y_AXIS]);
            SERIAL_PROTOCOLPGM(" Z: ");
            SERIAL_PROTOCOL(current_position[Z_AXIS]);
            SERIAL_PROTOCOLPGM("\n");

            clean_up_after_endstop_move();
            retract_z_probe(); // Retract Z Servo endstop if available
        }
        break;
#else
    case 31: // dock the sled
        dock_sled(true);
        break;
    case 32: // undock the sled
        dock_sled(false);
        break;
#endif // Z_PROBE_SLED
#endif // ENABLE_AUTO_BED_LEVELING
    case 90: // G90
      relative_mode = false;
      break;
    case 91: // G91
      relative_mode = true;
      break;
    case 92: // G92
      if(!code_seen(axis_codes[E_AXIS]))
        st_synchronize();
      for(int8_t i=0; i < NUM_AXIS; i++) {
        if(code_seen(axis_codes[i])) {
           if(i == E_AXIS) {
             current_position[i] = code_value();
             plan_set_e_position(current_position[E_AXIS]);
           }
           else {
#ifdef SCARA
		if (i == X_AXIS || i == Y_AXIS) {
                	current_position[i] = code_value();  
		}
		else {
                current_position[i] = code_value()+add_homing[i];  
            	}  
#else
		current_position[i] = code_value()+add_homing[i];
#endif
            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
           }
        }
      }
      break;
    }
  }

  else if(code_seen('M'))
  {
    switch( (int)code_value() )
    {
#ifdef ULTIPANEL
    case 0: // M0 - Unconditional stop - Wait for user button press on LCD
    case 1: // M1 - Conditional stop - Wait for user button press on LCD
    {
      char *src = strchr_pointer + 2;

      codenum = 0;

      bool hasP = false, hasS = false;
      if (code_seen('P')) {
        codenum = code_value(); // milliseconds to wait
        hasP = codenum > 0;
      }
      if (code_seen('S')) {
        codenum = code_value() * 1000; // seconds to wait
        hasS = codenum > 0;
      }
      starpos = strchr(src, '*');
      if (starpos != NULL) *(starpos) = '\0';
      while (*src == ' ') ++src;
      if (!hasP && !hasS && *src != '\0') {
        lcd_setstatus(src);
      } else {
        LCD_MESSAGEPGM(MSG_USERWAIT);
      }

      lcd_ignore_click();
      st_synchronize();
      previous_millis_cmd = millis();
      if (codenum > 0){
        codenum += millis();  // keep track of when we started waiting
        while(millis() < codenum && !lcd_clicked()){
          manage_heater();
          manage_inactivity();
          lcd_update();
        }
        lcd_ignore_click(false);
      }else{
          if (!lcd_detected())
            break;
        while(!lcd_clicked()){
          manage_heater();
          manage_inactivity();
          lcd_update();
        }
      }
      if (IS_SD_PRINTING)
        LCD_MESSAGEPGM(MSG_RESUMING);
      else
        LCD_MESSAGEPGM(WELCOME_MSG);
    }
    break;
#endif
    case 17:
        LCD_MESSAGEPGM(MSG_NO_MOVE);
        enable_x();
        enable_y();
        enable_z();
        enable_e0();
        enable_e1();
        enable_e2();
      break;

#ifdef SDSUPPORT
    case 20: // M20 - list SD card
      SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
      card.ls();
      SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
      break;
    case 21: // M21 - init SD card

      card.initsd();

      break;
    case 22: //M22 - release SD card
      card.release();

      break;
    case 23: //M23 - Select file
      starpos = (strchr(strchr_pointer + 4,'*'));
      if(starpos!=NULL)
        *(starpos)='\0';
      card.openFile(strchr_pointer + 4,true);
      break;
    case 24: //M24 - Start SD print
      card.startFileprint();
      starttime=millis();
      break;
    case 25: //M25 - Pause SD print
      card.pauseSDPrint();
      break;
    case 26: //M26 - Set SD index
      if(card.cardOK && code_seen('S')) {
        card.setIndex(code_value_long());
      }
      break;
    case 27: //M27 - Get SD status
      card.getStatus();
      break;
    case 28: //M28 - Start SD write
      starpos = (strchr(strchr_pointer + 4,'*'));
      if(starpos != NULL){
        char* npos = strchr(cmdbuffer[bufindr], 'N');
        strchr_pointer = strchr(npos,' ') + 1;
        *(starpos) = '\0';
      }
      card.openFile(strchr_pointer+4,false);
      break;
    case 29: //M29 - Stop SD write
      //processed in write to file routine above
      //card,saving = false;
      break;
    case 30: //M30 <filename> Delete File
      if (card.cardOK){
        card.closefile();
        starpos = (strchr(strchr_pointer + 4,'*'));
        if(starpos != NULL){
          char* npos = strchr(cmdbuffer[bufindr], 'N');
          strchr_pointer = strchr(npos,' ') + 1;
          *(starpos) = '\0';
        }
        card.removeFile(strchr_pointer + 4);
      }
      break;
    case 32: //M32 - Select file and start SD print
    {
      if(card.sdprinting) {
        st_synchronize();

      }
      starpos = (strchr(strchr_pointer + 4,'*'));

      char* namestartpos = (strchr(strchr_pointer + 4,'!'));   //find ! to indicate filename string start.
      if(namestartpos==NULL)
      {
        namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
      }
      else
        namestartpos++; //to skip the '!'

      if(starpos!=NULL)
        *(starpos)='\0';

      bool call_procedure=(code_seen('P'));

      if(strchr_pointer>namestartpos)
        call_procedure=false;  //false alert, 'P' found within filename

      if( card.cardOK )
      {
        card.openFile(namestartpos,true,!call_procedure);
        if(code_seen('S'))
          if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
            card.setIndex(code_value_long());
        card.startFileprint();
        if(!call_procedure)
          starttime=millis(); //procedure calls count as normal print time.
      }
    } break;
    case 928: //M928 - Start SD write
      starpos = (strchr(strchr_pointer + 5,'*'));
      if(starpos != NULL){
        char* npos = strchr(cmdbuffer[bufindr], 'N');
        strchr_pointer = strchr(npos,' ') + 1;
        *(starpos) = '\0';
      }
      card.openLogFile(strchr_pointer+5);
      break;

#endif //SDSUPPORT

    case 31: //M31 take time since the start of the SD print or an M109 command
      {
      stoptime=millis();
      char time[30];
      unsigned long t=(stoptime-starttime)/1000;
      int sec,min;
      min=t/60;
      sec=t%60;
      sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
      SERIAL_ECHO_START;
      SERIAL_ECHOLN(time);
      lcd_setstatus(time);
      autotempShutdown();
      }
      break;
    case 42: //M42 -Change pin status via gcode
      if (code_seen('S'))
      {
        int pin_status = code_value();
        int pin_number = LED_PIN;
        if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
          pin_number = code_value();
        for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
        {
          if (sensitive_pins[i] == pin_number)
          {
            pin_number = -1;
            break;
          }
        }
      #if defined(FAN_PIN) && FAN_PIN > -1
        if (pin_number == FAN_PIN)
          fanSpeed = pin_status;
      #endif
        if (pin_number > -1)
        {
          pinMode(pin_number, OUTPUT);
          digitalWrite(pin_number, pin_status);
          analogWrite(pin_number, pin_status);
        }
      }
     break;

// M48 Z-Probe repeatability measurement function.
//
// Usage:   M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
//	
// This function assumes the bed has been homed.  Specificaly, that a G28 command
// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
// Any information generated by a prior G29 Bed leveling command will be lost and need to be
// regenerated.
//
// The number of samples will default to 10 if not specified.  You can use upper or lower case
// letters for any of the options EXCEPT n.  n must be in lower case because Marlin uses a capital
// N for its communication protocol and will get horribly confused if you send it a capital N.
//

#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef Z_PROBE_REPEATABILITY_TEST 

    case 48: // M48 Z-Probe repeatability
        {
            #if Z_MIN_PIN == -1
            #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
            #endif

	double sum=0.0; 
	double mean=0.0; 
	double sigma=0.0;
	double sample_set[50];
	int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
	double X_current, Y_current, Z_current;
	double X_probe_location, Y_probe_location, Z_start_location, ext_position;
	
	if (code_seen('V') || code_seen('v')) {
        	verbose_level = code_value();
		if (verbose_level<0 || verbose_level>4 ) {
			SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
			goto Sigma_Exit;
		}
	}

	if (verbose_level > 0)   {
		SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test.   Version 2.00\n");
		SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
	}

	if (code_seen('n')) {
        	n_samples = code_value();
		if (n_samples<4 || n_samples>50 ) {
			SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
			goto Sigma_Exit;
		}
	}

