Welcome to mirror list, hosted at ThFree Co, Russian Federation.

connect.cpp « admesh « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8c3ab154adf5cedda58339197f61fbe59bba1887 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
/*  ADMesh -- process triangulated solid meshes
 *  Copyright (C) 1995, 1996  Anthony D. Martin <amartin@engr.csulb.edu>
 *  Copyright (C) 2013, 2014  several contributors, see AUTHORS
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.

 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.

 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 *  Questions, comments, suggestions, etc to
 *           https://github.com/admesh/admesh/issues
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include <algorithm>
#include <vector>

#include <boost/predef/other/endian.h>
#include <boost/log/trivial.hpp>
// Boost pool: Don't use mutexes to synchronize memory allocation.
#define BOOST_POOL_NO_MT
#include <boost/pool/object_pool.hpp>

#include "stl.h"

struct HashEdge {
	// Key of a hash edge: sorted vertices of the edge.
	uint32_t       key[6];
	// Compare two keys.
	bool operator==(const HashEdge &rhs) const { return memcmp(key, rhs.key, sizeof(key)) == 0; }
	bool operator!=(const HashEdge &rhs) const { return ! (*this == rhs); }
	int  hash(int M) const { return ((key[0] / 11 + key[1] / 7 + key[2] / 3) ^ (key[3] / 11  + key[4] / 7 + key[5] / 3)) % M; }

	// Index of a facet owning this edge.
	int        facet_number;
	// Index of this edge inside the facet with an index of facet_number.
	// If this edge is stored backwards, which_edge is increased by 3.
	int        which_edge;
	HashEdge  *next;

	void load_exact(stl_file *stl, const stl_vertex *a, const stl_vertex *b)
	{
		{
	    	stl_vertex diff = (*a - *b).cwiseAbs();
	    	float max_diff = std::max(diff(0), std::max(diff(1), diff(2)));
	    	stl->stats.shortest_edge = std::min(max_diff, stl->stats.shortest_edge);
	  	}

	  	// Ensure identical vertex ordering of equal edges.
	  	// This method is numerically robust.
	  	if (vertex_lower(*a, *b)) {
	  	} else {
	  		// This edge is loaded backwards.
		    std::swap(a, b);
		    this->which_edge += 3;
	  	}
	  	memcpy(&this->key[0], a->data(), sizeof(stl_vertex));
	  	memcpy(&this->key[3], b->data(), sizeof(stl_vertex));
	  	// Switch negative zeros to positive zeros, so memcmp will consider them to be equal.
	  	for (size_t i = 0; i < 6; ++ i) {
	    	unsigned char *p = (unsigned char*)(this->key + i);
	#if BOOST_ENDIAN_LITTLE_BYTE
	    	if (p[0] == 0 && p[1] == 0 && p[2] == 0 && p[3] == 0x80)
	      		// Negative zero, switch to positive zero.
	      		p[3] = 0;
	#else /* BOOST_ENDIAN_LITTLE_BYTE */
	    	if (p[0] == 0x80 && p[1] == 0 && p[2] == 0 && p[3] == 0)
	      		// Negative zero, switch to positive zero.
	      		p[0] = 0;
	#endif /* BOOST_ENDIAN_LITTLE_BYTE */
	  	}
	}

	bool load_nearby(const stl_file *stl, const stl_vertex &a, const stl_vertex &b, float tolerance)
	{
		// Index of a grid cell spaced by tolerance.
		typedef Eigen::Matrix<int32_t,  3, 1, Eigen::DontAlign> Vec3i;
		Vec3i vertex1 = ((a - stl->stats.min) / tolerance).cast<int32_t>();
		Vec3i vertex2 = ((b - stl->stats.min) / tolerance).cast<int32_t>();
		static_assert(sizeof(Vec3i) == 12, "size of Vec3i incorrect");

		if (vertex1 == vertex2)
			// Both vertices hash to the same value
			return false;

