Welcome to mirror list, hosted at ThFree Co, Russian Federation.

arap.cpp « igl « libigl « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: dc5af4cf6f6b4cb02d1dc29238db859f6a30b06c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "arap.h"
#include "colon.h"
#include "cotmatrix.h"
#include "massmatrix.h"
#include "group_sum_matrix.h"
#include "covariance_scatter_matrix.h"
#include "speye.h"
#include "mode.h"
#include "project_isometrically_to_plane.h"
#include "slice.h"
#include "arap_rhs.h"
#include "repdiag.h"
#include "columnize.h"
#include "fit_rotations.h"
#include <cassert>
#include <iostream>

template <
  typename DerivedV,
  typename DerivedF,
  typename Derivedb>
IGL_INLINE bool igl::arap_precomputation(
  const Eigen::PlainObjectBase<DerivedV> & V,
  const Eigen::PlainObjectBase<DerivedF> & F,
  const int dim,
  const Eigen::PlainObjectBase<Derivedb> & b,
  ARAPData & data)
{
  using namespace std;
  using namespace Eigen;
  typedef typename DerivedV::Scalar Scalar;
  // number of vertices
  const int n = V.rows();
  data.n = n;
  assert((b.size() == 0 || b.maxCoeff() < n) && "b out of bounds");
  assert((b.size() == 0 || b.minCoeff() >=0) && "b out of bounds");
  // remember b
  data.b = b;
  //assert(F.cols() == 3 && "For now only triangles");
  // dimension
  //const int dim = V.cols();
  assert((dim == 3 || dim ==2) && "dim should be 2 or 3");
  data.dim = dim;
  //assert(dim == 3 && "Only 3d supported");
  // Defaults
  data.f_ext = MatrixXd::Zero(n,data.dim);

  assert(data.dim <= V.cols() && "solve dim should be <= embedding");
  bool flat = (V.cols() - data.dim)==1;

  DerivedV plane_V;
  DerivedF plane_F;
  typedef SparseMatrix<Scalar> SparseMatrixS;
  SparseMatrixS ref_map,ref_map_dim;
  if(flat)
  {
    project_isometrically_to_plane(V,F,plane_V,plane_F,ref_map);
    repdiag(ref_map,dim,ref_map_dim);
  }
  const PlainObjectBase<DerivedV>& ref_V = (flat?plane_V:V);
  const PlainObjectBase<DerivedF>& ref_F = (flat?plane_F:F);
  SparseMatrixS L;
  cotmatrix(V,F,L);

  ARAPEnergyType eff_energy = data.energy;
  if(eff_energy == ARAP_ENERGY_TYPE_DEFAULT)
  {
    switch(F.cols())
    {
      case 3:
        if(data.dim == 3)
        {
          eff_energy = ARAP_ENERGY_TYPE_SPOKES_AND_RIMS;
        }else
        {
          eff_energy = ARAP_ENERGY_TYPE_ELEMENTS;
        }
        break;
      case 4:
        eff_energy = ARAP_ENERGY_TYPE_ELEMENTS;
        break;
      default:
        assert(false);
    }
  }


  // Get covariance scatter matrix, when applied collects the covariance
  // matrices used to fit rotations to during optimization
  covariance_scatter_matrix(ref_V,ref_F,eff_energy,data.CSM);
  if(flat)
  {
    data.CSM = (data.CSM * ref_map_dim.transpose()).eval();
  }
  assert(data.CSM.cols() == V.rows()*data.dim);

  // Get group sum scatter matrix, when applied sums all entries of the same
  // group according to G
  SparseMatrix<double> G_sum;
  if(data.G.size() == 0)
  {
    if(eff_energy == ARAP_ENERGY_TYPE_ELEMENTS)
    {
      speye(F.rows(),G_sum);
    }else
    {
      speye(n,G_sum);
    }
  }else
  {
    // groups are defined per vertex, convert to per face using mode
    if(eff_energy == ARAP_ENERGY_TYPE_ELEMENTS)
    {
      Eigen::Matrix<int,Eigen::Dynamic,1> GG;
      MatrixXi GF(F.rows(),F.cols());
      for(int j = 0;j<F.cols();j++)
      {
        Matrix<int,Eigen::Dynamic,1> GFj;
        slice(data.G,F.col(j),GFj);
        GF.col(j) = GFj;
      }
      mode<int>(GF,2,GG);
      data.G=GG;
    }
    //printf("group_sum_matrix()\n");
    group_sum_matrix(data.G,G_sum);
  }
  SparseMatrix<double> G_sum_dim;
  repdiag(G_sum,data.dim,G_sum_dim);
  assert(G_sum_dim.cols() == data.CSM.rows());
  data.CSM = (G_sum_dim * data.CSM).eval();


  arap_rhs(ref_V,ref_F,data.dim,eff_energy,data.K);
  if(flat)
  {
    data.K = (ref_map_dim * data.K).eval();
  }
  assert(data.K.rows() == data.n*data.dim);

