Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Layer.pm « Slic3r « lib - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 9a5242924349dffe67f27be01831a0c33dd5cf13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
package Slic3r::Layer;
use Moo;

use Math::Clipper ':all';
use Slic3r::Geometry qw(polygon_lines points_coincide angle3points polyline_lines nearest_point
    line_length collinear X Y A B PI);
use Slic3r::Geometry::Clipper qw(safety_offset union_ex);
use XXX;

# a sequential number of layer, starting at 0
has 'id' => (
    is          => 'ro',
    #isa         => 'Int',
    required    => 1,
);

# collection of spare segments generated by slicing the original geometry;
# these need to be merged in continuos (closed) polylines
has 'lines' => (
    is      => 'rw',
    #isa     => 'ArrayRef[Slic3r::Line]',
    default => sub { [] },
);

# collection of surfaces generated by slicing the original geometry
has 'surfaces' => (
    is      => 'rw',
    #isa     => 'ArrayRef[Slic3r::Surface]',
    default => sub { [] },
);

# collection of surfaces representing bridges
has 'bridges' => (
    is      => 'rw',
    #isa     => 'ArrayRef[Slic3r::Surface::Bridge]',
    default => sub { [] },
);

# collection of surfaces to make perimeters for
has 'perimeter_surfaces' => (
    is      => 'rw',
    #isa     => 'ArrayRef[Slic3r::Surface]',
    default => sub { [] },
);

# ordered collection of extrusion paths to build all perimeters
has 'perimeters' => (
    is      => 'rw',
    #isa     => 'ArrayRef[Slic3r::ExtrusionLoop]',
    default => sub { [] },
);

# ordered collection of extrusion paths to build skirt loops
has 'skirts' => (
    is      => 'rw',
    #isa     => 'ArrayRef[Slic3r::ExtrusionLoop]',
    default => sub { [] },
);

# collection of surfaces generated by offsetting the innermost perimeter(s)
# they represent boundaries of areas to fill (grouped by original objects)
has 'fill_surfaces' => (
    is      => 'rw',
    #isa     => 'ArrayRef[ArrayRef[Slic3r::Surface]]',
    default => sub { [] },
);

# ordered collection of extrusion paths to fill surfaces
has 'fills' => (
    is      => 'rw',
    #isa     => 'ArrayRef[Slic3r::ExtrusionPath]',
    default => sub { [] },
);

# Z used for slicing
sub slice_z {
    my $self = shift;
    return ($self->id * $Slic3r::layer_height + $Slic3r::layer_height/2) / $Slic3r::resolution;
}

# Z used for printing
sub print_z {
    my $self = shift;
    return ($self->id + 1) * $Slic3r::layer_height / $Slic3r::resolution;
}

sub add_surface {
    my $self = shift;
    my (@vertices) = @_;
    
    # convert arrayref points to Point objects
    @vertices = map Slic3r::Point->new($_), @vertices;
    
    my $surface = Slic3r::Surface->new(
        contour => Slic3r::Polyline::Closed->new(points => \@vertices),
    );
    push @{ $self->surfaces }, $surface;
    
    # make sure our contour has its points in counter-clockwise order
    $surface->contour->make_counter_clockwise;
    
    return $surface;
}

sub add_line {
    my $self = shift;
    my ($line) = @_;
    
    return if $line->a->coincides_with($line->b);
    
    push @{ $self->lines }, $line;
    return $line;
}

# merge overlapping lines
sub cleanup_lines {
    my $self = shift;
    
    my $lines = $self->lines;
    my $line_count = @$lines;
    
    for (my $i = 0; $i <= $#$lines-1; $i++) {
        for (my $j = $i+1; $j <= $#$lines; $j++) {
            # lines are collinear and overlapping?
            next unless collinear($lines->[$i], $lines->[$j], 1);
            
            # lines have same orientation?
            next unless ($lines->[$i][A][X] <=> $lines->[$i][B][X]) == ($lines->[$j][A][X] <=> $lines->[$j][B][X])
                && ($lines->[$i][A][Y] <=> $lines->[$i][B][Y]) == ($lines->[$j][A][Y] <=> $lines->[$j][B][Y]);
            
