Welcome to mirror list, hosted at ThFree Co, Russian Federation.

seam_edges.cpp « igl « libigl « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8cbca143cd94395d156148cc800bc2199673d5b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// This file is part of libigl, a simple c++ geometry processing library.
// 
// Copyright (C) 2016 Yotam Gingold <yotam@yotamgingold.com>
// 
// This Source Code Form is subject to the terms of the Mozilla Public License 
// v. 2.0. If a copy of the MPL was not distributed with this file, You can 
// obtain one at http://mozilla.org/MPL/2.0/.

#include "seam_edges.h"
#include <unordered_map>
#include <unordered_set>
#include <cassert>

// Yotam has verified that this function produces the exact same output as
// `find_seam_fast.py` for `cow_triangled.obj`.
template <
  typename DerivedV, 
  typename DerivedTC,
  typename DerivedF, 
  typename DerivedFTC,
  typename Derivedseams,
  typename Derivedboundaries,
  typename Derivedfoldovers>
IGL_INLINE void igl::seam_edges(
  const Eigen::PlainObjectBase<DerivedV>& V,
  const Eigen::PlainObjectBase<DerivedTC>& TC,
  const Eigen::PlainObjectBase<DerivedF>& F,
  const Eigen::PlainObjectBase<DerivedFTC>& FTC,
  Eigen::PlainObjectBase<Derivedseams>& seams,
  Eigen::PlainObjectBase<Derivedboundaries>& boundaries,
  Eigen::PlainObjectBase<Derivedfoldovers>& foldovers)
{
  // Assume triangles.
  assert( F.cols() == 3 );
  assert( F.cols() == FTC.cols() );
  assert( F.rows() == FTC.rows() );
    
  // Assume 2D texture coordinates (foldovers tests).
  assert( TC.cols() == 2 );
  typedef Eigen::Matrix< typename DerivedTC::Scalar, 2, 1 > Vector2S;
  // Computes the orientation of `c` relative to the line between `a` and `b`.
  // Assumes 2D vector input.
  // Based on: https://www.cs.cmu.edu/~quake/robust.html
  const auto& Orientation = []( 
    const Vector2S& a, 
    const Vector2S& b, 
    const Vector2S& c ) -> typename DerivedTC::Scalar
  {
      const Vector2S row0 = a - c;
      const Vector2S row1 = b - c;
      return row0(0)*row1(1) - row1(0)*row0(1);
  };
    
  seams     .setZero( 3*F.rows(), 4 );
  boundaries.setZero( 3*F.rows(), 2 );
  foldovers .setZero( 3*F.rows(), 4 );
    
  int num_seams = 0;
  int num_boundaries = 0;
  int num_foldovers = 0;
    
  // A map from a pair of vertex indices to the index (face and endpoints)
  // into face_position_indices.
  // The following should be true for every key, value pair:
  //    key == face_position_indices[ value ]
  // This gives us a "reverse map" so that we can look up other face
  // attributes based on position edges.
  // The value are written in the format returned by numpy.where(),
  // which stores multi-dimensional indices such as array[a0,b0], array[a1,b1]
  // as ( (a0,a1), (b0,b1) ).
    
  // We need to make a hash function for our directed edges.
  // We'll use i*V.rows() + j.
  typedef std::pair< typename DerivedF::Scalar, typename DerivedF::Scalar > 
    directed_edge;
	const int numV = V.rows();
	const int numF = F.rows();
	const auto& edge_hasher = 
    [numV]( directed_edge const& e ) { return e.first*numV + e.second; };
  // When we pass a hash function object, we also need to specify the number of
  // buckets. The Euler characteristic says that the number of undirected edges
  // is numV + numF -2*genus.
	std::unordered_map<directed_edge,std::pair<int,int>,decltype(edge_hasher) > 
    directed_position_edge2face_position_index(2*( numV + numF ), edge_hasher);
  for( int fi = 0; fi < F.rows(); ++fi ) 
  {
    for( int i = 0; i < 3; ++i )
    {
      const int j = ( i+1 ) % 3;
      directed_position_edge2face_position_index[ 
        std::make_pair( F(fi,i), F(fi,j) ) ] = std::make_pair( fi, i );
    }
  }
    
  // First find all undirected position edges (collect a canonical orientation
  // of the directed edges).
  std::unordered_set< directed_edge, decltype( edge_hasher ) > 
    undirected_position_edges( numV + numF, edge_hasher );
  for( const auto& el : directed_position_edge2face_position_index ) 
  {
    // The canonical orientation is the one where the smaller of
    // the two vertex indices is first.
    undirected_position_edges.insert( std::make_pair( 
      std::min( el.first.first, el.first.second ), 
      std::max( el.first.first, el.first.second ) ) );
  }
    