	X_current = X_probe_location = st_get_position_mm(X_AXIS);
	Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
	Z_current = st_get_position_mm(Z_AXIS);
	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
	ext_position	 = st_get_position_mm(E_AXIS);

	if (code_seen('E') || code_seen('e') ) 
		engage_probe_for_each_reading++;

	if (code_seen('X') || code_seen('x') ) {
        	X_probe_location = code_value() -  X_PROBE_OFFSET_FROM_EXTRUDER;
		if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
			SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
			goto Sigma_Exit;
		}
	}

	if (code_seen('Y') || code_seen('y') ) {
        	Y_probe_location = code_value() -  Y_PROBE_OFFSET_FROM_EXTRUDER;
		if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
			SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
			goto Sigma_Exit;
		}
	}

	if (code_seen('L') || code_seen('l') ) {
        	n_legs = code_value();
		if ( n_legs==1 ) 
			n_legs = 2;
		if ( n_legs<0 || n_legs>15 ) {
			SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
			goto Sigma_Exit;
		}
	}

//
// Do all the preliminary setup work.   First raise the probe.
//

        st_synchronize();
        plan_bed_level_matrix.set_to_identity();
	plan_buffer_line( X_current, Y_current, Z_start_location,
			ext_position,
    			homing_feedrate[Z_AXIS]/60,
			active_extruder);
        st_synchronize();

//
// Now get everything to the specified probe point So we can safely do a probe to
// get us close to the bed.  If the Z-Axis is far from the bed, we don't want to 
// use that as a starting point for each probe.
//
	if (verbose_level > 2) 
		SERIAL_PROTOCOL("Positioning probe for the test.\n");

	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
			ext_position,
    			homing_feedrate[X_AXIS]/60,
			active_extruder);
        st_synchronize();

	current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
	current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
	current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);

// 
// OK, do the inital probe to get us close to the bed.
// Then retrace the right amount and use that in subsequent probes
//

        engage_z_probe();	

	setup_for_endstop_move();
	run_z_probe();

	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;

	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
			ext_position,
    			homing_feedrate[X_AXIS]/60,
			active_extruder);
        st_synchronize();
	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);

	if (engage_probe_for_each_reading)
        	retract_z_probe();

        for( n=0; n<n_samples; n++) {

		do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location

		if ( n_legs)  {
		double radius=0.0, theta=0.0, x_sweep, y_sweep;
		int rotational_direction, l;

			rotational_direction = (unsigned long) millis() & 0x0001;			// clockwise or counter clockwise
			radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); 			// limit how far out to go 
			theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926));	// turn into radians

//SERIAL_ECHOPAIR("starting radius: ",radius);
//SERIAL_ECHOPAIR("   theta: ",theta);
//SERIAL_ECHOPAIR("   direction: ",rotational_direction);
//SERIAL_PROTOCOLLNPGM("");

			for( l=0; l<n_legs-1; l++) {
				if (rotational_direction==1)
					theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
				else
					theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians

				radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
				if ( radius<0.0 )
					radius = -radius;

				X_current = X_probe_location + cos(theta) * radius;
				Y_current = Y_probe_location + sin(theta) * radius;

				if ( X_current<X_MIN_POS)		// Make sure our X & Y are sane
					 X_current = X_MIN_POS;
				if ( X_current>X_MAX_POS)
					 X_current = X_MAX_POS;

				if ( Y_current<Y_MIN_POS)		// Make sure our X & Y are sane
					 Y_current = Y_MIN_POS;
				if ( Y_current>Y_MAX_POS)
					 Y_current = Y_MAX_POS;

				if (verbose_level>3 ) {
					SERIAL_ECHOPAIR("x: ", X_current);
					SERIAL_ECHOPAIR("y: ", Y_current);
					SERIAL_PROTOCOLLNPGM("");
				}

				do_blocking_move_to( X_current, Y_current, Z_current );
			}
			do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
		}

		if (engage_probe_for_each_reading)  {
        		engage_z_probe();	
          		delay(1000);
		}

		setup_for_endstop_move();
                run_z_probe();

		sample_set[n] = current_position[Z_AXIS];

//
// Get the current mean for the data points we have so far
//
		sum=0.0; 
		for( j=0; j<=n; j++) {
			sum = sum + sample_set[j];
		}
		mean = sum / (double (n+1));
//
// Now, use that mean to calculate the standard deviation for the
// data points we have so far
//

		sum=0.0; 
		for( j=0; j<=n; j++) {
			sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
		}
		sigma = sqrt( sum / (double (n+1)) );

		if (verbose_level > 1) {
			SERIAL_PROTOCOL(n+1);
			SERIAL_PROTOCOL(" of ");
			SERIAL_PROTOCOL(n_samples);
			SERIAL_PROTOCOLPGM("   z: ");
			SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
		}

		if (verbose_level > 2) {
			SERIAL_PROTOCOL(" mean: ");
			SERIAL_PROTOCOL_F(mean,6);

			SERIAL_PROTOCOL("   sigma: ");
			SERIAL_PROTOCOL_F(sigma,6);
		}

		if (verbose_level > 0) 
			SERIAL_PROTOCOLPGM("\n");

		plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, 
				  current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
        	st_synchronize();

		if (engage_probe_for_each_reading)  {
        		retract_z_probe();	
          		delay(1000);
		}
	}

        retract_z_probe();
	delay(1000);

        clean_up_after_endstop_move();

//      enable_endstops(true);

	if (verbose_level > 0) {
		SERIAL_PROTOCOLPGM("Mean: ");
		SERIAL_PROTOCOL_F(mean, 6);
		SERIAL_PROTOCOLPGM("\n");
	}

SERIAL_PROTOCOLPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_PROTOCOLPGM("\n\n");

Sigma_Exit:
        break;
	}
#endif		// Z_PROBE_REPEATABILITY_TEST 
#endif		// ENABLE_AUTO_BED_LEVELING

    case 104: // M104
      if(setTargetedHotend(104)){
        break;
      }
      if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
#ifdef DUAL_X_CARRIAGE
      if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
        setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif
      setWatch();
      break;
    case 112: //  M112 -Emergency Stop
      kill();
      break;
    case 140: // M140 set bed temp
      if (code_seen('S')) setTargetBed(code_value());
      break;
    case 105 : // M105
      if(setTargetedHotend(105)){
        break;
        }
      #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
        SERIAL_PROTOCOLPGM("ok T:");
        SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
        SERIAL_PROTOCOLPGM(" /");
        SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
        #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
          SERIAL_PROTOCOLPGM(" B:");
          SERIAL_PROTOCOL_F(degBed(),1);
          SERIAL_PROTOCOLPGM(" /");
          SERIAL_PROTOCOL_F(degTargetBed(),1);
        #endif //TEMP_BED_PIN
        for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
          SERIAL_PROTOCOLPGM(" T");
          SERIAL_PROTOCOL(cur_extruder);
          SERIAL_PROTOCOLPGM(":");
          SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
          SERIAL_PROTOCOLPGM(" /");
          SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
        }
      #else
        SERIAL_ERROR_START;
        SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
      #endif

        SERIAL_PROTOCOLPGM(" @:");
      #ifdef EXTRUDER_WATTS
        SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
        SERIAL_PROTOCOLPGM("W");
      #else
        SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
      #endif

        SERIAL_PROTOCOLPGM(" B@:");
      #ifdef BED_WATTS
        SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
        SERIAL_PROTOCOLPGM("W");
      #else
        SERIAL_PROTOCOL(getHeaterPower(-1));
      #endif

        #ifdef SHOW_TEMP_ADC_VALUES
          #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
            SERIAL_PROTOCOLPGM("    ADC B:");
            SERIAL_PROTOCOL_F(degBed(),1);
            SERIAL_PROTOCOLPGM("C->");
            SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
          #endif
          for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
            SERIAL_PROTOCOLPGM("  T");
            SERIAL_PROTOCOL(cur_extruder);
            SERIAL_PROTOCOLPGM(":");
            SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
            SERIAL_PROTOCOLPGM("C->");
            SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
          }
        #endif

        SERIAL_PROTOCOLLN("");
      return;
      break;
    case 109:
    {// M109 - Wait for extruder heater to reach target.
      if(setTargetedHotend(109)){
        break;
      }
      LCD_MESSAGEPGM(MSG_HEATING);
      #ifdef AUTOTEMP
        autotemp_enabled=false;
      #endif
      if (code_seen('S')) {
        setTargetHotend(code_value(), tmp_extruder);
      #ifdef DUAL_X_CARRIAGE
              if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
                setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
      #endif
              CooldownNoWait = true;
            } else if (code_seen('R')) {
              setTargetHotend(code_value(), tmp_extruder);
      #ifdef DUAL_X_CARRIAGE
              if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
                setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
      #endif
        CooldownNoWait = false;
      }
      #ifdef AUTOTEMP
        if (code_seen('S')) autotemp_min=code_value();
        if (code_seen('B')) autotemp_max=code_value();
        if (code_seen('F'))
        {
          autotemp_factor=code_value();
          autotemp_enabled=true;
        }
      #endif

      setWatch();
      codenum = millis();

      /* See if we are heating up or cooling down */
      target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling

      cancel_heatup = false;