            # resulting line
            my @x = sort { $a <=> $b } ($lines->[$i][A][X], $lines->[$i][B][X], $lines->[$j][A][X], $lines->[$j][B][X]);
            my @y = sort { $a <=> $b } ($lines->[$i][A][Y], $lines->[$i][B][Y], $lines->[$j][A][Y], $lines->[$j][B][Y]);
            my $new_line = Slic3r::Line->new([$x[0], $y[0]], [$x[-1], $y[-1]]);
            for (X, Y) {
                ($new_line->[A][$_], $new_line->[B][$_]) = ($new_line->[B][$_], $new_line->[A][$_])
                    if $lines->[$i][A][$_] > $lines->[$i][B][$_];
            }
            
            # save new line and remove found one
            $lines->[$i] = $new_line;
            splice @$lines, $j, 1;
            $j--;
        }
    }
    
    Slic3r::debugf "  merging %d lines resulted in %d lines\n", $line_count, scalar(@$lines);
}

# build polylines from lines
sub make_surfaces {
    my $self = shift;
    
    if (0) {
        require "Slic3r/SVG.pm";
        Slic3r::SVG::output(undef, "lines.svg",
            lines       => [ grep !$_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
            red_lines   => [ grep  $_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
        );
    }
    
    my (@polygons, %visited_lines, @discarded_lines, @discarded_polylines) = ();
    
    my $detect = sub {
        my @lines = @{$self->lines};
        (@polygons, %visited_lines, @discarded_lines, @discarded_polylines) = ();
        my $get_point_id = sub { sprintf "%.0f,%.0f", @{$_[0]} };
        
        my (%pointmap, @pointmap_keys) = ();
        foreach my $line (@lines) {
            my $point_id = $get_point_id->($line->[A]);
            if (!exists $pointmap{$point_id}) {
                $pointmap{$point_id} = [];
                push @pointmap_keys, $line->[A];
            }
            push @{ $pointmap{$point_id} }, $line;
        }
        
        my $n = 0;
        while (my $first_line = shift @lines) {
            next if $visited_lines{ $first_line->id };
            my @points = @$first_line;
            
            my @seen_lines = ($first_line);
            my %seen_points = map { $get_point_id->($points[$_]) => $_ } 0..1;
            
            CYCLE: while (1) {
                my $next_lines = $pointmap{ $get_point_id->($points[-1]) };
                
                # shouldn't we find the point, let's try with a slower algorithm
                # as approximation may make the coordinates differ
                if (!$next_lines) {
                    my $nearest_point = nearest_point($points[-1], \@pointmap_keys);
                    #printf "  we have a nearest point: %f,%f (%s)\n", @$nearest_point, $get_point_id->($nearest_point);
                    
                    if ($nearest_point) {
                        local $Slic3r::Geometry::epsilon = 1000000;
                        $next_lines = $pointmap{$get_point_id->($nearest_point)}
                            if points_coincide($points[-1], $nearest_point);
                    }
                }
                
                #Slic3r::SVG::output(undef, "lines.svg",
                #    lines       => [ map $_->p, grep !$_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
                #    red_lines   => [ map $_->p, grep  $_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
                #    points      => [ $points[-1] ],
                #    no_arrows => 1,
                #) if !$next_lines;
                
                $next_lines
                    or die sprintf("No lines start at point %s. This shouldn't happen. Please check the model for manifoldness.", $get_point_id->($points[-1]));
                last CYCLE if !@$next_lines;
                
                my @ordered_next_lines = sort 
                    { angle3points($points[-1], $points[-2], $next_lines->[$a][B]) <=> angle3points($points[-1], $points[-2], $next_lines->[$b][B]) } 
                    0..$#$next_lines;
                
