Welcome to mirror list, hosted at ThFree Co, Russian Federation.

SelfIntersectMesh.h « cgal « copyleft « igl « libigl « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 39a4e1a7e3459f73cbb9dfc5004d148d2d1def0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
// This file is part of libigl, a simple c++ geometry processing library.
// 
// Copyright (C) 2014 Alec Jacobson <alecjacobson@gmail.com>
// 
// This Source Code Form is subject to the terms of the Mozilla Public License 
// v. 2.0. If a copy of the MPL was not distributed with this file, You can 
// obtain one at http://mozilla.org/MPL/2.0/.
#ifndef IGL_COPYLEFT_CGAL_SELFINTERSECTMESH_H
#define IGL_COPYLEFT_CGAL_SELFINTERSECTMESH_H

#include "CGAL_includes.hpp"
#include "RemeshSelfIntersectionsParam.h"
#include "../../unique.h"

#include <Eigen/Dense>
#include <list>
#include <map>
#include <vector>
#include <thread>
#include <mutex>

//#define IGL_SELFINTERSECTMESH_DEBUG
#ifndef IGL_FIRST_HIT_EXCEPTION
#define IGL_FIRST_HIT_EXCEPTION 10
#endif

// The easiest way to keep track of everything is to use a class

namespace igl
{
  namespace copyleft
  {
    namespace cgal
    {
      // Kernel is a CGAL kernel like:
      //     CGAL::Exact_predicates_inexact_constructions_kernel
      // or 
      //     CGAL::Exact_predicates_exact_constructions_kernel
    
      template <
        typename Kernel,
        typename DerivedV,
        typename DerivedF,
        typename DerivedVV,
        typename DerivedFF,
        typename DerivedIF,
        typename DerivedJ,
        typename DerivedIM>
      class SelfIntersectMesh
      {
        typedef 
          SelfIntersectMesh<
          Kernel,
          DerivedV,
          DerivedF,
          DerivedVV,
          DerivedFF,
          DerivedIF,
          DerivedJ,
          DerivedIM> Self;
        public:
          // 3D Primitives
          typedef CGAL::Point_3<Kernel>    Point_3;
          typedef CGAL::Segment_3<Kernel>  Segment_3; 
          typedef CGAL::Triangle_3<Kernel> Triangle_3; 
          typedef CGAL::Plane_3<Kernel>    Plane_3;
          typedef CGAL::Tetrahedron_3<Kernel> Tetrahedron_3; 
          // 2D Primitives
          typedef CGAL::Point_2<Kernel>    Point_2;
          typedef CGAL::Segment_2<Kernel>  Segment_2; 
          typedef CGAL::Triangle_2<Kernel> Triangle_2; 
          // 2D Constrained Delaunay Triangulation types
          typedef CGAL::Exact_intersections_tag Itag;
          // Axis-align boxes for all-pairs self-intersection detection
          typedef std::vector<Triangle_3> Triangles;
          typedef typename Triangles::iterator TrianglesIterator;
          typedef typename Triangles::const_iterator TrianglesConstIterator;
          typedef 
            CGAL::Box_intersection_d::Box_with_handle_d<double,3,TrianglesIterator> 
            Box;
    
          // Input mesh
          const Eigen::MatrixBase<DerivedV> & V;
          const Eigen::MatrixBase<DerivedF> & F;
          // Number of self-intersecting triangle pairs
          typedef typename DerivedF::Index Index;
          Index count;
          typedef std::vector<std::pair<Index, CGAL::Object>> ObjectList;
          // Using a vector here makes this **not** output sensitive
          Triangles T;
          typedef std::vector<Index> IndexList;
          IndexList lIF;
          // #F-long list of faces with intersections mapping to the order in
          // which they were first found
          std::map<Index,ObjectList> offending;
          // Make a short name for the edge map's key
          typedef std::pair<Index,Index> EMK;
          // Make a short name for the type stored at each edge, the edge map's
          // value
          typedef std::vector<Index> EMV;
          // Make a short name for the edge map
          typedef std::map<EMK,EMV> EdgeMap;
          // Maps edges of offending faces to all incident offending faces
          std::vector<std::pair<TrianglesIterator, TrianglesIterator> >
              candidate_triangle_pairs;