  // Now we will iterate over all position edges.
  // Seam edges are the edges whose two opposite directed edges have different
  // texcoord indices (or one doesn't exist at all in the case of a mesh
  // boundary).
  for( const auto& vp_edge : undirected_position_edges ) 
  {
    // We should only see canonical edges,
    // where the first vertex index is smaller.
    assert( vp_edge.first < vp_edge.second );
        
    const auto vp_edge_reverse = std::make_pair(vp_edge.second, vp_edge.first);
    // If it and its opposite exist as directed edges, check if their
    // texture coordinate indices match.
    if( directed_position_edge2face_position_index.count( vp_edge ) &&
      directed_position_edge2face_position_index.count( vp_edge_reverse ) ) 
    {
      const auto forwards = 
        directed_position_edge2face_position_index[ vp_edge ];
      const auto backwards = 
        directed_position_edge2face_position_index[ vp_edge_reverse ];
            
      // NOTE: They should never be equal.
      assert( forwards != backwards );
            
      // If the texcoord indices match (are similarly flipped),
      // this edge is not a seam. It could be a foldover.
      if( 
        std::make_pair( 
          FTC( forwards.first, forwards.second ), 
          FTC( forwards.first, ( forwards.second+1 ) % 3 ) )
        ==
        std::make_pair( 
          FTC( backwards.first, ( backwards.second+1 ) % 3 ), 
          FTC( backwards.first, backwards.second ) )) 
      {
        // Check for foldovers in UV space.
        // Get the edge (a,b) and the two opposite vertices's texture
        // coordinates.
        const Vector2S a = TC.row( FTC( forwards.first,  forwards.second ) );
        const Vector2S b = 
          TC.row( FTC( forwards.first, (forwards.second+1) % 3 ) );
        const Vector2S c_forwards  = 
          TC.row( FTC( forwards .first, (forwards .second+2) % 3 ) );
        const Vector2S c_backwards = 
          TC.row( FTC( backwards.first, (backwards.second+2) % 3 ) );
        // If the opposite vertices' texture coordinates fall on the same side
        // of the edge, we have a UV-space foldover.
        const auto orientation_forwards = Orientation( a, b, c_forwards );
        const auto orientation_backwards = Orientation( a, b, c_backwards );
        if( ( orientation_forwards > 0 && orientation_backwards > 0 ) ||
            ( orientation_forwards < 0 && orientation_backwards < 0 )
            ) {
            foldovers( num_foldovers, 0 ) = forwards.first;
            foldovers( num_foldovers, 1 ) = forwards.second;
            foldovers( num_foldovers, 2 ) = backwards.first;
            foldovers( num_foldovers, 3 ) = backwards.second;
            num_foldovers += 1;
        }
      }
      // Otherwise, we have a non-matching seam edge.
      else 
      {
        seams( num_seams, 0 ) = forwards.first;
        seams( num_seams, 1 ) = forwards.second;
        seams( num_seams, 2 ) = backwards.first;
        seams( num_seams, 3 ) = backwards.second;
        num_seams += 1;
      }
    }
    // Otherwise, the edge and its opposite aren't both in the directed edges.
    // One of them should be.
    else if( directed_position_edge2face_position_index.count( vp_edge ) ) 
    {
      const auto forwards = directed_position_edge2face_position_index[vp_edge];
      boundaries( num_boundaries, 0 ) = forwards.first;
      boundaries( num_boundaries, 1 ) = forwards.second;
      num_boundaries += 1;
    } else if( 
      directed_position_edge2face_position_index.count( vp_edge_reverse ) ) 
    {
      const auto backwards = 
        directed_position_edge2face_position_index[ vp_edge_reverse ];
      boundaries( num_boundaries, 0 ) = backwards.first;
      boundaries( num_boundaries, 1 ) = backwards.second;
      num_boundaries += 1;
    } else {
      // This should never happen! One of these two must have been seen.
      assert(
        directed_position_edge2face_position_index.count( vp_edge ) ||
        directed_position_edge2face_position_index.count( vp_edge_reverse )
      );
    }
  }
    
  seams     .conservativeResize( num_seams,      Eigen::NoChange_t() );
  boundaries.conservativeResize( num_boundaries, Eigen::NoChange_t() );
  foldovers .conservativeResize( num_foldovers,  Eigen::NoChange_t() );
}

#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
// generated by autoexplicit.sh
template void igl::seam_edges<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
#endif