  SparseMatrix<double> Q = (-L).eval();

  if(data.with_dynamics)
  {
    const double h = data.h;
    assert(h != 0);
    SparseMatrix<double> M;
    massmatrix(V,F,MASSMATRIX_TYPE_DEFAULT,data.M);
    const double dw = (1./data.ym)*(h*h);
    SparseMatrix<double> DQ = dw * 1./(h*h)*data.M;
    Q += DQ;
    // Dummy external forces
    data.f_ext = MatrixXd::Zero(n,data.dim);
    data.vel = MatrixXd::Zero(n,data.dim);
  }

  return min_quad_with_fixed_precompute(
    Q,b,SparseMatrix<double>(),true,data.solver_data);
}

template <
  typename Derivedbc,
  typename DerivedU>
IGL_INLINE bool igl::arap_solve(
  const Eigen::PlainObjectBase<Derivedbc> & bc,
  ARAPData & data,
  Eigen::PlainObjectBase<DerivedU> & U)
{
  using namespace Eigen;
  using namespace std;
  assert(data.b.size() == bc.rows());
  if(bc.size() > 0)
  {
    assert(bc.cols() == data.dim && "bc.cols() match data.dim");
  }
  const int n = data.n;
  int iter = 0;
  if(U.size() == 0)
  {
    // terrible initial guess.. should at least copy input mesh
#ifndef NDEBUG
    cerr<<"arap_solve: Using terrible initial guess for U. Try U = V."<<endl;
#endif
    U = MatrixXd::Zero(data.n,data.dim);
  }else
  {
    assert(U.cols() == data.dim && "U.cols() match data.dim");
  }
  // changes each arap iteration
  MatrixXd U_prev = U;
  // doesn't change for fixed with_dynamics timestep
  MatrixXd U0;
  if(data.with_dynamics)
  {
    U0 = U_prev;
  }
  while(iter < data.max_iter)
  {
    U_prev = U;
    // enforce boundary conditions exactly
    for(int bi = 0;bi<bc.rows();bi++)
    {
      U.row(data.b(bi)) = bc.row(bi);
    }

    const auto & Udim = U.replicate(data.dim,1);
    assert(U.cols() == data.dim);
    // As if U.col(2) was 0
    MatrixXd S = data.CSM * Udim;
    // THIS NORMALIZATION IS IMPORTANT TO GET SINGLE PRECISION SVD CODE TO WORK
    // CORRECTLY.
    S /= S.array().abs().maxCoeff();

    const int Rdim = data.dim;
    MatrixXd R(Rdim,data.CSM.rows());
    if(R.rows() == 2)
    {
      fit_rotations_planar(S,R);
    }else
    {
      fit_rotations(S,true,R);
//#ifdef __SSE__ // fit_rotations_SSE will convert to float if necessary
//      fit_rotations_SSE(S,R);
//#else
//      fit_rotations(S,true,R);
//#endif
    }
    //for(int k = 0;k<(data.CSM.rows()/dim);k++)
    //{
    //  R.block(0,dim*k,dim,dim) = MatrixXd::Identity(dim,dim);
    //}


    // Number of rotations: #vertices or #elements
    int num_rots = data.K.cols()/Rdim/Rdim;
    // distribute group rotations to vertices in each group
    MatrixXd eff_R;
    if(data.G.size() == 0)
    {
      // copy...
      eff_R = R;
    }else
    {
      eff_R.resize(Rdim,num_rots*Rdim);
      for(int r = 0;r<num_rots;r++)
      {
        eff_R.block(0,Rdim*r,Rdim,Rdim) =
          R.block(0,Rdim*data.G(r),Rdim,Rdim);
      }
    }

    MatrixXd Dl;
    if(data.with_dynamics)
    {
      assert(data.M.rows() == n &&
        "No mass matrix. Call arap_precomputation if changing with_dynamics");
      const double h = data.h;
      assert(h != 0);
      //Dl = 1./(h*h*h)*M*(-2.*V0 + Vm1) - fext;
      // data.vel = (V0-Vm1)/h
      // h*data.vel = (V0-Vm1)
      // -h*data.vel = -V0+Vm1)
      // -V0-h*data.vel = -2V0+Vm1
      const double dw = (1./data.ym)*(h*h);
      Dl = dw * (1./(h*h)*data.M*(-U0 - h*data.vel) - data.f_ext);
    }

    VectorXd Rcol;
    columnize(eff_R,num_rots,2,Rcol);
    VectorXd Bcol = -data.K * Rcol;
    assert(Bcol.size() == data.n*data.dim);
    for(int c = 0;c<data.dim;c++)
    {
      VectorXd Uc,Bc,bcc,Beq;
      Bc = Bcol.block(c*n,0,n,1);
      if(data.with_dynamics)
      {
        Bc += Dl.col(c);
      }
      if(bc.size()>0)
      {
        bcc = bc.col(c);
      }
      min_quad_with_fixed_solve(
        data.solver_data,
        Bc,bcc,Beq,
        Uc);
      U.col(c) = Uc;
    }

    iter++;
  }
  if(data.with_dynamics)
  {
    // Keep track of velocity for next time
    data.vel = (U-U0)/data.h;
  }

  return true;
}

#ifdef IGL_STATIC_LIBRARY
template bool igl::arap_solve<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, igl::ARAPData&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
template bool igl::arap_precomputation<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, int, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, igl::ARAPData&);
#endif