        public:
          RemeshSelfIntersectionsParam params;
        public:
          // Constructs (VV,FF) a new mesh with self-intersections of (V,F)
          // subdivided
          //
          // See also: remesh_self_intersections.h
          inline SelfIntersectMesh(
              const Eigen::MatrixBase<DerivedV> & V,
              const Eigen::MatrixBase<DerivedF> & F,
              const RemeshSelfIntersectionsParam & params,
              Eigen::PlainObjectBase<DerivedVV> & VV,
              Eigen::PlainObjectBase<DerivedFF> & FF,
              Eigen::PlainObjectBase<DerivedIF> & IF,
              Eigen::PlainObjectBase<DerivedJ> & J,
              Eigen::PlainObjectBase<DerivedIM> & IM);
        private:
          // Helper function to mark a face as offensive
          //
          // Inputs:
          //   f  index of face in F
          inline void mark_offensive(const Index f);
          // Helper function to count intersections between faces
          //
          // Input:
          //   fa  index of face A in F
          //   fb  index of face B in F
          inline void count_intersection( const Index fa, const Index fb);
          // Helper function for box_intersect. Intersect two triangles A and B,
          // append the intersection object (point,segment,triangle) to a running
          // list for A and B
          //
          // Inputs:
          //   A  triangle in 3D
          //   B  triangle in 3D
          //   fa  index of A in F (and key into offending)
          //   fb  index of B in F (and key into offending)
          // Returns true only if A intersects B
          //
          inline bool intersect(
              const Triangle_3 & A, 
              const Triangle_3 & B, 
              const Index fa,
              const Index fb);
          // Helper function for box_intersect. In the case where A and B have
          // already been identified to share a vertex, then we only want to
          // add possible segment intersections. Assumes truly duplicate
          // triangles are not given as input
          //
          // Inputs:
          //   A  triangle in 3D
          //   B  triangle in 3D
          //   fa  index of A in F (and key into offending)
          //   fb  index of B in F (and key into offending)
          //   va  index of shared vertex in A (and key into offending)
          //   vb  index of shared vertex in B (and key into offending)
          //   Returns true if intersection (besides shared point)
          //
          inline bool single_shared_vertex(
              const Triangle_3 & A,
              const Triangle_3 & B,
              const Index fa,
              const Index fb,
              const Index va,
              const Index vb);
          // Helper handling one direction
          inline bool single_shared_vertex(
              const Triangle_3 & A,
              const Triangle_3 & B,
              const Index fa,
              const Index fb,
              const Index va);
          // Helper function for box_intersect. In the case where A and B have
          // already been identified to share two vertices, then we only want
          // to add a possible coplanar (Triangle) intersection. Assumes truly
          // degenerate facets are not givin as input.
          inline bool double_shared_vertex(
              const Triangle_3 & A,
              const Triangle_3 & B,
              const Index fa,
              const Index fb,
              const std::vector<std::pair<Index,Index> > shared);
    
        public:
          // Callback function called during box self intersections test. Means
          // boxes a and b intersect. This method then checks if the triangles
          // in each box intersect and if so, then processes the intersections
          //
          // Inputs:
          //   a  box containing a triangle
          //   b  box containing a triangle
          inline void box_intersect(const Box& a, const Box& b);
          inline void process_intersecting_boxes();
        public:
          // Getters:
          //const IndexList& get_lIF() const{ return lIF;}
          static inline void box_intersect_static(
            SelfIntersectMesh * SIM, 
            const Box &a, 
            const Box &b);
        private:
          std::mutex m_offending_lock;
      };
    }
  }
}

// Implementation

#include "mesh_to_cgal_triangle_list.h"
#include "remesh_intersections.h"

#include "../../REDRUM.h"
#include "../../get_seconds.h"
#include "../../C_STR.h"


#include <functional>
#include <algorithm>
#include <exception>
#include <cassert>
#include <iostream>

// References:
// http://minregret.googlecode.com/svn/trunk/skyline/src/extern/CGAL-3.3.1/examples/Polyhedron/polyhedron_self_intersection.cpp
// http://www.cgal.org/Manual/3.9/examples/Boolean_set_operations_2/do_intersect.cpp

// Q: Should we be using CGAL::Polyhedron_3?
// A: No! Input is just a list of unoriented triangles. Polyhedron_3 requires
// a 2-manifold.
// A: But! It seems we could use CGAL::Triangulation_3. Though it won't be easy
// to take advantage of functions like insert_in_facet because we want to
// constrain segments. Hmmm. Actually Triangulation_3 doesn't look right...