		// Ensure identical vertex ordering of edges, which vertices land into equal grid cells.
		// This method is numerically robust.
		if ((vertex1[0] != vertex2[0]) ? 
		    (vertex1[0] < vertex2[0]) : 
		    ((vertex1[1] != vertex2[1]) ? 
		        (vertex1[1] < vertex2[1]) : 
		        (vertex1[2] < vertex2[2]))) {
			memcpy(&this->key[0], vertex1.data(), sizeof(stl_vertex));
			memcpy(&this->key[3], vertex2.data(), sizeof(stl_vertex));
		} else {
			memcpy(&this->key[0], vertex2.data(), sizeof(stl_vertex));
			memcpy(&this->key[3], vertex1.data(), sizeof(stl_vertex));
			this->which_edge += 3; /* this edge is loaded backwards */
		}
		return true;
	}

private:
	inline bool vertex_lower(const stl_vertex &a, const stl_vertex &b) {
	  	return (a(0) != b(0)) ? (a(0) < b(0)) :
	           ((a(1) != b(1)) ? (a(1) < b(1)) : (a(2) < b(2)));
	}
};

struct HashTableEdges {
	HashTableEdges(size_t number_of_faces) {
		this->M = (int)hash_size_from_nr_faces(number_of_faces);
		this->heads.assign(this->M, nullptr);
		this->tail = pool.construct();
		this->tail->next = this->tail;
		for (int i = 0; i < this->M; ++ i)
			this->heads[i] = this->tail;
	}
	~HashTableEdges() {
#ifndef NDEBUG
		for (int i = 0; i < this->M; ++ i)
	    	for (HashEdge *temp = this->heads[i]; temp != this->tail; temp = temp->next)
	        	++ this->freed;
		this->tail = nullptr;
#endif /* NDEBUG */
	}

	void insert_edge_exact(stl_file *stl, const HashEdge &edge)
	{
		this->insert_edge(stl, edge, [stl](const HashEdge& edge1, const HashEdge& edge2) { record_neighbors(stl, edge1, edge2); });
	}

	void insert_edge_nearby(stl_file *stl, const HashEdge &edge)
	{
		this->insert_edge(stl, edge, [stl](const HashEdge& edge1, const HashEdge& edge2) { match_neighbors_nearby(stl, edge1, edge2); });
	}

	// Hash table on edges
	std::vector<HashEdge*> 	heads;
	HashEdge* 				tail;
	int           			M;
	boost::object_pool<HashEdge> pool;

#ifndef NDEBUG
	size_t 					malloced   	= 0;
	size_t 					freed 	  	= 0;
	size_t 					collisions 	= 0;
#endif /* NDEBUG */

private:
	static inline size_t hash_size_from_nr_faces(const size_t nr_faces)
	{
		// Good primes for addressing a cca. 30 bit space.
		// https://planetmath.org/goodhashtableprimes
		static std::vector<uint32_t> primes{ 98317, 196613, 393241, 786433, 1572869, 3145739, 6291469, 12582917, 25165843, 50331653, 100663319, 201326611, 402653189, 805306457, 1610612741 };
		// Find a prime number for 50% filling of the shared triangle edges in the mesh.
		auto it = std::upper_bound(primes.begin(), primes.end(), nr_faces * 3 * 2 - 1);
		return (it == primes.end()) ? primes.back() : *it;
	}


