Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Geometry.hpp « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 44303711b56e6bafda76d02edc25d97aab9e90f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
#ifndef slic3r_Geometry_hpp_
#define slic3r_Geometry_hpp_

#include "libslic3r.h"
#include "BoundingBox.hpp"
#include "ExPolygon.hpp"
#include "Polygon.hpp"
#include "Polyline.hpp"

// Serialization through the Cereal library
#include <cereal/access.hpp>

#include "boost/polygon/voronoi.hpp"
using boost::polygon::voronoi_builder;
using boost::polygon::voronoi_diagram;

namespace ClipperLib {
class PolyNode;
using PolyNodes = std::vector<PolyNode*>;
}

namespace Slic3r { namespace Geometry {

// Generic result of an orientation predicate.
enum Orientation
{
    ORIENTATION_CCW = 1,
    ORIENTATION_CW = -1,
    ORIENTATION_COLINEAR = 0
};

// Return orientation of the three points (clockwise, counter-clockwise, colinear)
// The predicate is exact for the coord_t type, using 64bit signed integers for the temporaries.
// which means, the coord_t types must not have some of the topmost bits utilized.
// As the points are limited to 30 bits + signum,
// the temporaries u, v, w are limited to 61 bits + signum,
// and d is limited to 63 bits + signum and we are good.
static inline Orientation orient(const Point &a, const Point &b, const Point &c)
{
    // BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
    int64_t u = int64_t(b(0)) * int64_t(c(1)) - int64_t(b(1)) * int64_t(c(0));
    int64_t v = int64_t(a(0)) * int64_t(c(1)) - int64_t(a(1)) * int64_t(c(0));
    int64_t w = int64_t(a(0)) * int64_t(b(1)) - int64_t(a(1)) * int64_t(b(0));
    int64_t d = u - v + w;
    return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW);
}

// Return orientation of the polygon by checking orientation of the left bottom corner of the polygon
// using exact arithmetics. The input polygon must not contain duplicate points
// (or at least the left bottom corner point must not have duplicates).
static inline bool is_ccw(const Polygon &poly)
{
    // The polygon shall be at least a triangle.
    assert(poly.points.size() >= 3);
    if (poly.points.size() < 3)
        return true;

    // 1) Find the lowest lexicographical point.
    unsigned int imin = 0;
    for (unsigned int i = 1; i < poly.points.size(); ++ i) {
        const Point &pmin = poly.points[imin];
        const Point &p    = poly.points[i];
        if (p(0) < pmin(0) || (p(0) == pmin(0) && p(1) < pmin(1)))
            imin = i;
    }

    // 2) Detect the orientation of the corner imin.
    size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1;
    size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1);
    Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]);
    // The lowest bottom point must not be collinear if the polygon does not contain duplicate points
    // or overlapping segments.
    assert(o != ORIENTATION_COLINEAR);
    return o == ORIENTATION_CCW;
}

inline bool ray_ray_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
{
    double denom = v1(0) * v2(1) - v2(0) * v1(1);
    if (std::abs(denom) < EPSILON)
        return false;
    double t = (v2(0) * (p1(1) - p2(1)) - v2(1) * (p1(0) - p2(0))) / denom;
    res(0) = p1(0) + t * v1(0);
    res(1) = p1(1) + t * v1(1);
    return true;
}

inline bool segment_segment_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
{
    double denom = v1(0) * v2(1) - v2(0) * v1(1);
    if (std::abs(denom) < EPSILON)
        // Lines are collinear.
        return false;
    double s12_x = p1(0) - p2(0);
    double s12_y = p1(1) - p2(1);
    double s_numer = v1(0) * s12_y - v1(1) * s12_x;
    bool   denom_is_positive = false;
    if (denom < 0.) {
        denom_is_positive = true;
        denom   = - denom;
        s_numer = - s_numer;
    }
    if (s_numer < 0.)
        // Intersection outside of the 1st segment.
        return false;
    double t_numer = v2(0) * s12_y - v2(1) * s12_x;
    if (! denom_is_positive)
        t_numer = - t_numer;
    if (t_numer < 0. || s_numer > denom || t_numer > denom)
        // Intersection outside of the 1st or 2nd segment.
        return false;
    // Intersection inside both of the segments.
    double t = t_numer / denom;
    res(0) = p1(0) + t * v1(0);
    res(1) = p1(1) + t * v1(1);
    return true;
}