      #ifdef TEMP_RESIDENCY_TIME
        long residencyStart;
        residencyStart = -1;
        /* continue to loop until we have reached the target temp
          _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
        while((!cancel_heatup)&&((residencyStart == -1) ||
              (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
      #else
        while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
      #endif //TEMP_RESIDENCY_TIME
          if( (millis() - codenum) > 1000UL )
          { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
            SERIAL_PROTOCOLPGM("T:");
            SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
            SERIAL_PROTOCOLPGM(" E:");
            SERIAL_PROTOCOL((int)tmp_extruder);
            #ifdef TEMP_RESIDENCY_TIME
              SERIAL_PROTOCOLPGM(" W:");
              if(residencyStart > -1)
              {
                 codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
                 SERIAL_PROTOCOLLN( codenum );
              }
              else
              {
                 SERIAL_PROTOCOLLN( "?" );
              }
            #else
              SERIAL_PROTOCOLLN("");
            #endif
            codenum = millis();
          }
          manage_heater();
          manage_inactivity();
          lcd_update();
        #ifdef TEMP_RESIDENCY_TIME
            /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
              or when current temp falls outside the hysteresis after target temp was reached */
          if ((residencyStart == -1 &&  target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
              (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
              (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
          {
            residencyStart = millis();
          }
        #endif //TEMP_RESIDENCY_TIME
        }
        LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);

        if(IS_SD_PRINTING){
         
          lcd_setstatus("SD-PRINTING         ");
        }

        starttime=millis();
        previous_millis_cmd = millis();
      }
      break;
    case 190: // M190 - Wait for bed heater to reach target.
    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
        LCD_MESSAGEPGM(MSG_BED_HEATING);
        if (code_seen('S')) {
          setTargetBed(code_value());
          CooldownNoWait = true;
        } else if (code_seen('R')) {
          setTargetBed(code_value());
          CooldownNoWait = false;
        }
        codenum = millis();
        
        cancel_heatup = false;
        target_direction = isHeatingBed(); // true if heating, false if cooling

        while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
        {
          if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
          {
            float tt=degHotend(active_extruder);
            SERIAL_PROTOCOLPGM("T:");
            SERIAL_PROTOCOL(tt);
            SERIAL_PROTOCOLPGM(" E:");
            SERIAL_PROTOCOL((int)active_extruder);
            SERIAL_PROTOCOLPGM(" B:");
            SERIAL_PROTOCOL_F(degBed(),1);
            SERIAL_PROTOCOLLN("");
            codenum = millis();
          }
          manage_heater();
          manage_inactivity();
          lcd_update();
        }
        LCD_MESSAGEPGM(MSG_BED_DONE);
        if(IS_SD_PRINTING){
         
          lcd_setstatus("SD-PRINTING         ");
        }
        previous_millis_cmd = millis();
    #endif
        break;

    #if defined(FAN_PIN) && FAN_PIN > -1
      case 106: //M106 Fan On
        if (code_seen('S')){
           fanSpeed=constrain(code_value(),0,255);
        }
        else {
          fanSpeed=255;
        }
        break;
      case 107: //M107 Fan Off
        fanSpeed = 0;
        break;
    #endif //FAN_PIN
    #ifdef BARICUDA
      // PWM for HEATER_1_PIN
      #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
        case 126: //M126 valve open
          if (code_seen('S')){
             ValvePressure=constrain(code_value(),0,255);
          }
          else {
            ValvePressure=255;
          }
          break;
        case 127: //M127 valve closed
          ValvePressure = 0;
          break;
      #endif //HEATER_1_PIN

      // PWM for HEATER_2_PIN
      #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
        case 128: //M128 valve open
          if (code_seen('S')){
             EtoPPressure=constrain(code_value(),0,255);
          }
          else {
            EtoPPressure=255;
          }
          break;
        case 129: //M129 valve closed
          EtoPPressure = 0;
          break;
      #endif //HEATER_2_PIN
    #endif

    #if defined(PS_ON_PIN) && PS_ON_PIN > -1
      case 80: // M80 - Turn on Power Supply
        SET_OUTPUT(PS_ON_PIN); //GND
        WRITE(PS_ON_PIN, PS_ON_AWAKE);

        // If you have a switch on suicide pin, this is useful
        // if you want to start another print with suicide feature after
        // a print without suicide...
        #if defined SUICIDE_PIN && SUICIDE_PIN > -1
            SET_OUTPUT(SUICIDE_PIN);
            WRITE(SUICIDE_PIN, HIGH);
        #endif

        #ifdef ULTIPANEL
          powersupply = true;
          LCD_MESSAGEPGM(WELCOME_MSG);
          lcd_update();
        #endif
        break;
      #endif

      case 81: // M81 - Turn off Power Supply
        disable_heater();
        st_synchronize();
        disable_e0();
        disable_e1();
        disable_e2();
        finishAndDisableSteppers();
        fanSpeed = 0;
        delay(1000); // Wait a little before to switch off
      #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
        st_synchronize();
        suicide();
      #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
        SET_OUTPUT(PS_ON_PIN);
        WRITE(PS_ON_PIN, PS_ON_ASLEEP);
      #endif
      #ifdef ULTIPANEL
        powersupply = false;
        LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
        lcd_update();
      #endif
	  break;

    case 82:
      axis_relative_modes[3] = false;
      break;
    case 83:
      axis_relative_modes[3] = true;
      break;
    case 18: //compatibility
    case 84: // M84
      if(code_seen('S')){
        stepper_inactive_time = code_value() * 1000;
      }
      else
      {
        bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
        if(all_axis)
        {
          st_synchronize();
          disable_e0();
          disable_e1();
          disable_e2();
          finishAndDisableSteppers();
        }
        else
        {
          st_synchronize();
          if(code_seen('X')) disable_x();
          if(code_seen('Y')) disable_y();
          if(code_seen('Z')) disable_z();
          #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
            if(code_seen('E')) {
              disable_e0();
              disable_e1();
              disable_e2();
            }
          #endif
        }
      }
      break;
    case 85: // M85
      if(code_seen('S')) {
        max_inactive_time = code_value() * 1000;
      }
      break;
    case 92: // M92
      for(int8_t i=0; i < NUM_AXIS; i++)
      {
        if(code_seen(axis_codes[i]))
        {
          if(i == 3) { // E
            float value = code_value();
            if(value < 20.0) {
              float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
              max_e_jerk *= factor;
              max_feedrate[i] *= factor;
              axis_steps_per_sqr_second[i] *= factor;
            }
            axis_steps_per_unit[i] = value;
          }
          else {
            axis_steps_per_unit[i] = code_value();
          }
        }
      }
      break;
    case 115: // M115
      SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
      break;
    case 117: // M117 display message
      starpos = (strchr(strchr_pointer + 5,'*'));
      if(starpos!=NULL)
        *(starpos)='\0';
      lcd_setstatus(strchr_pointer + 5);
      break;
    case 114: // M114
      SERIAL_PROTOCOLPGM("X:");
      SERIAL_PROTOCOL(current_position[X_AXIS]);
      SERIAL_PROTOCOLPGM(" Y:");
      SERIAL_PROTOCOL(current_position[Y_AXIS]);
      SERIAL_PROTOCOLPGM(" Z:");
      SERIAL_PROTOCOL(current_position[Z_AXIS]);
      SERIAL_PROTOCOLPGM(" E:");
      SERIAL_PROTOCOL(current_position[E_AXIS]);

      SERIAL_PROTOCOLPGM(MSG_COUNT_X);
      SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
      SERIAL_PROTOCOLPGM(" Y:");
      SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
      SERIAL_PROTOCOLPGM(" Z:");
      SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);

      SERIAL_PROTOCOLLN("");
#ifdef SCARA
	  SERIAL_PROTOCOLPGM("SCARA Theta:");
      SERIAL_PROTOCOL(delta[X_AXIS]);
      SERIAL_PROTOCOLPGM("   Psi+Theta:");
      SERIAL_PROTOCOL(delta[Y_AXIS]);
      SERIAL_PROTOCOLLN("");
      
      SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
      SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
      SERIAL_PROTOCOLPGM("   Psi+Theta (90):");
      SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
      SERIAL_PROTOCOLLN("");
      
      SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
      SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
      SERIAL_PROTOCOLPGM("   Psi+Theta:");
      SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
      SERIAL_PROTOCOLLN("");
      SERIAL_PROTOCOLLN("");
#endif
      break;
    case 120: // M120
      enable_endstops(false) ;
      break;
    case 121: // M121
      enable_endstops(true) ;
      break;
    case 119: // M119
    SERIAL_PROTOCOLLN(MSG_M119_REPORT);
      #if defined(X_MIN_PIN) && X_MIN_PIN > -1
        SERIAL_PROTOCOLPGM(MSG_X_MIN);
        SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
      #endif
      #if defined(X_MAX_PIN) && X_MAX_PIN > -1
        SERIAL_PROTOCOLPGM(MSG_X_MAX);
        SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
      #endif
      #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
        SERIAL_PROTOCOLPGM(MSG_Y_MIN);
        SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
      #endif
      #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
        SERIAL_PROTOCOLPGM(MSG_Y_MAX);
        SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
      #endif
      #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
        SERIAL_PROTOCOLPGM(MSG_Z_MIN);
        SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
      #endif
      #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
        SERIAL_PROTOCOLPGM(MSG_Z_MAX);
        SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
      #endif
      break;
      //TODO: update for all axis, use for loop
    #ifdef BLINKM
    case 150: // M150
      {
        byte red;
        byte grn;
        byte blu;

        if(code_seen('R')) red = code_value();
        if(code_seen('U')) grn = code_value();
        if(code_seen('B')) blu = code_value();