	// MatchNeighbors(stl_file *stl, const HashEdge &edge_a, const HashEdge &edge_b)
	template<typename MatchNeighbors>
	void insert_edge(stl_file *stl, const HashEdge &edge, MatchNeighbors match_neighbors)
	{
		int       chain_number = edge.hash(this->M);
		HashEdge *link         = this->heads[chain_number];
		if (link == this->tail) {
			// This list doesn't have any edges currently in it.  Add this one.
			HashEdge *new_edge = pool.construct(edge);
#ifndef NDEBUG
			++ this->malloced;
#endif /* NDEBUG */
			new_edge->next = this->tail;
			this->heads[chain_number] = new_edge;
		} else if (edges_equal(edge, *link)) {
			// This is a match.  Record result in neighbors list.
			match_neighbors(edge, *link);
			// Delete the matched edge from the list.
			this->heads[chain_number] = link->next;
			// pool.destroy(link);
#ifndef NDEBUG
			++ this->freed;
#endif /* NDEBUG */
		} else {
			// Continue through the rest of the list.
			for (;;) {
				if (link->next == this->tail) {
					// This is the last item in the list. Insert a new edge.
					HashEdge *new_edge = pool.construct();
#ifndef NDEBUG
					++ this->malloced;
#endif /* NDEBUG */
					*new_edge = edge;
					new_edge->next = this->tail;
					link->next = new_edge;
#ifndef NDEBUG
					++ this->collisions;
#endif /* NDEBUG */
					break;
				}
				if (edges_equal(edge, *link->next)) {
					// This is a match.  Record result in neighbors list.
					match_neighbors(edge, *link->next);
					// Delete the matched edge from the list.
					HashEdge *temp = link->next;
					link->next = link->next->next;
					// pool.destroy(temp);
#ifndef NDEBUG
					++ this->freed;
#endif /* NDEBUG */
					break;
				}
				// This is not a match.  Go to the next link.
				link = link->next;
#ifndef NDEBUG
				++ this->collisions;
#endif /* NDEBUG */
			}
		}
	}

	// Edges equal for hashing. Edgesof different facet are allowed to be matched.
	static inline bool edges_equal(const HashEdge &edge_a, const HashEdge &edge_b)
	{
	    return edge_a.facet_number != edge_b.facet_number && edge_a == edge_b;
	}

	// Connect edge_a with edge_b, update edge connection statistics.
	static void record_neighbors(stl_file *stl, const HashEdge &edge_a, const HashEdge &edge_b)
	{
		// Facet a's neighbor is facet b
		stl->neighbors_start[edge_a.facet_number].neighbor[edge_a.which_edge % 3] = edge_b.facet_number;	/* sets the .neighbor part */
		stl->neighbors_start[edge_a.facet_number].which_vertex_not[edge_a.which_edge % 3] = (edge_b.which_edge + 2) % 3; /* sets the .which_vertex_not part */

		// Facet b's neighbor is facet a
		stl->neighbors_start[edge_b.facet_number].neighbor[edge_b.which_edge % 3] = edge_a.facet_number;	/* sets the .neighbor part */
		stl->neighbors_start[edge_b.facet_number].which_vertex_not[edge_b.which_edge % 3] = (edge_a.which_edge + 2) % 3; /* sets the .which_vertex_not part */

		if ((edge_a.which_edge < 3 && edge_b.which_edge < 3) || (edge_a.which_edge > 2 && edge_b.which_edge > 2)) {
			// These facets are oriented in opposite directions, their normals are probably messed up.
			stl->neighbors_start[edge_a.facet_number].which_vertex_not[edge_a.which_edge % 3] += 3;
			stl->neighbors_start[edge_b.facet_number].which_vertex_not[edge_b.which_edge % 3] += 3;
		}

		// Count successful connects:
		// Total connects:
		stl->stats.connected_edges += 2;
		// Count individual connects:
		switch (stl->neighbors_start[edge_a.facet_number].num_neighbors()) {
		case 1:	++ stl->stats.connected_facets_1_edge; break;
		case 2: ++ stl->stats.connected_facets_2_edge; break;
		case 3: ++ stl->stats.connected_facets_3_edge; break;
		default: assert(false);
		}
		switch (stl->neighbors_start[edge_b.facet_number].num_neighbors()) {
		case 1:	++ stl->stats.connected_facets_1_edge; break;
		case 2: ++ stl->stats.connected_facets_2_edge; break;
		case 3: ++ stl->stats.connected_facets_3_edge; break;
		default: assert(false);
		}
	}

	static void match_neighbors_nearby(stl_file *stl, const HashEdge &edge_a, const HashEdge &edge_b)
	{
		record_neighbors(stl, edge_a, edge_b);