// CGAL's box_self_intersection_d uses C-style function callbacks without
// userdata. This is a leapfrog method for calling a member function. It should
// be bound as if the prototype was:
//   static void box_intersect(const Box &a, const Box &b)
// using boost:
//  boost::function<void(const Box &a,const Box &b)> cb
//    = boost::bind(&::box_intersect, this, _1,_2);
//   
template <
  typename Kernel,
  typename DerivedV,
  typename DerivedF,
  typename DerivedVV,
  typename DerivedFF,
  typename DerivedIF,
  typename DerivedJ,
  typename DerivedIM>
inline void igl::copyleft::cgal::SelfIntersectMesh<
  Kernel,
  DerivedV,
  DerivedF,
  DerivedVV,
  DerivedFF,
  DerivedIF,
  DerivedJ,
  DerivedIM>::box_intersect_static(
  Self * SIM, 
  const typename Self::Box &a, 
  const typename Self::Box &b)
{
  SIM->box_intersect(a,b);
}

template <
  typename Kernel,
  typename DerivedV,
  typename DerivedF,
  typename DerivedVV,
  typename DerivedFF,
  typename DerivedIF,
  typename DerivedJ,
  typename DerivedIM>
inline igl::copyleft::cgal::SelfIntersectMesh<
  Kernel,
  DerivedV,
  DerivedF,
  DerivedVV,
  DerivedFF,
  DerivedIF,
  DerivedJ,
  DerivedIM>::SelfIntersectMesh(
  const Eigen::MatrixBase<DerivedV> & V,
  const Eigen::MatrixBase<DerivedF> & F,
  const RemeshSelfIntersectionsParam & params,
  Eigen::PlainObjectBase<DerivedVV> & VV,
  Eigen::PlainObjectBase<DerivedFF> & FF,
  Eigen::PlainObjectBase<DerivedIF> & IF,
  Eigen::PlainObjectBase<DerivedJ> & J,
  Eigen::PlainObjectBase<DerivedIM> & IM):
  V(V),
  F(F),
  count(0),
  T(),
  lIF(),
  offending(),
  params(params)
{
  using namespace std;
  using namespace Eigen;

#ifdef IGL_SELFINTERSECTMESH_DEBUG
  const auto & tictoc = []() -> double
  {
    static double t_start = igl::get_seconds();
    double diff = igl::get_seconds()-t_start;
    t_start += diff;
    return diff;
  };
  const auto log_time = [&](const std::string& label) -> void{
    std::cout << "SelfIntersectMesh." << label << ": "
      << tictoc() << std::endl;
  };
  tictoc();
#endif

  // Compute and process self intersections
  mesh_to_cgal_triangle_list(V,F,T);
#ifdef IGL_SELFINTERSECTMESH_DEBUG
  log_time("convert_to_triangle_list");
#endif
  // http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Box_intersection_d/Chapter_main.html#Section_63.5 
  // Create the corresponding vector of bounding boxes
  std::vector<Box> boxes;
  boxes.reserve(T.size());
  for ( 
    TrianglesIterator tit = T.begin(); 
    tit != T.end(); 
    ++tit)
  {
    if (!tit->is_degenerate())
    {
      boxes.push_back(Box(tit->bbox(), tit));
    }
  }
  // Leapfrog callback
  std::function<void(const Box &a,const Box &b)> cb = 
    std::bind(&box_intersect_static, this, 
      // Explicitly use std namespace to avoid confusion with boost (who puts
      // _1 etc. in global namespace)
      std::placeholders::_1,
      std::placeholders::_2);
#ifdef IGL_SELFINTERSECTMESH_DEBUG
  log_time("box_and_bind");
#endif
  // Run the self intersection algorithm with all defaults
  CGAL::box_self_intersection_d(boxes.begin(), boxes.end(),cb);
#ifdef IGL_SELFINTERSECTMESH_DEBUG
  log_time("box_intersection_d");
#endif
  try{
    process_intersecting_boxes();
  }catch(int e)
  {
    // Rethrow if not IGL_FIRST_HIT_EXCEPTION
    if(e != IGL_FIRST_HIT_EXCEPTION)
    {
      throw e;
    }
    // Otherwise just fall through
  }
#ifdef IGL_SELFINTERSECTMESH_DEBUG
  log_time("resolve_intersection");
#endif