        SendColors(red,grn,blu);
      }
      break;
    #endif //BLINKM
    case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
      {

        tmp_extruder = active_extruder;
        if(code_seen('T')) {
          tmp_extruder = code_value();
          if(tmp_extruder >= EXTRUDERS) {
            SERIAL_ECHO_START;
            SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
            break;
          }
        }

        float area = .0;
        if(code_seen('D')) {
		  float diameter = (float)code_value();
		  if (diameter == 0.0) {
			// setting any extruder filament size disables volumetric on the assumption that
			// slicers either generate in extruder values as cubic mm or as as filament feeds
			// for all extruders
		    volumetric_enabled = false;
		  } else {
            filament_size[tmp_extruder] = (float)code_value();
			// make sure all extruders have some sane value for the filament size
			filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
            #if EXTRUDERS > 1
			filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
            #if EXTRUDERS > 2
			filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
            #endif
            #endif
			volumetric_enabled = true;
		  }
        } else {
          //reserved for setting filament diameter via UFID or filament measuring device
          break;
        }
		calculate_volumetric_multipliers();
      }
      break;
    case 201: // M201
      for(int8_t i=0; i < NUM_AXIS; i++)
      {
        if(code_seen(axis_codes[i]))
        {
          max_acceleration_units_per_sq_second[i] = code_value();
        }
      }
      // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
      reset_acceleration_rates();
      break;
    #if 0 // Not used for Sprinter/grbl gen6
    case 202: // M202
      for(int8_t i=0; i < NUM_AXIS; i++) {
        if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
      }
      break;
    #endif
    case 203: // M203 max feedrate mm/sec
      for(int8_t i=0; i < NUM_AXIS; i++) {
        if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
      }
      break;
    case 204: // M204 acclereration S normal moves T filmanent only moves
      {
        if(code_seen('S')) acceleration = code_value() ;
        if(code_seen('T')) retract_acceleration = code_value() ;
      }
      break;
    case 205: //M205 advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
    {
      if(code_seen('S')) minimumfeedrate = code_value();
      if(code_seen('T')) mintravelfeedrate = code_value();
      if(code_seen('B')) minsegmenttime = code_value() ;
      if(code_seen('X')) max_xy_jerk = code_value() ;
      if(code_seen('Z')) max_z_jerk = code_value() ;
      if(code_seen('E')) max_e_jerk = code_value() ;
    }
    break;
    case 206: // M206 additional homing offset
      for(int8_t i=0; i < 3; i++)
      {
        if(code_seen(axis_codes[i])) add_homing[i] = code_value();
      }
	  #ifdef SCARA
	   if(code_seen('T'))       // Theta
      {
        add_homing[X_AXIS] = code_value() ;
      }
      if(code_seen('P'))       // Psi
      {
        add_homing[Y_AXIS] = code_value() ;
      }
	  #endif
      break;
    #ifdef DELTA
	case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
		if(code_seen('L')) {
			delta_diagonal_rod= code_value();
		}
		if(code_seen('R')) {
			delta_radius= code_value();
		}
		if(code_seen('S')) {
			delta_segments_per_second= code_value();
		}
		
		recalc_delta_settings(delta_radius, delta_diagonal_rod);
		break;
    case 666: // M666 set delta endstop adjustemnt
      for(int8_t i=0; i < 3; i++)
      {
        if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
      }
      break;
    #endif
    #ifdef FWRETRACT
    case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
    {
      if(code_seen('S'))
      {
        retract_length = code_value() ;
      }
      if(code_seen('F'))
      {
        retract_feedrate = code_value()/60 ;
      }
      if(code_seen('Z'))
      {
        retract_zlift = code_value() ;
      }
    }break;
    case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
    {
      if(code_seen('S'))
      {
        retract_recover_length = code_value() ;
      }
      if(code_seen('F'))
      {
        retract_recover_feedrate = code_value()/60 ;
      }
    }break;
    case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
    {
      if(code_seen('S'))
      {
        int t= code_value() ;
        switch(t)
        {
          case 0: 
          {
            autoretract_enabled=false;
            retracted[0]=false;
            #if EXTRUDERS > 1
              retracted[1]=false;
            #endif
            #if EXTRUDERS > 2
              retracted[2]=false;
            #endif
          }break;
          case 1: 
          {
            autoretract_enabled=true;
            retracted[0]=false;
            #if EXTRUDERS > 1
              retracted[1]=false;
            #endif
            #if EXTRUDERS > 2
              retracted[2]=false;
            #endif
          }break;
          default:
            SERIAL_ECHO_START;
            SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
            SERIAL_ECHO(cmdbuffer[bufindr]);
            SERIAL_ECHOLNPGM("\"");
        }
      }

    }break;
    #endif // FWRETRACT
    #if EXTRUDERS > 1
    case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
    {
      if(setTargetedHotend(218)){
        break;
      }
      if(code_seen('X'))
      {
        extruder_offset[X_AXIS][tmp_extruder] = code_value();
      }
      if(code_seen('Y'))
      {
        extruder_offset[Y_AXIS][tmp_extruder] = code_value();
      }
      #ifdef DUAL_X_CARRIAGE
      if(code_seen('Z'))
      {
        extruder_offset[Z_AXIS][tmp_extruder] = code_value();
      }
      #endif
      SERIAL_ECHO_START;
      SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
      for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
      {
         SERIAL_ECHO(" ");
         SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
         SERIAL_ECHO(",");
         SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
      #ifdef DUAL_X_CARRIAGE
         SERIAL_ECHO(",");
         SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
      #endif
      }
      SERIAL_ECHOLN("");
    }break;
    #endif
    case 220: // M220 S<factor in percent>- set speed factor override percentage
    {
      if(code_seen('S'))
      {
        feedmultiply = code_value() ;
      }
    }
    break;
    case 221: // M221 S<factor in percent>- set extrude factor override percentage
    {
      if(code_seen('S'))
      {
        int tmp_code = code_value();
        if (code_seen('T'))
        {
          if(setTargetedHotend(221)){
            break;
          }
          extruder_multiply[tmp_extruder] = tmp_code;
        }
        else
        {
          extrudemultiply = tmp_code ;
        }
      }
    }
    break;

	case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
	{
      if(code_seen('P')){
        int pin_number = code_value(); // pin number
        int pin_state = -1; // required pin state - default is inverted

        if(code_seen('S')) pin_state = code_value(); // required pin state

        if(pin_state >= -1 && pin_state <= 1){

          for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
          {
            if (sensitive_pins[i] == pin_number)
            {
              pin_number = -1;
              break;
            }
          }

          if (pin_number > -1)
          {
            int target = LOW;

            st_synchronize();

            pinMode(pin_number, INPUT);

            switch(pin_state){
            case 1:
              target = HIGH;
              break;

            case 0:
              target = LOW;
              break;

            case -1:
              target = !digitalRead(pin_number);
              break;
            }

            while(digitalRead(pin_number) != target){
              manage_heater();
              manage_inactivity();
              lcd_update();
            }
          }
        }
      }
    }
    break;

    #if NUM_SERVOS > 0
    case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
      {
        int servo_index = -1;
        int servo_position = 0;
        if (code_seen('P'))
          servo_index = code_value();
        if (code_seen('S')) {
          servo_position = code_value();
          if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
		      servos[servo_index].attach(0);
#endif
            servos[servo_index].write(servo_position);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
              delay(PROBE_SERVO_DEACTIVATION_DELAY);
              servos[servo_index].detach();
#endif
          }
          else {
            SERIAL_ECHO_START;
            SERIAL_ECHO("Servo ");
            SERIAL_ECHO(servo_index);
            SERIAL_ECHOLN(" out of range");
          }
        }
        else if (servo_index >= 0) {
          SERIAL_PROTOCOL(MSG_OK);
          SERIAL_PROTOCOL(" Servo ");
          SERIAL_PROTOCOL(servo_index);
          SERIAL_PROTOCOL(": ");
          SERIAL_PROTOCOL(servos[servo_index].read());
          SERIAL_PROTOCOLLN("");
        }
      }
      break;
    #endif // NUM_SERVOS > 0

    #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
    case 300: // M300
    {
      int beepS = code_seen('S') ? code_value() : 110;
      int beepP = code_seen('P') ? code_value() : 1000;
      if (beepS > 0)
      {
        #if BEEPER > 0
          tone(BEEPER, beepS);
          delay(beepP);
          noTone(BEEPER);
        #elif defined(ULTRALCD)
		  lcd_buzz(beepS, beepP);
		#elif defined(LCD_USE_I2C_BUZZER)
		  lcd_buzz(beepP, beepS);
        #endif
      }
      else
      {
        delay(beepP);
      }
    }
    break;
    #endif // M300

    #ifdef PIDTEMP
    case 301: // M301
      {
        if(code_seen('P')) Kp = code_value();
        if(code_seen('I')) Ki = scalePID_i(code_value());
        if(code_seen('D')) Kd = scalePID_d(code_value());