                #if (@$next_lines > 1) {
                #    Slic3r::SVG::output(undef, "next_line.svg",
                #        lines        => $next_lines,
                #        red_lines    => [ polyline_lines([@points]) ],
                #        green_lines  => [ $next_lines->[ $ordered_next_lines[0] ] ],
                #    );
                #}
                
                my ($next_line) = splice @$next_lines, $ordered_next_lines[0], 1;
                push @seen_lines, $next_line;
                
                push @points, $next_line->[B];
                
                my $point_id = $get_point_id->($points[-1]);
                if ($seen_points{$point_id}) {
                    splice @points, 0, $seen_points{$point_id};
                    last CYCLE;
                }
                
                $seen_points{$point_id} = $#points;
            }
            
            if (@points < 4 || !points_coincide($points[0], $points[-1])) {
                # discarding polyline
                push @discarded_lines, @seen_lines;
                if (@points > 2) {
                    push @discarded_polylines, [@points];
                }
                next;
            }
            
            $visited_lines{ $_->id } = 1 for @seen_lines;
            pop @points;
            Slic3r::debugf "Discovered polygon of %d points\n", scalar(@points);
            push @polygons, Slic3r::Polygon->new(@points);
            $polygons[-1]->cleanup;
        }
    };
    
    $detect->();
    
    # Now, if we got a clean and manifold model then @polygons would contain everything
    # we need to draw our layer. In real life, sadly, things are different and it is likely
    # that the above algorithm wasn't able to detect every polygon. This may happen because
    # of non-manifoldness or because of many close lines, often overlapping; both situations
    # make a head-to-tail search difficult.
    # On the other hand, we can safely assume that every polygon we detected is correct, as 
    # the above algorithm is quite strict. We can take a brute force approach to connect any
    # other line.
    
    # So, let's first check what lines were not detected as part of polygons.
    if (@discarded_lines) {
        Slic3r::debugf "  %d lines out of %d were discarded and %d polylines were not closed\n",
            scalar(@discarded_lines), scalar(@{$self->lines}), scalar(@discarded_polylines);
        print "  Warning: errors while parsing this layer (dirty or non-manifold model).\n";
        print "  Retrying with slower algorithm.\n";
        
        if (0) {
            require "Slic3r/SVG.pm";
            Slic3r::SVG::output(undef, "layer" . $self->id . "_detected.svg",
                white_polygons => \@polygons,
            );
            Slic3r::SVG::output(undef, "layer" . $self->id . "_discarded_lines.svg",
                red_lines   => \@discarded_lines,
            );
            Slic3r::SVG::output(undef, "layer" . $self->id . "_discarded_polylines.svg",
                polylines   => \@discarded_polylines,
            );
            exit;
        }
        
        $self->cleanup_lines;
        $detect->();
        
        if (@discarded_lines) {
            print "  Warning: even slow detection algorithm throwed errors. Review the output before printing.\n";
        }
    }
    
    {
        my $expolygons = union_ex([ @polygons ]);
        Slic3r::debugf "  %d surface(s) having %d holes detected from %d polylines\n",
            scalar(@$expolygons), scalar(map $_->holes, @$expolygons), scalar(@polygons);
        
        push @{$self->surfaces},
            map Slic3r::Surface->cast_from_expolygon($_, surface_type => 'internal'),
                @$expolygons;
    }
    
    #use Slic3r::SVG;
    #Slic3r::SVG::output(undef, "surfaces.svg",
    #    polygons        => [ map $_->contour->p, @{$self->surfaces} ],
    #    red_polygons    => [ map $_->p, map @{$_->holes}, @{$self->surfaces} ],
    #);
}

sub remove_small_surfaces {
    my $self = shift;
    my @good_surfaces = ();
    
    my $surface_count = scalar @{$self->surfaces};
    foreach my $surface (@{$self->surfaces}) {
        next if !$surface->contour->is_printable;
        @{$surface->holes} = grep $_->is_printable, @{$surface->holes};
        push @good_surfaces, $surface;
    }
    