  // Convert lIF to Eigen matrix
  assert(lIF.size()%2 == 0);
  IF.resize(lIF.size()/2,2);
  {
    Index i=0;
    for(
      typename IndexList::const_iterator ifit = lIF.begin();
      ifit!=lIF.end();
      )
    {
      IF(i,0) = (*ifit);
      ifit++; 
      IF(i,1) = (*ifit);
      ifit++;
      i++;
    }
  }
#ifdef IGL_SELFINTERSECTMESH_DEBUG
  log_time("store_intersecting_face_pairs");
#endif

  if(params.detect_only)
  {
    return;
  }

  remesh_intersections(
    V,F,T,offending,params.stitch_all,VV,FF,J,IM);

#ifdef IGL_SELFINTERSECTMESH_DEBUG
  log_time("remesh_intersection");
#endif
}


template <
  typename Kernel,
  typename DerivedV,
  typename DerivedF,
  typename DerivedVV,
  typename DerivedFF,
  typename DerivedIF,
  typename DerivedJ,
  typename DerivedIM>
inline void igl::copyleft::cgal::SelfIntersectMesh<
  Kernel,
  DerivedV,
  DerivedF,
  DerivedVV,
  DerivedFF,
  DerivedIF,
  DerivedJ,
  DerivedIM>::mark_offensive(const Index f)
{
  using namespace std;
  lIF.push_back(f);
  if(offending.count(f) == 0)
  {
    // first time marking, initialize with new id and empty list
    offending[f] = {};
  }
}

template <
  typename Kernel,
  typename DerivedV,
  typename DerivedF,
  typename DerivedVV,
  typename DerivedFF,
  typename DerivedIF,
  typename DerivedJ,
  typename DerivedIM>
inline void igl::copyleft::cgal::SelfIntersectMesh<
  Kernel,
  DerivedV,
  DerivedF,
  DerivedVV,
  DerivedFF,
  DerivedIF,
  DerivedJ,
  DerivedIM>::count_intersection(
  const Index fa,
  const Index fb)
{
  std::lock_guard<std::mutex> guard(m_offending_lock);
  mark_offensive(fa);
  mark_offensive(fb);
  this->count++;
  // We found the first intersection
  if(params.first_only && this->count >= 1)
  {
    throw IGL_FIRST_HIT_EXCEPTION;
  }

}

template <
  typename Kernel,
  typename DerivedV,
  typename DerivedF,
  typename DerivedVV,
  typename DerivedFF,
  typename DerivedIF,
  typename DerivedJ,
  typename DerivedIM>
inline bool igl::copyleft::cgal::SelfIntersectMesh<
  Kernel,
  DerivedV,
  DerivedF,
  DerivedVV,
  DerivedFF,
  DerivedIF,
  DerivedJ,
  DerivedIM>::intersect(
  const Triangle_3 & A, 
  const Triangle_3 & B, 
  const Index fa,
  const Index fb)
{
  // Determine whether there is an intersection
  if(!CGAL::do_intersect(A,B))
  {
    return false;
  }
  count_intersection(fa,fb);
  if(!params.detect_only)
  {
    // Construct intersection
    CGAL::Object result = CGAL::intersection(A,B);
    std::lock_guard<std::mutex> guard(m_offending_lock);
    offending[fa].push_back({fb, result});
    offending[fb].push_back({fa, result});
  }
  return true;
}

template <
  typename Kernel,
  typename DerivedV,
  typename DerivedF,
  typename DerivedVV,
  typename DerivedFF,
  typename DerivedIF,
  typename DerivedJ,
  typename DerivedIM>
inline bool igl::copyleft::cgal::SelfIntersectMesh<
  Kernel,
  DerivedV,
  DerivedF,
  DerivedVV,
  DerivedFF,
  DerivedIF,
  DerivedJ,
  DerivedIM>::single_shared_vertex(
  const Triangle_3 & A,
  const Triangle_3 & B,
  const Index fa,
  const Index fb,
  const Index va,
  const Index vb)
{
  if(single_shared_vertex(A,B,fa,fb,va))
  {
    return true;
  }
  return single_shared_vertex(B,A,fb,fa,vb);
}