        #ifdef PID_ADD_EXTRUSION_RATE
        if(code_seen('C')) Kc = code_value();
        #endif

        updatePID();
        SERIAL_PROTOCOL(MSG_OK);
        SERIAL_PROTOCOL(" p:");
        SERIAL_PROTOCOL(Kp);
        SERIAL_PROTOCOL(" i:");
        SERIAL_PROTOCOL(unscalePID_i(Ki));
        SERIAL_PROTOCOL(" d:");
        SERIAL_PROTOCOL(unscalePID_d(Kd));
        #ifdef PID_ADD_EXTRUSION_RATE
        SERIAL_PROTOCOL(" c:");
        //Kc does not have scaling applied above, or in resetting defaults
        SERIAL_PROTOCOL(Kc);
        #endif
        SERIAL_PROTOCOLLN("");
      }
      break;
    #endif //PIDTEMP
    #ifdef PIDTEMPBED
    case 304: // M304
      {
        if(code_seen('P')) bedKp = code_value();
        if(code_seen('I')) bedKi = scalePID_i(code_value());
        if(code_seen('D')) bedKd = scalePID_d(code_value());

        updatePID();
        SERIAL_PROTOCOL(MSG_OK);
        SERIAL_PROTOCOL(" p:");
        SERIAL_PROTOCOL(bedKp);
        SERIAL_PROTOCOL(" i:");
        SERIAL_PROTOCOL(unscalePID_i(bedKi));
        SERIAL_PROTOCOL(" d:");
        SERIAL_PROTOCOL(unscalePID_d(bedKd));
        SERIAL_PROTOCOLLN("");
      }
      break;
    #endif //PIDTEMP
    case 240: // M240  Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
     {
     	#ifdef CHDK
       
         SET_OUTPUT(CHDK);
         WRITE(CHDK, HIGH);
         chdkHigh = millis();
         chdkActive = true;
       
       #else
     	
      	#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
	const uint8_t NUM_PULSES=16;
	const float PULSE_LENGTH=0.01524;
	for(int i=0; i < NUM_PULSES; i++) {
        WRITE(PHOTOGRAPH_PIN, HIGH);
        _delay_ms(PULSE_LENGTH);
        WRITE(PHOTOGRAPH_PIN, LOW);
        _delay_ms(PULSE_LENGTH);
        }
        delay(7.33);
        for(int i=0; i < NUM_PULSES; i++) {
        WRITE(PHOTOGRAPH_PIN, HIGH);
        _delay_ms(PULSE_LENGTH);
        WRITE(PHOTOGRAPH_PIN, LOW);
        _delay_ms(PULSE_LENGTH);
        }
      	#endif
      #endif //chdk end if
     }
    break;
#ifdef DOGLCD
    case 250: // M250  Set LCD contrast value: C<value> (value 0..63)
     {
	  if (code_seen('C')) {
	   lcd_setcontrast( ((int)code_value())&63 );
          }
          SERIAL_PROTOCOLPGM("lcd contrast value: ");
          SERIAL_PROTOCOL(lcd_contrast);
          SERIAL_PROTOCOLLN("");
     }
    break;
#endif
    #ifdef PREVENT_DANGEROUS_EXTRUDE
    case 302: // allow cold extrudes, or set the minimum extrude temperature
    {
	  float temp = .0;
	  if (code_seen('S')) temp=code_value();
      set_extrude_min_temp(temp);
    }
    break;
	#endif
    case 303: // M303 PID autotune
    {
      float temp = 150.0;
      int e=0;
      int c=5;
      if (code_seen('E')) e=code_value();
        if (e<0)
          temp=70;
      if (code_seen('S')) temp=code_value();
      if (code_seen('C')) c=code_value();
      PID_autotune(temp, e, c);
    }
    break;
	#ifdef SCARA
	case 360:  // M360 SCARA Theta pos1
      SERIAL_ECHOLN(" Cal: Theta 0 ");
      //SoftEndsEnabled = false;              // Ignore soft endstops during calibration
      //SERIAL_ECHOLN(" Soft endstops disabled ");
      if(Stopped == false) {
        //get_coordinates(); // For X Y Z E F
        delta[X_AXIS] = 0;
        delta[Y_AXIS] = 120;
        calculate_SCARA_forward_Transform(delta);
        destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
        destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
        
        prepare_move();
        //ClearToSend();
        return;
      }
    break;

    case 361:  // SCARA Theta pos2
      SERIAL_ECHOLN(" Cal: Theta 90 ");
      //SoftEndsEnabled = false;              // Ignore soft endstops during calibration
      //SERIAL_ECHOLN(" Soft endstops disabled ");
      if(Stopped == false) {
        //get_coordinates(); // For X Y Z E F
        delta[X_AXIS] = 90;
        delta[Y_AXIS] = 130;
        calculate_SCARA_forward_Transform(delta);
        destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
        destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
        
        prepare_move();
        //ClearToSend();
        return;
      }
    break;
    case 362:  // SCARA Psi pos1
      SERIAL_ECHOLN(" Cal: Psi 0 ");
      //SoftEndsEnabled = false;              // Ignore soft endstops during calibration
      //SERIAL_ECHOLN(" Soft endstops disabled ");
      if(Stopped == false) {
        //get_coordinates(); // For X Y Z E F
        delta[X_AXIS] = 60;
        delta[Y_AXIS] = 180;
        calculate_SCARA_forward_Transform(delta);
        destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
        destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
        
        prepare_move();
        //ClearToSend();
        return;
      }
    break;
    case 363:  // SCARA Psi pos2
      SERIAL_ECHOLN(" Cal: Psi 90 ");
      //SoftEndsEnabled = false;              // Ignore soft endstops during calibration
      //SERIAL_ECHOLN(" Soft endstops disabled ");
      if(Stopped == false) {
        //get_coordinates(); // For X Y Z E F
        delta[X_AXIS] = 50;
        delta[Y_AXIS] = 90;
        calculate_SCARA_forward_Transform(delta);
        destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
        destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
        
        prepare_move();
        //ClearToSend();
        return;
      }
    break;
    case 364:  // SCARA Psi pos3 (90 deg to Theta)
      SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
     // SoftEndsEnabled = false;              // Ignore soft endstops during calibration
      //SERIAL_ECHOLN(" Soft endstops disabled ");
      if(Stopped == false) {
        //get_coordinates(); // For X Y Z E F
        delta[X_AXIS] = 45;
        delta[Y_AXIS] = 135;
        calculate_SCARA_forward_Transform(delta);
        destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
        destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS]; 
        
        prepare_move();
        //ClearToSend();
        return;
      }
    break;
    case 365: // M364  Set SCARA scaling for X Y Z
      for(int8_t i=0; i < 3; i++) 
      {
        if(code_seen(axis_codes[i])) 
        {
          
            axis_scaling[i] = code_value();
          
        }
      }
      break;
	#endif
    case 400: // M400 finish all moves
    {
      st_synchronize();
    }
    break;
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
    case 401:
    {
        engage_z_probe();    // Engage Z Servo endstop if available
    }
    break;

    case 402:
    {
        retract_z_probe();    // Retract Z Servo endstop if enabled
    }
    break;
#endif

#ifdef FILAMENT_SENSOR
case 404:  //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width 
    {
    #if (FILWIDTH_PIN > -1) 
    if(code_seen('N')) filament_width_nominal=code_value();
    else{
    SERIAL_PROTOCOLPGM("Filament dia (nominal mm):"); 
    SERIAL_PROTOCOLLN(filament_width_nominal); 
    }
    #endif
    }
    break; 
    
    case 405:  //M405 Turn on filament sensor for control 
    {
    
    
    if(code_seen('D')) meas_delay_cm=code_value();
       
       if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
       	meas_delay_cm = MAX_MEASUREMENT_DELAY;
    
       if(delay_index2 == -1)  //initialize the ring buffer if it has not been done since startup
    	   {
    	   int temp_ratio = widthFil_to_size_ratio(); 
       	    
       	    for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
       	              measurement_delay[delay_index1]=temp_ratio-100;  //subtract 100 to scale within a signed byte
       	        }
       	    delay_index1=0;
       	    delay_index2=0;	
    	   }
    
    filament_sensor = true ; 
    
    //SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); 
    //SERIAL_PROTOCOL(filament_width_meas); 
    //SERIAL_PROTOCOLPGM("Extrusion ratio(%):"); 
    //SERIAL_PROTOCOL(extrudemultiply); 
    } 
    break; 
    
    case 406:  //M406 Turn off filament sensor for control 
    {      
    filament_sensor = false ; 
    } 
    break; 
  
    case 407:   //M407 Display measured filament diameter 
    { 
     
    
    
    SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); 
    SERIAL_PROTOCOLLN(filament_width_meas);   
    } 
    break; 
    #endif
    




    case 500: // M500 Store settings in EEPROM
    {
        Config_StoreSettings();
    }
    break;
    case 501: // M501 Read settings from EEPROM
    {
        Config_RetrieveSettings();
    }
    break;
    case 502: // M502 Revert to default settings
    {
        Config_ResetDefault();
    }
    break;
    case 503: // M503 print settings currently in memory
    {
        Config_PrintSettings();
    }
    break;
    #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
    case 540:
    {
        if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
    }
    break;
    #endif