    @{$self->surfaces} = @good_surfaces;
    Slic3r::debugf "removed %d small surfaces at layer %d\n",
        ($surface_count - @good_surfaces), $self->id 
        if @good_surfaces != $surface_count;
}

sub remove_small_perimeters {
    my $self = shift;
    my @good_perimeters = grep $_->is_printable, @{$self->perimeters};
    Slic3r::debugf "removed %d unprintable perimeters at layer %d\n",
        (@{$self->perimeters} - @good_perimeters), $self->id
        if @good_perimeters != @{$self->perimeters};
    
    @{$self->perimeters} = @good_perimeters;
}

# make bridges printable
sub process_bridges {
    my $self = shift;
    return if $self->id == 0;
    
    # a bottom surface on a layer > 0 is either a bridge or a overhang 
    # or a combination of both
    
    my @bottom_surfaces     = grep $_->surface_type eq 'bottom',   @{$self->surfaces} or return;
    my @supporting_surfaces = grep $_->surface_type =~ /internal/, @{$self->surfaces};
    
    SURFACE: foreach my $surface (@bottom_surfaces) {
        # since we can't print concave bridges, we transform the surface
        # in a convex polygon; this will print thin membranes eventually
        my $surface_p = $surface->contour->p;
        
        # offset the surface a bit to avoid approximation issues when doing the
        # intersection below (this is to make sure we overlap with supporting
        # surfaces, otherwise a little gap will result from intersection)
        $surface_p = safety_offset([$surface_p])->[0];
        
            #use Slic3r::SVG;
            #Slic3r::SVG::output(undef, "bridge.svg",
            #    green_polygons  => [ map $_->p, @supporting_surfaces ],
            #    red_polygons    => [ $surface_p ],
            #);
        
        # find all supported edges (as polylines, thus keeping notion of 
        # consecutive supported edges)
        my @supported_polylines = ();
        {
            my @current_polyline = ();
            EDGE: foreach my $edge (Slic3r::Geometry::polygon_lines($surface_p)) {
                for my $supporting_surface (@supporting_surfaces) {
                    local $Slic3r::Geometry::epsilon = 1E+7;
                    if (Slic3r::Geometry::polygon_has_subsegment($supporting_surface->contour->p, $edge)) {
                        push @current_polyline, $edge;
                        next EDGE;
                    }
                }
                if (@current_polyline) {
                    push @supported_polylines, [@current_polyline];
                    @current_polyline = ();
                }
            }
            push @supported_polylines, [@current_polyline] if @current_polyline;
        }
        
        # defensive programming, this shouldn't happen
        if (@supported_polylines == 0) {
            Slic3r::debugf "Found bridge/overhang with no supports on layer %d; ignoring\n", $self->id;
            next SURFACE;
        }
        
        if (@supported_polylines == 1) {
            Slic3r::debugf "Found bridge/overhang with only one support on layer %d; ignoring\n", $self->id;
            next SURFACE;
        }
        
        # now connect the first point to the last of each polyline
        @supported_polylines = map [ $_->[0]->[0], $_->[-1]->[-1] ], @supported_polylines;
        # @supported_polylines becomes actually an array of lines
        
        # if we got more than two supports, get the longest two
        if (@supported_polylines > 2) {
            my %lengths = map { $_ => Slic3r::Geometry::line_length($_) } @supported_polylines;
            @supported_polylines = sort { $lengths{"$a"} <=> $lengths{"$b"} } @supported_polylines;
            @supported_polylines = @supported_polylines[-2,-1];
        }
        
        # connect the midpoints, that will give the the optimal infill direction
        my @midpoints = map Slic3r::Geometry::midpoint($_), @supported_polylines;
        my $bridge_angle = -Slic3r::Geometry::rad2deg(Slic3r::Geometry::line_atan(\@midpoints) + PI/2);
        Slic3r::debugf "Optimal infill angle of bridge on layer %d is %d degrees\n", $self->id, $bridge_angle;
        