template <
  typename Kernel,
  typename DerivedV,
  typename DerivedF,
  typename DerivedVV,
  typename DerivedFF,
  typename DerivedIF,
  typename DerivedJ,
  typename DerivedIM>
inline bool igl::copyleft::cgal::SelfIntersectMesh<
  Kernel,
  DerivedV,
  DerivedF,
  DerivedVV,
  DerivedFF,
  DerivedIF,
  DerivedJ,
  DerivedIM>::single_shared_vertex(
  const Triangle_3 & A,
  const Triangle_3 & B,
  const Index fa,
  const Index fb,
  const Index va)
{
  // This was not a good idea. It will not handle coplanar triangles well.
  using namespace std;
  Segment_3 sa(
    A.vertex((va+1)%3),
    A.vertex((va+2)%3));

  if(CGAL::do_intersect(sa,B))
  {
    // can't put count_intersection(fa,fb) here since we use intersect below
    // and then it will be counted twice.
    if(params.detect_only)
    {
      count_intersection(fa,fb);
      return true;
    }
    CGAL::Object result = CGAL::intersection(sa,B);
    if(const Point_3 * p = CGAL::object_cast<Point_3 >(&result))
    {
      // Single intersection --> segment from shared point to intersection
      CGAL::Object seg = CGAL::make_object(Segment_3(
        A.vertex(va),
        *p));
      count_intersection(fa,fb);
      std::lock_guard<std::mutex> guard(m_offending_lock);
      offending[fa].push_back({fb, seg});
      offending[fb].push_back({fa, seg});
      return true;
    }else if(CGAL::object_cast<Segment_3 >(&result))
    {
      // Need to do full test. Intersection could be a general poly.
      bool test = intersect(A,B,fa,fb);
      ((void)test);
      assert(test && "intersect should agree with do_intersect");
      return true;
    }else
    {
      cerr<<REDRUM("Segment ∩ triangle neither point nor segment?")<<endl;
      assert(false);
    }
  }

  return false;
}


template <
  typename Kernel,
  typename DerivedV,
  typename DerivedF,
  typename DerivedVV,
  typename DerivedFF,
  typename DerivedIF,
  typename DerivedJ,
  typename DerivedIM>
inline bool igl::copyleft::cgal::SelfIntersectMesh<
  Kernel,
  DerivedV,
  DerivedF,
  DerivedVV,
  DerivedFF,
  DerivedIF,
  DerivedJ,
  DerivedIM>::double_shared_vertex(
  const Triangle_3 & A,
  const Triangle_3 & B,
  const Index fa,
  const Index fb,
  const std::vector<std::pair<Index,Index> > shared)
{
  using namespace std;

  auto opposite_vertex = [](const Index a0, const Index a1) {
    // get opposite index of A
    int a2=-1;
	for(int c=0;c<3;++c)
      if(c!=a0 && c!=a1) {
        a2 = c;
        break;
      }
      assert(a2 != -1);
      return a2;
  };

  // must be co-planar
  Index a2 = opposite_vertex(shared[0].first, shared[1].first);
  if (! B.supporting_plane().has_on(A.vertex(a2)))
    return false;
  
  Index b2 = opposite_vertex(shared[0].second, shared[1].second);

  if (int(CGAL::coplanar_orientation(A.vertex(shared[0].first), A.vertex(shared[1].first), A.vertex(a2))) * 
	  int(CGAL::coplanar_orientation(B.vertex(shared[0].second), B.vertex(shared[1].second), B.vertex(b2))) < 0)
    // There is certainly no self intersection as the non-shared triangle vertices lie on opposite sides of the shared edge.
    return false;

  // Since A and B are non-degenerate the intersection must be a polygon
  // (triangle). Either
  //   - the vertex of A (B) opposite the shared edge of lies on B (A), or
  //   - an edge of A intersects and edge of B without sharing a vertex
  //
  // Determine if the vertex opposite edge (a0,a1) in triangle A lies in
  // (intersects) triangle B
  const auto & opposite_point_inside = [](
    const Triangle_3 & A, const Index a2, const Triangle_3 & B) 
    -> bool
  {
    return CGAL::do_intersect(A.vertex(a2),B);
  };