		// Which vertices to change
		int facet1 = -1;
		int facet2 = -1;
		int vertex1, vertex2;
		stl_vertex new_vertex1, new_vertex2;
		{
			int v1a; // pair 1, facet a
			int v1b; // pair 1, facet b
			int v2a; // pair 2, facet a
			int v2b; // pair 2, facet b
			// Find first pair.
			if (edge_a.which_edge < 3) {
				v1a = edge_a.which_edge;
				v2a = (edge_a.which_edge + 1) % 3;
			} else {
				v2a = edge_a.which_edge % 3;
				v1a = (edge_a.which_edge + 1) % 3;
			}
			if (edge_b.which_edge < 3) {
				v1b = edge_b.which_edge;
				v2b = (edge_b.which_edge + 1) % 3;
			} else {
				v2b = edge_b.which_edge % 3;
				v1b = (edge_b.which_edge + 1) % 3;
			}

			// Of the first pair, which vertex, if any, should be changed
			if (stl->facet_start[edge_a.facet_number].vertex[v1a] != stl->facet_start[edge_b.facet_number].vertex[v1b]) {
				// These facets are different.
				if (   (stl->neighbors_start[edge_a.facet_number].neighbor[v1a] == -1)
			        && (stl->neighbors_start[edge_a.facet_number].neighbor[(v1a + 2) % 3] == -1)) {
			  		// This vertex has no neighbors.  This is a good one to change.
			  		facet1 = edge_a.facet_number;
			  		vertex1 = v1a;
			  		new_vertex1 = stl->facet_start[edge_b.facet_number].vertex[v1b];
				} else {
				  	facet1 = edge_b.facet_number;
			  		vertex1 = v1b;
			  		new_vertex1 = stl->facet_start[edge_a.facet_number].vertex[v1a];
				}
			}

			// Of the second pair, which vertex, if any, should be changed.
			if (stl->facet_start[edge_a.facet_number].vertex[v2a] == stl->facet_start[edge_b.facet_number].vertex[v2b]) {
				// These facets are different.
				if (  (stl->neighbors_start[edge_a.facet_number].neighbor[v2a] == -1)
			       && (stl->neighbors_start[edge_a.facet_number].neighbor[(v2a + 2) % 3] == -1)) {
			  		// This vertex has no neighbors.  This is a good one to change.
			  		facet2 = edge_a.facet_number;
			  		vertex2 = v2a;
			  		new_vertex2 = stl->facet_start[edge_b.facet_number].vertex[v2b];
				} else {
			  		facet2 = edge_b.facet_number;
			  		vertex2 = v2b;
			  		new_vertex2 = stl->facet_start[edge_a.facet_number].vertex[v2a];
				}
			}
		}

		auto change_vertices = [stl](int facet_num, int vnot, stl_vertex new_vertex)
		{
			int first_facet = facet_num;
			bool direction = false;

			for (;;) {
				int pivot_vertex;
				int next_edge;
				if (vnot > 2) {
					if (direction) {
						pivot_vertex = (vnot + 1) % 3;
						next_edge = vnot % 3;
					}
					else {
						pivot_vertex = (vnot + 2) % 3;
						next_edge = pivot_vertex;
					}
					direction = !direction;
				}
				else {
					if (direction) {
						pivot_vertex = (vnot + 2) % 3;
						next_edge = pivot_vertex;
					}
					else {
						pivot_vertex = (vnot + 1) % 3;
						next_edge = vnot;
					}
				}
	#if 0
				if (stl->facet_start[facet_num].vertex[pivot_vertex](0) == new_vertex(0) &&
					stl->facet_start[facet_num].vertex[pivot_vertex](1) == new_vertex(1) &&
					stl->facet_start[facet_num].vertex[pivot_vertex](2) == new_vertex(2))
					printf("Changing vertex %f,%f,%f: Same !!!\r\n", new_vertex(0), new_vertex(1), new_vertex(2));
				else {
					if (stl->facet_start[facet_num].vertex[pivot_vertex](0) != new_vertex(0))
						printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n",
							stl->facet_start[facet_num].vertex[pivot_vertex](0),
							*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex](0)),
							new_vertex(0),
							*reinterpret_cast<const int*>(&new_vertex(0)));
					if (stl->facet_start[facet_num].vertex[pivot_vertex](1) != new_vertex(1))
						printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n",
							stl->facet_start[facet_num].vertex[pivot_vertex](1),
							*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex](1)),
							new_vertex(1),
							*reinterpret_cast<const int*>(&new_vertex(1)));
					if (stl->facet_start[facet_num].vertex[pivot_vertex](2) != new_vertex(2))
						printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n",
							stl->facet_start[facet_num].vertex[pivot_vertex](2),
							*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex](2)),
							new_vertex(2),
							*reinterpret_cast<const int*>(&new_vertex(2)));
				}
	#endif
				stl->facet_start[facet_num].vertex[pivot_vertex] = new_vertex;
				vnot = stl->neighbors_start[facet_num].which_vertex_not[next_edge];
				facet_num = stl->neighbors_start[facet_num].neighbor[next_edge];
				if (facet_num == -1)
					break;