    #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
    case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
    {
      float value;
      if (code_seen('Z'))
      {
        value = code_value();
        if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
        {
          zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
          SERIAL_ECHO_START;
          SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
          SERIAL_PROTOCOLLN("");
        }
        else
        {
          SERIAL_ECHO_START;
          SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
          SERIAL_ECHOPGM(MSG_Z_MIN);
          SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
          SERIAL_ECHOPGM(MSG_Z_MAX);
          SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
          SERIAL_PROTOCOLLN("");
        }
      }
      else
      {
          SERIAL_ECHO_START;
          SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
          SERIAL_ECHO(-zprobe_zoffset);
          SERIAL_PROTOCOLLN("");
      }
      break;
    }
    #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET

    #ifdef FILAMENTCHANGEENABLE
    case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
    {
        feedmultiplyBckp=feedmultiply;
        int8_t TooLowZ = 0;
        float target[4];
        float lastpos[4];
        target[X_AXIS]=current_position[X_AXIS];
        target[Y_AXIS]=current_position[Y_AXIS];
        target[Z_AXIS]=current_position[Z_AXIS];
        target[E_AXIS]=current_position[E_AXIS];
        lastpos[X_AXIS]=current_position[X_AXIS];
        lastpos[Y_AXIS]=current_position[Y_AXIS];
        lastpos[Z_AXIS]=current_position[Z_AXIS];
        lastpos[E_AXIS]=current_position[E_AXIS];

        //Restract extruder
        if(code_seen('E'))
        {
          target[E_AXIS]+= code_value();
        }
        else
        {
          #ifdef FILAMENTCHANGE_FIRSTRETRACT
            target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
          #endif
        }
        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);

        //Lift Z
        if(code_seen('Z'))
        {
          target[Z_AXIS]+= code_value();
        }
        else
        {
          #ifdef FILAMENTCHANGE_ZADD
            target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
            if(target[Z_AXIS] < 10){
              target[Z_AXIS]+= 10 ;
              TooLowZ = 1;
            }else{
              TooLowZ = 0;
            }
          #endif
     
          
        }
        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);

        //Move XY to side
        if(code_seen('X'))
        {
          target[X_AXIS]+= code_value();
        }
        else
        {
          #ifdef FILAMENTCHANGE_XPOS
            target[X_AXIS]= FILAMENTCHANGE_XPOS ;
          #endif
        }
        if(code_seen('Y'))
        {
          target[Y_AXIS]= code_value();
        }
        else
        {
          #ifdef FILAMENTCHANGE_YPOS
            target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
          #endif
        }
        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);

        // Unload filament
        if(code_seen('L'))
        {
          target[E_AXIS]+= code_value();
        }
        else
        {
          #ifdef FILAMENTCHANGE_FINALRETRACT
            target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
          #endif
        }
        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);

        //finish moves
        st_synchronize();
        //disable extruder steppers so filament can be removed
        disable_e0();
        disable_e1();
        disable_e2();
        delay(100);
        
        //Wait for user to insert filament
        uint8_t cnt=0;
        int counterBeep = 0;
        lcd_wait_interact();
        while(!lcd_clicked()){
          cnt++;
          manage_heater();
          manage_inactivity(true);
          if(cnt==0)
          {
          #if BEEPER > 0
            if (counterBeep== 500){
              counterBeep = 0;  
            }
            SET_OUTPUT(BEEPER);
            if (counterBeep== 0){
              WRITE(BEEPER,HIGH);
            }
            if (counterBeep== 20){
              WRITE(BEEPER,LOW);
            }
            counterBeep++;
          #else
			   #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
              lcd_buzz(1000/6,100);
			   #else
			     lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
			   #endif
          #endif
          }
        }
        //Filament inserted
        
        WRITE(BEEPER,LOW);
        
        //Feed the filament to the end of nozzle quickly
        target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); 
        
        //Extrude some filament
        target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); 
        
 
        
        
        //Wait for user to check the state
        lcd_change_fil_state = 0;
        lcd_loading_filament();
        while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
          lcd_change_fil_state = 0;
          lcd_alright();
          switch(lcd_change_fil_state){
            
             // Filament failed to load so load it again
             case 2:
                     target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); 
                
                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder); 

                     lcd_loading_filament();
                     break;

             // Filament loaded properly but color is not clear
             case 3:
                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder); 
                     lcd_loading_color();
                     break;
                 
             // Everything good             
             default:
                     lcd_change_success();
                     break;
          }
          
        }
        

      //Not let's go back to print

      //Feed a little of filament to stabilize pressure
      target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
        
      //Retract
      target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
        

        
      //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
      
      //Move XY back
      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
      
      //Move Z back
      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
        
        
      target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
        
      //Unretract       
      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
        
      //Set E position to original  
      plan_set_e_position(lastpos[E_AXIS]);
       
      //Recover feed rate 
      feedmultiply=feedmultiplyBckp;
      char cmd[9];
      sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
      enquecommand(cmd);
        
        
    }
    break;
    #endif //FILAMENTCHANGEENABLE
    #ifdef DUAL_X_CARRIAGE
    case 605: // Set dual x-carriage movement mode:
              //    M605 S0: Full control mode. The slicer has full control over x-carriage movement
              //    M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
              //    M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
              //                         millimeters x-offset and an optional differential hotend temperature of
              //                         mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
              //                         the first with a spacing of 100mm in the x direction and 2 degrees hotter.
              //
              //    Note: the X axis should be homed after changing dual x-carriage mode.
    {
        st_synchronize();

        if (code_seen('S'))
          dual_x_carriage_mode = code_value();

        if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
        {
          if (code_seen('X'))
            duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));

          if (code_seen('R'))
            duplicate_extruder_temp_offset = code_value();

          SERIAL_ECHO_START;
          SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
          SERIAL_ECHO(" ");
          SERIAL_ECHO(extruder_offset[X_AXIS][0]);
          SERIAL_ECHO(",");
          SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
          SERIAL_ECHO(" ");
          SERIAL_ECHO(duplicate_extruder_x_offset);
          SERIAL_ECHO(",");
          SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
        }
        else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
        {
          dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
        }

        active_extruder_parked = false;
        extruder_duplication_enabled = false;
        delayed_move_time = 0;
    }
    break;
    #endif //DUAL_X_CARRIAGE

    case 907: // M907 Set digital trimpot motor current using axis codes.
    {
      #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
        if(code_seen('B')) digipot_current(4,code_value());
        if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
      #endif
      #ifdef MOTOR_CURRENT_PWM_XY_PIN
        if(code_seen('X')) digipot_current(0, code_value());
      #endif
      #ifdef MOTOR_CURRENT_PWM_Z_PIN
        if(code_seen('Z')) digipot_current(1, code_value());
      #endif
      #ifdef MOTOR_CURRENT_PWM_E_PIN
        if(code_seen('E')) digipot_current(2, code_value());
      #endif
      #ifdef DIGIPOT_I2C
        // this one uses actual amps in floating point
        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
        // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
        for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
      #endif
    }
    break;
    case 908: // M908 Control digital trimpot directly.
    {
      #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
        uint8_t channel,current;
        if(code_seen('P')) channel=code_value();
        if(code_seen('S')) current=code_value();
        digitalPotWrite(channel, current);
      #endif
    }
    break;
    case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
    {
      #if defined(X_MS1_PIN) && X_MS1_PIN > -1
        if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
        if(code_seen('B')) microstep_mode(4,code_value());
        microstep_readings();
      #endif
    }
    break;
    case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
    {
      #if defined(X_MS1_PIN) && X_MS1_PIN > -1
      if(code_seen('S')) switch((int)code_value())
      {
        case 1:
          for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
          if(code_seen('B')) microstep_ms(4,code_value(),-1);
          break;
        case 2:
          for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
          if(code_seen('B')) microstep_ms(4,-1,code_value());
          break;
      }
      microstep_readings();
      #endif
    }
    break;
    case 999: // M999: Restart after being stopped
      Stopped = false;
      lcd_reset_alert_level();
      gcode_LastN = Stopped_gcode_LastN;
      FlushSerialRequestResend();
    break;
    }
  }

  else if(code_seen('T'))
  {
    tmp_extruder = code_value();
    if(tmp_extruder >= EXTRUDERS) {
      SERIAL_ECHO_START;
      SERIAL_ECHO("T");
      SERIAL_ECHO(tmp_extruder);
      SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
    }
    else {
      boolean make_move = false;
      if(code_seen('F')) {
        make_move = true;
        next_feedrate = code_value();
        if(next_feedrate > 0.0) {
          feedrate = next_feedrate;
        }
      }
      #if EXTRUDERS > 1
      if(tmp_extruder != active_extruder) {
        // Save current position to return to after applying extruder offset
        memcpy(destination, current_position, sizeof(destination));
      #ifdef DUAL_X_CARRIAGE
        if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
            (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
        {
          // Park old head: 1) raise 2) move to park position 3) lower
          plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
                current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
          plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
                current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
          plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
                current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
          st_synchronize();
        }