inline int segments_could_intersect(
	const Slic3r::Point &ip1, const Slic3r::Point &ip2, 
	const Slic3r::Point &jp1, const Slic3r::Point &jp2)
{
	Vec2i64 iv   = (ip2 - ip1).cast<int64_t>();
	Vec2i64 vij1 = (jp1 - ip1).cast<int64_t>();
	Vec2i64 vij2 = (jp2 - ip1).cast<int64_t>();
	int64_t tij1 = cross2(iv, vij1);
	int64_t tij2 = cross2(iv, vij2);
	int     sij1 = (tij1 > 0) ? 1 : ((tij1 < 0) ? -1 : 0); // signum
	int     sij2 = (tij2 > 0) ? 1 : ((tij2 < 0) ? -1 : 0);
	return sij1 * sij2;
}

inline bool segments_intersect(
	const Slic3r::Point &ip1, const Slic3r::Point &ip2, 
	const Slic3r::Point &jp1, const Slic3r::Point &jp2)
{
	return segments_could_intersect(ip1, ip2, jp1, jp2) <= 0 && 
		   segments_could_intersect(jp1, jp2, ip1, ip2) <= 0;
}

Pointf3s convex_hull(Pointf3s points);
Polygon convex_hull(Points points);
Polygon convex_hull(const Polygons &polygons);

bool directions_parallel(double angle1, double angle2, double max_diff = 0);
template<class T> bool contains(const std::vector<T> &vector, const Point &point);
template<typename T> T rad2deg(T angle) { return T(180.0) * angle / T(PI); }
double rad2deg_dir(double angle);
template<typename T> T deg2rad(T angle) { return T(PI) * angle / T(180.0); }
template<typename T> T angle_to_0_2PI(T angle)
{
    static const T TWO_PI = T(2) * T(PI);
    while (angle < T(0))
    {
        angle += TWO_PI;
    }
    while (TWO_PI < angle)
    {
        angle -= TWO_PI;
    }

    return angle;
}

/// Find the center of the circle corresponding to the vector of Points as an arc.
Point circle_taubin_newton(const Points::const_iterator& input_start, const Points::const_iterator& input_end, size_t cycles = 20);
inline Point circle_taubin_newton(const Points& input, size_t cycles = 20) { return circle_taubin_newton(input.cbegin(), input.cend(), cycles); }

/// Find the center of the circle corresponding to the vector of Pointfs as an arc.
Vec2d circle_taubin_newton(const Vec2ds::const_iterator& input_start, const Vec2ds::const_iterator& input_end, size_t cycles = 20);
inline Vec2d circle_taubin_newton(const Vec2ds& input, size_t cycles = 20) { return circle_taubin_newton(input.cbegin(), input.cend(), cycles); }

void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval);

double linint(double value, double oldmin, double oldmax, double newmin, double newmax);
bool arrange(
    // input
    size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box, 
    // output
    Pointfs &positions);

class MedialAxis {
    public:
    Lines lines;
    const ExPolygon* expolygon;
    double max_width;
    double min_width;
    MedialAxis(double _max_width, double _min_width, const ExPolygon* _expolygon = NULL)
        : expolygon(_expolygon), max_width(_max_width), min_width(_min_width) {};
    void build(ThickPolylines* polylines);
    void build(Polylines* polylines);
    
    private:
    class VD : public voronoi_diagram<double> {
    public:
        typedef double                                          coord_type;
        typedef boost::polygon::point_data<coordinate_type>     point_type;
        typedef boost::polygon::segment_data<coordinate_type>   segment_type;
        typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
    };
    VD vd;
    std::set<const VD::edge_type*> edges, valid_edges;
    std::map<const VD::edge_type*, std::pair<coordf_t,coordf_t> > thickness;
    void process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline);
    bool validate_edge(const VD::edge_type* edge);
    const Line& retrieve_segment(const VD::cell_type* cell) const;
    const Point& retrieve_endpoint(const VD::cell_type* cell) const;
};

// Sets the given transform by assembling the given transformations in the following order:
// 1) mirror
// 2) scale
// 3) rotate X
// 4) rotate Y
// 5) rotate Z
// 6) translate
void assemble_transform(Transform3d& transform, const Vec3d& translation = Vec3d::Zero(), const Vec3d& rotation = Vec3d::Zero(), const Vec3d& scale = Vec3d::Ones(), const Vec3d& mirror = Vec3d::Ones());