        # detect which neighbor surfaces are now supporting our bridge
        my @supporting_neighbor_surfaces = ();
        foreach my $supporting_surface (@supporting_surfaces) {
            local $Slic3r::Geometry::epsilon = 1E+7;
            push @supporting_neighbor_surfaces, $supporting_surface 
                if grep Slic3r::Geometry::polygon_has_vertex($supporting_surface->contour->p, $_), 
                    map $_->[0], @supported_polylines;
        }
        
        # defensive programming, this shouldn't happen
        if (@supporting_neighbor_surfaces == 0) {
            Slic3r::debugf "Couldn't find supporting surfaces on layer %d; ignoring\n", $self->id;
            next SURFACE;
        }
        
        # now, extend our bridge by taking a portion of supporting surfaces
        {
            # offset the bridge by the specified amount of mm
            my $bridge_offset = ${ offset([$surface_p], $Slic3r::bridge_overlap / $Slic3r::resolution, $Slic3r::resolution * 100, JT_MITER, 2) }[0];
            
            # calculate the new bridge
            my $clipper = Math::Clipper->new;
            $clipper->add_subject_polygon($surface_p);
            $clipper->add_subject_polygons([ map $_->p, @supporting_neighbor_surfaces ]);
            $clipper->add_clip_polygon($bridge_offset);
            my $intersection = $clipper->execute(CT_INTERSECTION, PFT_NONZERO, PFT_NONZERO);
            
            push @{$self->bridges}, map Slic3r::Surface::Bridge->cast_from_polygon($_,
                surface_type => 'bottom',
                bridge_angle => $bridge_angle,
            ), @$intersection;
        }
    }
}

# generates a set of surfaces that will be used to make perimeters
# thus, we need to merge internal surfaces and bridges
sub detect_perimeter_surfaces {
    my $self = shift;
    
    # little optimization: skip the Clipper UNION if we have no bridges
    if (!@{$self->bridges}) {
        push @{$self->perimeter_surfaces}, @{$self->surfaces};
    } else {
        my $clipper = Math::Clipper->new;
        $clipper->add_subject_polygons([ map $_->p, grep $_->surface_type =~ /internal/, @{$self->surfaces} ]);
        $clipper->add_clip_polygons([ map $_->p, @{$self->bridges} ]);
        my $union = $clipper->ex_execute(CT_UNION, PFT_NONZERO, PFT_NONZERO);
        
        push @{$self->perimeter_surfaces}, 
            map Slic3r::Surface->cast_from_expolygon($_, surface_type => 'internal'), 
            @$union;
        
        push @{$self->perimeter_surfaces}, 
            grep $_->surface_type !~ /internal/ && ($_->surface_type ne 'bottom' || $self->id == 0), 
            @{$self->surfaces};
    }
}

# splits fill_surfaces in internal and bridge surfaces
sub split_bridges_fills {
    my $self = shift;
    
    my $clipper = Math::Clipper->new;
    foreach my $surfaces (@{$self->fill_surfaces}) {
        my @surfaces = @$surfaces;
        @$surfaces = ();
        
        # intersect fill_surfaces with bridges to get actual bridges
        foreach my $bridge (@{$self->bridges}) {
            $clipper->clear;
            $clipper->add_subject_polygons([ map $_->p, @surfaces ]);
            $clipper->add_clip_polygon($bridge->contour->p);
            my $intersection = $clipper->ex_execute(CT_INTERSECTION, PFT_NONZERO, PFT_NONZERO);
            push @$surfaces, map Slic3r::Surface::Bridge->cast_from_expolygon($_,
                surface_type => 'bottom',
                bridge_angle => $bridge->bridge_angle,
            ), @$intersection;
        }
        
        # difference between fill_surfaces and bridges are the other surfaces
        foreach my $surface (@surfaces) {
            $clipper->clear;
            $clipper->add_subject_polygons([ $surface->p ]);
            $clipper->add_clip_polygons([ map $_->contour->p, @{$self->bridges} ]);
            my $difference = $clipper->ex_execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO);
            push @$surfaces, map Slic3r::Surface->cast_from_expolygon($_,
                surface_type => $surface->surface_type), @$difference;
        }
    }
}

1;