				if (facet_num == first_facet) {
					// back to the beginning
					BOOST_LOG_TRIVIAL(info) << "Back to the first facet changing vertices: probably a mobius part. Try using a smaller tolerance or don't do a nearby check.";
					return;
				}
			}
		};

		if (facet1 != -1) {
			int vnot1 = (facet1 == edge_a.facet_number) ? 
		  		(edge_a.which_edge + 2) % 3 :
				(edge_b.which_edge + 2) % 3;
			if (((vnot1 + 2) % 3) == vertex1)
		  		vnot1 += 3;
			change_vertices(facet1, vnot1, new_vertex1);
		}
		if (facet2 != -1) {
			int vnot2 = (facet2 == edge_a.facet_number) ?
		  		(edge_a.which_edge + 2) % 3 :
				(edge_b.which_edge + 2) % 3;
			if (((vnot2 + 2) % 3) == vertex2)
		  		vnot2 += 3;
			change_vertices(facet2, vnot2, new_vertex2);
		}
		stl->stats.edges_fixed += 2;
	}
};

// This function builds the neighbors list.  No modifications are made
// to any of the facets.  The edges are said to match only if all six
// floats of the first edge matches all six floats of the second edge.
void stl_check_facets_exact(stl_file *stl)
{
	assert(stl->facet_start.size() == stl->neighbors_start.size());

  	stl->stats.connected_edges         = 0;
  	stl->stats.connected_facets_1_edge = 0;
  	stl->stats.connected_facets_2_edge = 0;
  	stl->stats.connected_facets_3_edge = 0;

  	// If any two of the three vertices are found to be exactally the same, call them degenerate and remove the facet.
  	// Do it before the next step, as the next step stores references to the face indices in the hash tables and removing a facet
  	// will break the references.
  	for (uint32_t i = 0; i < stl->stats.number_of_facets;) {
		stl_facet &facet = stl->facet_start[i];
	  	if (facet.vertex[0] == facet.vertex[1] || facet.vertex[1] == facet.vertex[2] || facet.vertex[0] == facet.vertex[2]) {
		  	// Remove the degenerate facet.
		  	facet = stl->facet_start[-- stl->stats.number_of_facets];
			stl->facet_start.pop_back();
			stl->neighbors_start.pop_back();
		  	stl->stats.facets_removed += 1;
		  	stl->stats.degenerate_facets += 1;
	  	} else
		  	++ i;
  	}

  	// Initialize hash table.
  	HashTableEdges hash_table(stl->stats.number_of_facets);
	for (auto &neighbor : stl->neighbors_start)
		neighbor.reset();

  	// Connect neighbor edges.
	for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
		const stl_facet &facet = stl->facet_start[i];
		for (int j = 0; j < 3; ++ j) {
			HashEdge edge;
			edge.facet_number = i;
			edge.which_edge = j;
			edge.load_exact(stl, &facet.vertex[j], &facet.vertex[(j + 1) % 3]);
			hash_table.insert_edge_exact(stl, edge);
		}
	}