  // Determine if edge opposite vertex va in triangle A intersects edge
  // opposite vertex vb in triangle B.
  const auto & opposite_edges_intersect = [](
    const Triangle_3 & A, const Index va,
    const Triangle_3 & B, const Index vb) -> bool
  {
    Segment_3 sa( A.vertex((va+1)%3), A.vertex((va+2)%3));
    Segment_3 sb( B.vertex((vb+1)%3), B.vertex((vb+2)%3));
    bool ret = CGAL::do_intersect(sa,sb);
    return ret;
  };

  if( 
    !opposite_point_inside(A,a2,B) &&
    !opposite_point_inside(B,b2,A) &&
    !opposite_edges_intersect(A,shared[0].first,B,shared[1].second) && 
    !opposite_edges_intersect(A,shared[1].first,B,shared[0].second))
  {
    return false;
  }

  // there is an intersection indeed
  count_intersection(fa,fb);
  if(params.detect_only)
  {
    return true;
  }
  // Construct intersection
  try
  {
    // This can fail for Epick but not Epeck
    CGAL::Object result = CGAL::intersection(A,B);
    if(!result.empty())
    {
      if(CGAL::object_cast<Segment_3 >(&result))
      {
        // not coplanar
        assert(false && 
          "Co-planar non-degenerate triangles should intersect over triangle");
        return false;
      } else if(CGAL::object_cast<Point_3 >(&result))
      {
        // this "shouldn't" happen but does for inexact
        assert(false && 
          "Co-planar non-degenerate triangles should intersect over triangle");
        return false;
      } else
      {
        // Triangle object
        std::lock_guard<std::mutex> guard(m_offending_lock);
        offending[fa].push_back({fb, result});
        offending[fb].push_back({fa, result});
        return true;
      }
    }else
    {
      // CGAL::intersection is disagreeing with do_intersect
      assert(false && "CGAL::intersection should agree with predicate tests");
      return false;
    }
  }catch(...)
  {
    // This catches some cgal assertion:
    //     CGAL error: assertion violation!
    //     Expression : is_finite(d)
    //     File       : /opt/local/include/CGAL/GMP/Gmpq_type.h
    //     Line       : 132
    //     Explanation: 
    // But only if NDEBUG is not defined, otherwise there's an uncaught
    // "Floating point exception: 8" SIGFPE
    return false;
  }
  // No intersection.
  return false;
}

template <
  typename Kernel,
  typename DerivedV,
  typename DerivedF,
  typename DerivedVV,
  typename DerivedFF,
  typename DerivedIF,
  typename DerivedJ,
  typename DerivedIM>
inline void igl::copyleft::cgal::SelfIntersectMesh<
  Kernel,
  DerivedV,
  DerivedF,
  DerivedVV,
  DerivedFF,
  DerivedIF,
  DerivedJ,
  DerivedIM>::box_intersect(
  const Box& a, 
  const Box& b)
{
  candidate_triangle_pairs.push_back({a.handle(), b.handle()});
}

template <
  typename Kernel,
  typename DerivedV,
  typename DerivedF,
  typename DerivedVV,
  typename DerivedFF,
  typename DerivedIF,
  typename DerivedJ,
  typename DerivedIM>
inline void igl::copyleft::cgal::SelfIntersectMesh<
  Kernel,
  DerivedV,
  DerivedF,
  DerivedVV,
  DerivedFF,
  DerivedIF,
  DerivedJ,
  DerivedIM>::process_intersecting_boxes()
{
  std::vector<std::mutex> triangle_locks(T.size());
  std::vector<std::mutex> vertex_locks(V.rows());
  std::mutex index_lock;
  std::mutex exception_mutex;
  bool exception_fired = false;
  int exception = -1;
  auto process_chunk = 
    [&](
      const size_t first, 
      const size_t last) -> void
  {
    try
    {
      assert(last >= first);

      for (size_t i=first; i<last; i++) 
      {
        if(exception_fired) return;
        Index fa=T.size(), fb=T.size();
        {
          // Before knowing which triangles are involved, we need to lock
          // everything to prevent race condition in updating reference
          // counters.
          std::lock_guard<std::mutex> guard(index_lock);
          const auto& tri_pair = candidate_triangle_pairs[i];
          fa = tri_pair.first - T.begin();
          fb = tri_pair.second - T.begin();
        }
        assert(fa < T.size());
        assert(fb < T.size());