        // apply Y & Z extruder offset (x offset is already used in determining home pos)
        current_position[Y_AXIS] = current_position[Y_AXIS] -
                     extruder_offset[Y_AXIS][active_extruder] +
                     extruder_offset[Y_AXIS][tmp_extruder];
        current_position[Z_AXIS] = current_position[Z_AXIS] -
                     extruder_offset[Z_AXIS][active_extruder] +
                     extruder_offset[Z_AXIS][tmp_extruder];

        active_extruder = tmp_extruder;

        // This function resets the max/min values - the current position may be overwritten below.
        axis_is_at_home(X_AXIS);

        if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
        {
          current_position[X_AXIS] = inactive_extruder_x_pos;
          inactive_extruder_x_pos = destination[X_AXIS];
        }
        else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
        {
          active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
          if (active_extruder == 0 || active_extruder_parked)
            current_position[X_AXIS] = inactive_extruder_x_pos;
          else
            current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
          inactive_extruder_x_pos = destination[X_AXIS];
          extruder_duplication_enabled = false;
        }
        else
        {
          // record raised toolhead position for use by unpark
          memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
          raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
          active_extruder_parked = true;
          delayed_move_time = 0;
        }
      #else
        // Offset extruder (only by XY)
        int i;
        for(i = 0; i < 2; i++) {
           current_position[i] = current_position[i] -
                                 extruder_offset[i][active_extruder] +
                                 extruder_offset[i][tmp_extruder];
        }
        // Set the new active extruder and position
        active_extruder = tmp_extruder;
      #endif //else DUAL_X_CARRIAGE
#ifdef DELTA 

  calculate_delta(current_position); // change cartesian kinematic  to  delta kinematic;
   //sent position to plan_set_position();
  plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
            
#else
        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);

#endif
        // Move to the old position if 'F' was in the parameters
        if(make_move && Stopped == false) {
           prepare_move();
        }
      }
      #endif
      SERIAL_ECHO_START;
      SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
      SERIAL_PROTOCOLLN((int)active_extruder);
    }
  }

  else
  {
    SERIAL_ECHO_START;
    SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
    SERIAL_ECHO(cmdbuffer[bufindr]);
    SERIAL_ECHOLNPGM("\"");
  }

  ClearToSend();
}

void FlushSerialRequestResend()
{
  //char cmdbuffer[bufindr][100]="Resend:";
  MYSERIAL.flush();
  SERIAL_PROTOCOLPGM(MSG_RESEND);
  SERIAL_PROTOCOLLN(gcode_LastN + 1);
  ClearToSend();
}

void ClearToSend()
{
  previous_millis_cmd = millis();
  #ifdef SDSUPPORT
  if(fromsd[bufindr])
    return;
  #endif //SDSUPPORT
  SERIAL_PROTOCOLLNPGM(MSG_OK);
}

void get_coordinates()
{
  bool seen[4]={false,false,false,false};
  for(int8_t i=0; i < NUM_AXIS; i++) {
    if(code_seen(axis_codes[i]))
    {
      destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
      seen[i]=true;
    }
    else destination[i] = current_position[i]; //Are these else lines really needed?
  }
  if(code_seen('F')) {
    next_feedrate = code_value();
    if(next_feedrate > 0.0) feedrate = next_feedrate;
  }
}

void get_arc_coordinates()
{
#ifdef SF_ARC_FIX
   bool relative_mode_backup = relative_mode;
   relative_mode = true;
#endif
   get_coordinates();
#ifdef SF_ARC_FIX
   relative_mode=relative_mode_backup;
#endif

   if(code_seen('I')) {
     offset[0] = code_value();
   }
   else {
     offset[0] = 0.0;
   }
   if(code_seen('J')) {
     offset[1] = code_value();
   }
   else {
     offset[1] = 0.0;
   }
}

void clamp_to_software_endstops(float target[3])
{
  if (min_software_endstops) {
    if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
    if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
    
    float negative_z_offset = 0;
    #ifdef ENABLE_AUTO_BED_LEVELING
      if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
      if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
    #endif
    
    if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  }

  if (max_software_endstops) {
    if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
    if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
    if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  }
}

#ifdef DELTA
void recalc_delta_settings(float radius, float diagonal_rod)
{
	 delta_tower1_x= -SIN_60*radius; // front left tower
	 delta_tower1_y= -COS_60*radius;	   
	 delta_tower2_x=  SIN_60*radius; // front right tower
	 delta_tower2_y= -COS_60*radius;	   
	 delta_tower3_x= 0.0;                  // back middle tower
	 delta_tower3_y= radius;
	 delta_diagonal_rod_2= sq(diagonal_rod);
}

void calculate_delta(float cartesian[3])
{
  delta[X_AXIS] = sqrt(delta_diagonal_rod_2
                       - sq(delta_tower1_x-cartesian[X_AXIS])
                       - sq(delta_tower1_y-cartesian[Y_AXIS])
                       ) + cartesian[Z_AXIS];
  delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
                       - sq(delta_tower2_x-cartesian[X_AXIS])
                       - sq(delta_tower2_y-cartesian[Y_AXIS])
                       ) + cartesian[Z_AXIS];
  delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
                       - sq(delta_tower3_x-cartesian[X_AXIS])
                       - sq(delta_tower3_y-cartesian[Y_AXIS])
                       ) + cartesian[Z_AXIS];
  /*
  SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);

  SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  */
}
#endif

void prepare_move()
{
  clamp_to_software_endstops(destination);
  previous_millis_cmd = millis();
  
  #ifdef SCARA //for now same as delta-code

float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) {
	difference[i] = destination[i] - current_position[i];
}

float cartesian_mm = sqrt(	sq(difference[X_AXIS]) +
							sq(difference[Y_AXIS]) +
							sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
if (cartesian_mm < 0.000001) { return; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
int steps = max(1, int(scara_segments_per_second * seconds));
 //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
 //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
 //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
	float fraction = float(s) / float(steps);
	for(int8_t i=0; i < NUM_AXIS; i++) {
		destination[i] = current_position[i] + difference[i] * fraction;
	}

	
	calculate_delta(destination);
         //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
         //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
         //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
         //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
         //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
         //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
         
	plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
	destination[E_AXIS], feedrate*feedmultiply/60/100.0,
	active_extruder);
}
#endif // SCARA
  
#ifdef DELTA
  float difference[NUM_AXIS];
  for (int8_t i=0; i < NUM_AXIS; i++) {
    difference[i] = destination[i] - current_position[i];
  }
  float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
                            sq(difference[Y_AXIS]) +
                            sq(difference[Z_AXIS]));
  if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  if (cartesian_mm < 0.000001) { return; }
  float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  int steps = max(1, int(delta_segments_per_second * seconds));
  // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  for (int s = 1; s <= steps; s++) {
    float fraction = float(s) / float(steps);
    for(int8_t i=0; i < NUM_AXIS; i++) {
      destination[i] = current_position[i] + difference[i] * fraction;
    }
    calculate_delta(destination);
    plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
                     destination[E_AXIS], feedrate*feedmultiply/60/100.0,
                     active_extruder);
  }
  
#endif // DELTA

#ifdef DUAL_X_CARRIAGE
  if (active_extruder_parked)
  {
    if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
    {
      // move duplicate extruder into correct duplication position.
      plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
      plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
          current_position[E_AXIS], max_feedrate[X_AXIS], 1);
      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
      st_synchronize();
      extruder_duplication_enabled = true;
      active_extruder_parked = false;
    }
    else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
    {
      if (current_position[E_AXIS] == destination[E_AXIS])
      {
        // this is a travel move - skit it but keep track of current position (so that it can later
        // be used as start of first non-travel move)
        if (delayed_move_time != 0xFFFFFFFFUL)
        {
          memcpy(current_position, destination, sizeof(current_position));
          if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
            raised_parked_position[Z_AXIS] = destination[Z_AXIS];
          delayed_move_time = millis();
          return;
        }
      }
      delayed_move_time = 0;
      // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
      plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS],    current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
      plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
          current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
      plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
          current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
      active_extruder_parked = false;
    }
  }
#endif //DUAL_X_CARRIAGE

#if ! (defined DELTA || defined SCARA)
  // Do not use feedmultiply for E or Z only moves
  if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
      plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  }
  else {
    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  }
#endif // !(DELTA || SCARA)

  for(int8_t i=0; i < NUM_AXIS; i++) {
    current_position[i] = destination[i];
  }
}

void prepare_arc_move(char isclockwise) {
  float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc

  // Trace the arc
  mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);

  // As far as the parser is concerned, the position is now == target. In reality the
  // motion control system might still be processing the action and the real tool position
  // in any intermediate location.
  for(int8_t i=0; i < NUM_AXIS; i++) {
    current_position[i] = destination[i];
  }
  previous_millis_cmd = millis();
}

#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1

#if defined(FAN_PIN)
  #if CONTROLLERFAN_PIN == FAN_PIN
    #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  #endif
#endif

unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
unsigned long lastMotorCheck = 0;

void controllerFan()
{
  if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  {
    lastMotorCheck = millis();

    if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
    #if EXTRUDERS > 2
       || !READ(E2_ENABLE_PIN)
    #endif
    #if EXTRUDER > 1
      #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
       || !READ(X2_ENABLE_PIN)
      #endif
       || !READ(E1_ENABLE_PIN)
    #endif
       || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
    {
      lastMotor = millis(); //... set time to NOW so the fan will turn on
    }

    if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
    {
        digitalWrite(CONTROLLERFAN_PIN, 0);
        analogWrite(CONTROLLERFAN_PIN, 0);
    }
    else
    {
        // allows digital or PWM fan output to be used (see M42 handling)
        digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
        analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
    }
  }
}
#endif

#ifdef SCARA
void calculate_SCARA_forward_Transform(float f_scara[3])
{
  // Perform forward kinematics, and place results in delta[3]
  // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  
  float x_sin, x_cos, y_sin, y_cos;
  
    //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
    //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  
    x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
    x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
    y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
    y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
   
  //  SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  //  SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  //  SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  //  SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  
    delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x;  //theta
    delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y;  //theta+phi
	
    //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
    //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
}  

void calculate_delta(float cartesian[3]){
  //reverse kinematics.
  // Perform reversed kinematics, and place results in delta[3]
  // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  
  float SCARA_pos[2];
  static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; 
  
  SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x;  //Translate SCARA to standard X Y
  SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y;  // With scaling factor.
  