#if 0
	printf("Number of faces: %d, number of manifold edges: %d, number of connected edges: %d, number of unconnected edges: %d\r\n", 
    	stl->stats.number_of_facets, stl->stats.number_of_facets * 3, 
    	stl->stats.connected_edges, stl->stats.number_of_facets * 3 - stl->stats.connected_edges);
#endif
}

void stl_check_facets_nearby(stl_file *stl, float tolerance)
{
	assert(stl->stats.connected_facets_3_edge <= stl->stats.connected_facets_2_edge);
	assert(stl->stats.connected_facets_2_edge <= stl->stats.connected_facets_1_edge);
	assert(stl->stats.connected_facets_1_edge <= stl->stats.number_of_facets);

  	if (stl->stats.connected_facets_3_edge == stl->stats.number_of_facets)
    	// No need to check any further.  All facets are connected.
    	return;

  	HashTableEdges hash_table(stl->stats.number_of_facets);
  	for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
    	//FIXME is the copy necessary?
    	stl_facet facet = stl->facet_start[i];
    	for (int j = 0; j < 3; j++) {
      		if (stl->neighbors_start[i].neighbor[j] == -1) {
        		HashEdge edge;
        		edge.facet_number = i;
        		edge.which_edge = j;
        		if (edge.load_nearby(stl, facet.vertex[j], facet.vertex[(j + 1) % 3], tolerance))
          			// Only insert edges that have different keys.
          			hash_table.insert_edge_nearby(stl, edge);
      		}
    	}
  	}
}

void stl_remove_unconnected_facets(stl_file *stl)
{
	// A couple of things need to be done here.  One is to remove any completely unconnected facets (0 edges connected) since these are
	// useless and could be completely wrong.   The second thing that needs to be done is to remove any degenerate facets that were created during
	// stl_check_facets_nearby().
	auto remove_facet = [stl](int facet_number)
	{
		++ stl->stats.facets_removed;
		/* Update list of connected edges */
		stl_neighbors &neighbors = stl->neighbors_start[facet_number];
		// Update statistics on unconnected triangle edges.
		switch (neighbors.num_neighbors()) {
		case 3: -- stl->stats.connected_facets_3_edge; // fall through
		case 2: -- stl->stats.connected_facets_2_edge; // fall through
		case 1: -- stl->stats.connected_facets_1_edge; // fall through
		case 0: break;
		default: assert(false);
		}

	  	if (facet_number < int(-- stl->stats.number_of_facets)) {
	  		// Removing a face, which was not the last one.
		  	// Copy the face and neighborship from the last face to facet_number.
		  	stl->facet_start[facet_number] = stl->facet_start[stl->stats.number_of_facets];
		  	neighbors = stl->neighbors_start[stl->stats.number_of_facets];
		  	// Update neighborship of faces, which used to point to the last face, now moved to facet_number.
		  	for (int i = 0; i < 3; ++ i)
		    	if (neighbors.neighbor[i] != -1) {
			    	int &other_face_idx = stl->neighbors_start[neighbors.neighbor[i]].neighbor[(neighbors.which_vertex_not[i] + 1) % 3];
			  		if (other_face_idx != stl->stats.number_of_facets) {
			  			BOOST_LOG_TRIVIAL(info) << "in remove_facet: neighbor = " << other_face_idx << " numfacets = " << stl->stats.number_of_facets << " this is wrong";
			    		return;
			  		}
			  		other_face_idx = facet_number;
		  		}
		}

	  	stl->facet_start.pop_back();
	  	stl->neighbors_start.pop_back();
	};

	auto remove_degenerate = [stl, remove_facet](int facet)
	{
		// Update statistics on face connectivity after one edge was disconnected on the facet "facet_num".
		auto update_connects_remove_1 = [stl](int facet_num) {
			switch (stl->neighbors_start[facet_num].num_neighbors()) {
			case 0: assert(false); break;
			case 1: -- stl->stats.connected_facets_1_edge; break;
			case 2: -- stl->stats.connected_facets_2_edge; break;
			case 3: -- stl->stats.connected_facets_3_edge; break;
			default: assert(false);
		  	}
		};