        // Lock triangles
        std::lock_guard<std::mutex> guard_A(triangle_locks[fa]);
        std::lock_guard<std::mutex> guard_B(triangle_locks[fb]);

        // Lock vertices
        std::list<std::lock_guard<std::mutex> > guard_vertices;
        {
          std::vector<typename DerivedF::Scalar> unique_vertices;
          std::vector<size_t> tmp1, tmp2;
          igl::unique({F(fa,0), F(fa,1), F(fa,2), F(fb,0), F(fb,1), F(fb,2)},
              unique_vertices, tmp1, tmp2);
          std::for_each(unique_vertices.begin(), unique_vertices.end(),
              [&](const typename DerivedF::Scalar& vi) {
              guard_vertices.emplace_back(vertex_locks[vi]);
              });
        }
        if(exception_fired) return;

        const Triangle_3& A = T[fa];
        const Triangle_3& B = T[fb];

        // Number of combinatorially shared vertices
        Index comb_shared_vertices = 0;
        // Number of geometrically shared vertices (*not* including
        // combinatorially shared)
        Index geo_shared_vertices = 0;
        // Keep track of shared vertex indices
        std::vector<std::pair<Index,Index> > shared;
        Index ea,eb;
        for(ea=0;ea<3;ea++)
        {
          for(eb=0;eb<3;eb++)
          {
            if(F(fa,ea) == F(fb,eb))
            {
              comb_shared_vertices++;
              shared.emplace_back(ea,eb);
            }else if(A.vertex(ea) == B.vertex(eb))
            {
              geo_shared_vertices++;
              shared.emplace_back(ea,eb);
            }
          }
        }
        const Index total_shared_vertices = 
          comb_shared_vertices + geo_shared_vertices;
        if(exception_fired) return;

        if(comb_shared_vertices== 3)
        {
          assert(shared.size() == 3);
          // Combinatorially duplicate face, these should be removed by
          // preprocessing
          continue;
        }
        if(total_shared_vertices== 3)
        {
          assert(shared.size() == 3);
          // Geometrically duplicate face, these should be removed by
          // preprocessing
          continue;
        }
        if(total_shared_vertices == 2)
        {
          assert(shared.size() == 2);
          // Q: What about coplanar?
          //
          // o    o
          // |\  /|
          // | \/ |
          // | /\ |
          // |/  \|
          // o----o
          double_shared_vertex(A,B,fa,fb,shared);
          continue;
        }
        assert(total_shared_vertices<=1);
        if(total_shared_vertices==1)
        {
          single_shared_vertex(A,B,fa,fb,shared[0].first,shared[0].second);
        }else
        {
          intersect(A,B,fa,fb);
        }
      }
    }catch(int e)
    {
      std::lock_guard<std::mutex> exception_lock(exception_mutex);
      exception_fired = true;
      exception = e;
    }
  };
  size_t num_threads=0;
  const size_t hardware_limit = std::thread::hardware_concurrency();
  if (const char* igl_num_threads = std::getenv("LIBIGL_NUM_THREADS")) {
    num_threads = atoi(igl_num_threads);
  }
  if (num_threads == 0 || num_threads > hardware_limit) {
    num_threads = hardware_limit;
  }
  assert(num_threads > 0);
  const size_t num_pairs = candidate_triangle_pairs.size();
  const size_t chunk_size = num_pairs / num_threads;
  std::vector<std::thread> threads;
  for (size_t i=0; i<num_threads-1; i++) 
  {
    threads.emplace_back(process_chunk, i*chunk_size, (i+1)*chunk_size);
  }
  // Do some work in the master thread.
  process_chunk((num_threads-1)*chunk_size, num_pairs);
  for (auto& t : threads) 
  {
    if (t.joinable()) t.join();
  }
  if(exception_fired) throw exception;
  //process_chunk(0, candidate_triangle_pairs.size());
}

#endif