  #if (Linkage_1 == Linkage_2)
    SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  #else
    SCARA_C2 =   ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000; 
  #endif
  
  SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  
  SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  SCARA_K2 = Linkage_2 * SCARA_S2;
  
  SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  SCARA_psi   =   atan2(SCARA_S2,SCARA_C2);
  
  delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG;  // Multiply by 180/Pi  -  theta is support arm angle
  delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG;  //       -  equal to sub arm angle (inverted motor)
  delta[Z_AXIS] = cartesian[Z_AXIS];
  
  /*
  SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  
  SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  
  SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  
  SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  SERIAL_ECHOLN(" ");*/
}

#endif

#ifdef TEMP_STAT_LEDS
static bool blue_led = false;
static bool red_led = false;
static uint32_t stat_update = 0;

void handle_status_leds(void) {
  float max_temp = 0.0;
  if(millis() > stat_update) {
    stat_update += 500; // Update every 0.5s
    for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
       max_temp = max(max_temp, degHotend(cur_extruder));
       max_temp = max(max_temp, degTargetHotend(cur_extruder));
    }
    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
      max_temp = max(max_temp, degTargetBed());
      max_temp = max(max_temp, degBed());
    #endif
    if((max_temp > 55.0) && (red_led == false)) {
      digitalWrite(STAT_LED_RED, 1);
      digitalWrite(STAT_LED_BLUE, 0);
      red_led = true;
      blue_led = false;
    }
    if((max_temp < 54.0) && (blue_led == false)) {
      digitalWrite(STAT_LED_RED, 0);
      digitalWrite(STAT_LED_BLUE, 1);
      red_led = false;
      blue_led = true;
    }
  }
}
#endif

void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
{
	
#if defined(KILL_PIN) && KILL_PIN > -1
	static int killCount = 0;   // make the inactivity button a bit less responsive
   const int KILL_DELAY = 10000;
#endif

#if defined(HOME_PIN) && HOME_PIN > -1
   static int homeDebounceCount = 0;   // poor man's debouncing count
   const int HOME_DEBOUNCE_DELAY = 10000;
#endif
   
	
  if(buflen < (BUFSIZE-1))
    get_command();

  if( (millis() - previous_millis_cmd) >  max_inactive_time )
    if(max_inactive_time)
      kill();
  if(stepper_inactive_time)  {
    if( (millis() - previous_millis_cmd) >  stepper_inactive_time )
    {
      if(blocks_queued() == false && ignore_stepper_queue == false) {
        disable_x();
        disable_y();
        disable_z();
        disable_e0();
        disable_e1();
        disable_e2();
      }
    }
  }
  
  #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
    if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
    {
      chdkActive = false;
      WRITE(CHDK, LOW);
    }
  #endif
  
  #if defined(KILL_PIN) && KILL_PIN > -1
    
    // Check if the kill button was pressed and wait just in case it was an accidental
    // key kill key press
    // -------------------------------------------------------------------------------
    if( 0 == READ(KILL_PIN) )
    {
       killCount++;
    }
    else if (killCount > 0)
    {
       killCount--;
    }
    // Exceeded threshold and we can confirm that it was not accidental
    // KILL the machine
    // ----------------------------------------------------------------
    if ( killCount >= KILL_DELAY)
    {
       kill();
    }
  #endif

#if defined(HOME_PIN) && HOME_PIN > -1
    // Check to see if we have to home, use poor man's debouncer
    // ---------------------------------------------------------
    if ( 0 == READ(HOME_PIN) )
    {
       if (homeDebounceCount == 0)
       {
          enquecommand_P((PSTR("G28")));
          homeDebounceCount++;
          LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
       }
       else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
       {
          homeDebounceCount++;
       }
       else
       {
          homeDebounceCount = 0;
       }
    }
#endif
    
  #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
    controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  #endif
  #ifdef EXTRUDER_RUNOUT_PREVENT
    if( (millis() - previous_millis_cmd) >  EXTRUDER_RUNOUT_SECONDS*1000 )
    if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
    {
     bool oldstatus=READ(E0_ENABLE_PIN);
     enable_e0();
     float oldepos=current_position[E_AXIS];
     float oldedes=destination[E_AXIS];
     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
                      destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
                      EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
     current_position[E_AXIS]=oldepos;
     destination[E_AXIS]=oldedes;
     plan_set_e_position(oldepos);
     previous_millis_cmd=millis();
     st_synchronize();
     WRITE(E0_ENABLE_PIN,oldstatus);
    }
  #endif
  #if defined(DUAL_X_CARRIAGE)
    // handle delayed move timeout
    if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
    {
      // travel moves have been received so enact them
      delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
      memcpy(destination,current_position,sizeof(destination));
      prepare_move();
    }
  #endif
  #ifdef TEMP_STAT_LEDS
      handle_status_leds();
  #endif
  check_axes_activity();
}

void kill()
{
  cli(); // Stop interrupts
  disable_heater();

  disable_x();
  disable_y();
  disable_z();
  disable_e0();
  disable_e1();
  disable_e2();

#if defined(PS_ON_PIN) && PS_ON_PIN > -1
  pinMode(PS_ON_PIN,INPUT);
#endif
  SERIAL_ERROR_START;
  SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  LCD_ALERTMESSAGEPGM(MSG_KILLED);
  
  // FMC small patch to update the LCD before ending
  sei();   // enable interrupts
  for ( int i=5; i--; lcd_update())
  {
     delay(200);	
  }
  cli();   // disable interrupts
  suicide();
  while(1) { /* Intentionally left empty */ } // Wait for reset
}

void Stop()
{
  disable_heater();
  if(Stopped == false) {
    Stopped = true;
    Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
    SERIAL_ERROR_START;
    SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
    LCD_MESSAGEPGM(MSG_STOPPED);
  }
}

bool IsStopped() { return Stopped; };

#ifdef FAST_PWM_FAN
void setPwmFrequency(uint8_t pin, int val)
{
  val &= 0x07;
  switch(digitalPinToTimer(pin))
  {

    #if defined(TCCR0A)
    case TIMER0A:
    case TIMER0B:
//         TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
//         TCCR0B |= val;
         break;
    #endif

    #if defined(TCCR1A)
    case TIMER1A:
    case TIMER1B:
//         TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
//         TCCR1B |= val;
         break;
    #endif

    #if defined(TCCR2)
    case TIMER2:
    case TIMER2:
         TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
         TCCR2 |= val;
         break;
    #endif

    #if defined(TCCR2A)
    case TIMER2A:
    case TIMER2B:
         TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
         TCCR2B |= val;
         break;
    #endif

    #if defined(TCCR3A)
    case TIMER3A:
    case TIMER3B:
    case TIMER3C:
         TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
         TCCR3B |= val;
         break;
    #endif

    #if defined(TCCR4A)
    case TIMER4A:
    case TIMER4B:
    case TIMER4C:
         TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
         TCCR4B |= val;
         break;
   #endif

    #if defined(TCCR5A)
    case TIMER5A:
    case TIMER5B:
    case TIMER5C:
         TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
         TCCR5B |= val;
         break;
   #endif

  }
}
#endif //FAST_PWM_FAN

bool setTargetedHotend(int code){
  tmp_extruder = active_extruder;
  if(code_seen('T')) {
    tmp_extruder = code_value();
    if(tmp_extruder >= EXTRUDERS) {
      SERIAL_ECHO_START;
      switch(code){
        case 104:
          SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
          break;
        case 105:
          SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
          break;
        case 109:
          SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
          break;
        case 218:
          SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
          break;
        case 221:
          SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
          break;
      }
      SERIAL_ECHOLN(tmp_extruder);
      return true;
    }
  }
  return false;
}


float calculate_volumetric_multiplier(float diameter) {
	float area = .0;
	float radius = .0;

	radius = diameter * .5;
	if (! volumetric_enabled || radius == 0) {
		area = 1;
	}
	else {
		area = M_PI * pow(radius, 2);
	}

	return 1.0 / area;
}

void calculate_volumetric_multipliers() {
	volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
#if EXTRUDERS > 1
	volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
#if EXTRUDERS > 2
	volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
#endif
#endif
}