		int edge_to_collapse = 0;
	   	if (stl->facet_start[facet].vertex[0] == stl->facet_start[facet].vertex[1]) {
			if (stl->facet_start[facet].vertex[1] == stl->facet_start[facet].vertex[2]) {
				// All 3 vertices are equal. Collapse the edge with no neighbor if it exists.
				const int *nbr = stl->neighbors_start[facet].neighbor;
				edge_to_collapse = (nbr[0] == -1) ? 0 : (nbr[1] == -1) ? 1 : 2;
			} else {
				edge_to_collapse = 0;
			}
	  	} else if (stl->facet_start[facet].vertex[1] == stl->facet_start[facet].vertex[2]) {
			edge_to_collapse = 1;
	  	} else if (stl->facet_start[facet].vertex[2] == stl->facet_start[facet].vertex[0]) {
			edge_to_collapse = 2;
	  	} else {
	    	// No degenerate. Function shouldn't have been called.
	    	return;
	  	}

		int edge[3] = { (edge_to_collapse + 1) % 3, (edge_to_collapse + 2) % 3, edge_to_collapse };
		int neighbor[] = {
			stl->neighbors_start[facet].neighbor[edge[0]],
			stl->neighbors_start[facet].neighbor[edge[1]],
			stl->neighbors_start[facet].neighbor[edge[2]]
		};
		int vnot[] = {
			stl->neighbors_start[facet].which_vertex_not[edge[0]],
			stl->neighbors_start[facet].which_vertex_not[edge[1]],
			stl->neighbors_start[facet].which_vertex_not[edge[2]]
		};

		// Update statistics on edge connectivity.
		if ((neighbor[0] == -1) && (neighbor[1] != -1))
			update_connects_remove_1(neighbor[1]);
		if ((neighbor[1] == -1) && (neighbor[0] != -1))
			update_connects_remove_1(neighbor[0]);

	  	if (neighbor[0] >= 0) {
			if (neighbor[1] >= 0) {
				// Adjust the "flip" flag for the which_vertex_not values.
				if (vnot[0] > 2) {
					if (vnot[1] > 2) {
						// The face to be removed has its normal flipped compared to the left & right neighbors, therefore after removing this face
						// the two remaining neighbors will be oriented correctly.
						vnot[0] -= 3;
						vnot[1] -= 3;
					} else
						// One neighbor has its normal inverted compared to the face to be removed, the other is oriented equally.
						// After removal, the two neighbors will have their normals flipped.
						vnot[1] += 3;
				} else if (vnot[1] > 2)
					// One neighbor has its normal inverted compared to the face to be removed, the other is oriented equally.
					// After removal, the two neighbors will have their normals flipped.
					vnot[0] += 3;
			}
			stl->neighbors_start[neighbor[0]].neighbor[(vnot[0] + 1) % 3] = (neighbor[0] == neighbor[1]) ? -1 : neighbor[1];
	    	stl->neighbors_start[neighbor[0]].which_vertex_not[(vnot[0] + 1) % 3] = vnot[1];
	  	}
	  	if (neighbor[1] >= 0) {
			stl->neighbors_start[neighbor[1]].neighbor[(vnot[1] + 1) % 3] = (neighbor[0] == neighbor[1]) ? -1 : neighbor[0];
	    	stl->neighbors_start[neighbor[1]].which_vertex_not[(vnot[1] + 1) % 3] = vnot[0];
	  	}
		if (neighbor[2] >= 0) {
			update_connects_remove_1(neighbor[2]);
			stl->neighbors_start[neighbor[2]].neighbor[(vnot[2] + 1) % 3] = -1;
		}

	  	remove_facet(facet);
	};

	// remove degenerate facets
	for (uint32_t i = 0; i < stl->stats.number_of_facets;)
		if (stl->facet_start[i].vertex[0] == stl->facet_start[i].vertex[1] ||
			stl->facet_start[i].vertex[0] == stl->facet_start[i].vertex[2] ||
			stl->facet_start[i].vertex[1] == stl->facet_start[i].vertex[2]) {
			remove_degenerate(i);
//			assert(stl_validate(stl));
		} else
			++ i;

	if (stl->stats.connected_facets_1_edge < (int)stl->stats.number_of_facets) {
		// There are some faces with no connected edge at all. Remove completely unconnected facets.
		for (uint32_t i = 0; i < stl->stats.number_of_facets;)
			if (stl->neighbors_start[i].num_neighbors() == 0) {
				// This facet is completely unconnected.  Remove it.
				remove_facet(i);
				assert(stl_validate(stl));
			} else
				++ i;
	}
}

void stl_fill_holes(stl_file *stl)
{
	// Insert all unconnected edges into hash list.
	HashTableEdges hash_table(stl->stats.number_of_facets);
	for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
  		stl_facet facet = stl->facet_start[i];
		for (int j = 0; j < 3; ++ j) {
	  		if(stl->neighbors_start[i].neighbor[j] != -1)
	  			continue;
			HashEdge edge;
	  		edge.facet_number = i;
	  		edge.which_edge = j;
	  		edge.load_exact(stl, &facet.vertex[j], &facet.vertex[(j + 1) % 3]);
	  		hash_table.insert_edge_exact(stl, edge);
		}
	}

	for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
		stl_facet facet = stl->facet_start[i];
		int neighbors_initial[3] = { stl->neighbors_start[i].neighbor[0], stl->neighbors_start[i].neighbor[1], stl->neighbors_start[i].neighbor[2] };
		int first_facet = i;
		for (int j = 0; j < 3; ++ j) {
	  		if (stl->neighbors_start[i].neighbor[j] != -1)
	  			continue;

  			stl_facet new_facet;
	  		new_facet.vertex[0] = facet.vertex[j];
	  		new_facet.vertex[1] = facet.vertex[(j + 1) % 3];
		  	bool direction = neighbors_initial[(j + 2) % 3] == -1;
  			int facet_num = i;
		  	int vnot = (j + 2) % 3;

	  		for (;;) {
				int pivot_vertex = 0;
				int next_edge = 0;
	    		if (vnot > 2) {
	      			if (direction) {
	        			pivot_vertex = (vnot + 1) % 3;
	        			next_edge = vnot % 3;
	      			} else {
	        			pivot_vertex = (vnot + 2) % 3;
	        			next_edge = pivot_vertex;
	      			}
	      			direction = ! direction;
	    		} else {
	      			if(direction == 0) {
	        			pivot_vertex = (vnot + 1) % 3;
	        			next_edge = vnot;
	      			} else {
	        			pivot_vertex = (vnot + 2) % 3;
	        			next_edge = pivot_vertex;
	      			}
	    		}

	    		int next_facet = stl->neighbors_start[facet_num].neighbor[next_edge];
	    		if (next_facet == -1) {
	      			new_facet.vertex[2] = stl->facet_start[facet_num].vertex[vnot % 3];
				    stl_add_facet(stl, &new_facet);
	      			for (int k = 0; k < 3; ++ k) {
	      				HashEdge edge;
	        			edge.facet_number = stl->stats.number_of_facets - 1;
	        			edge.which_edge = k;
	        			edge.load_exact(stl, &new_facet.vertex[k], &new_facet.vertex[(k + 1) % 3]);
	        			hash_table.insert_edge_exact(stl, edge);
	      			}
	      			break;
	    		}

	      		vnot = stl->neighbors_start[facet_num].which_vertex_not[next_edge];
	      		facet_num = next_facet;

	    		if (facet_num == first_facet) {
	      			// back to the beginning
		  			BOOST_LOG_TRIVIAL(info) << "Back to the first facet filling holes: probably a mobius part. Try using a smaller tolerance or don't do a nearby check.";
	      			return;
	    		}
	  		}
		}
	}
}

void stl_add_facet(stl_file *stl, const stl_facet *new_facet)
{
	assert(stl->facet_start.size() == stl->stats.number_of_facets);
	assert(stl->neighbors_start.size() == stl->stats.number_of_facets);
	stl->facet_start.emplace_back(*new_facet);
  	// note that the normal vector is not set here, just initialized to 0.
  	stl->facet_start[stl->stats.number_of_facets].normal = stl_normal::Zero();
  	stl->neighbors_start.emplace_back();
	++ stl->stats.facets_added;
	++ stl->stats.number_of_facets;
}