// Returns the transform obtained by assembling the given transformations in the following order:
// 1) mirror
// 2) scale
// 3) rotate X
// 4) rotate Y
// 5) rotate Z
// 6) translate
Transform3d assemble_transform(const Vec3d& translation = Vec3d::Zero(), const Vec3d& rotation = Vec3d::Zero(), const Vec3d& scale = Vec3d::Ones(), const Vec3d& mirror = Vec3d::Ones());

// Returns the euler angles extracted from the given rotation matrix
// Warning -> The matrix should not contain any scale or shear !!!
Vec3d extract_euler_angles(const Eigen::Matrix<double, 3, 3, Eigen::DontAlign>& rotation_matrix);

// Returns the euler angles extracted from the given affine transform
// Warning -> The transform should not contain any shear !!!
Vec3d extract_euler_angles(const Transform3d& transform);

class Transformation
{
    struct Flags
    {
        bool dont_translate;
        bool dont_rotate;
        bool dont_scale;
        bool dont_mirror;

        Flags();

        bool needs_update(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const;
        void set(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror);
    };

    Vec3d m_offset;              // In unscaled coordinates
    Vec3d m_rotation;            // Rotation around the three axes, in radians around mesh center point
    Vec3d m_scaling_factor;      // Scaling factors along the three axes
    Vec3d m_mirror;              // Mirroring along the three axes

    mutable Transform3d m_matrix;
    mutable Flags m_flags;
    mutable bool m_dirty;

public:
    Transformation();
    explicit Transformation(const Transform3d& transform);

    const Vec3d& get_offset() const { return m_offset; }
    double get_offset(Axis axis) const { return m_offset(axis); }

    void set_offset(const Vec3d& offset);
    void set_offset(Axis axis, double offset);

    const Vec3d& get_rotation() const { return m_rotation; }
    double get_rotation(Axis axis) const { return m_rotation(axis); }

    void set_rotation(const Vec3d& rotation);
    void set_rotation(Axis axis, double rotation);

    const Vec3d& get_scaling_factor() const { return m_scaling_factor; }
    double get_scaling_factor(Axis axis) const { return m_scaling_factor(axis); }

    void set_scaling_factor(const Vec3d& scaling_factor);
    void set_scaling_factor(Axis axis, double scaling_factor);
    bool is_scaling_uniform() const { return std::abs(m_scaling_factor.x() - m_scaling_factor.y()) < 1e-8 && std::abs(m_scaling_factor.x() - m_scaling_factor.z()) < 1e-8; }

    const Vec3d& get_mirror() const { return m_mirror; }
    double get_mirror(Axis axis) const { return m_mirror(axis); }
    bool is_left_handed() const { return m_mirror.x() * m_mirror.y() * m_mirror.z() < 0.; }

    void set_mirror(const Vec3d& mirror);
    void set_mirror(Axis axis, double mirror);

    void set_from_transform(const Transform3d& transform);
    void set_from_string(const std::string& transform_str);

    void reset();

    const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const;

    Transformation operator * (const Transformation& other) const;

    // Find volume transformation, so that the chained (instance_trafo * volume_trafo) will be as close to identity
    // as possible in least squares norm in regard to the 8 corners of bbox.
    // Bounding box is expected to be centered around zero in all axes.
    static Transformation volume_to_bed_transformation(const Transformation& instance_transformation, const BoundingBoxf3& bbox);

private:
	friend class cereal::access;
	template<class Archive> void serialize(Archive & ar) { ar(m_offset, m_rotation, m_scaling_factor, m_mirror); }
	explicit Transformation(int) : m_dirty(true) {}
	template <class Archive> static void load_and_construct(Archive &ar, cereal::construct<Transformation> &construct)
	{
		// Calling a private constructor with special "int" parameter to indicate that no construction is necessary.
		construct(1);
		ar(construct.ptr()->m_offset, construct.ptr()->m_rotation, construct.ptr()->m_scaling_factor, construct.ptr()->m_mirror);
	}
};

// Rotation when going from the first coordinate system with rotation rot_xyz_from applied
// to a coordinate system with rot_xyz_to applied.
extern Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to);
// Rotation by Z to align rot_xyz_from to rot_xyz_to.
// This should only be called if it is known, that the two rotations only differ in rotation around the Z axis.
extern double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to);

// Is the angle close to a multiple of 90 degrees?
inline bool is_rotation_ninety_degrees(double a)
{
    a = fmod(std::abs(a), 0.5 * M_PI);
    if (a > 0.25 * PI)
        a = 0.5 * PI - a;
    return a < 0.001;
}

// Is the angle close to a multiple of 90 degrees?
inline bool is_rotation_ninety_degrees(const Vec3d &rotation)
{
    return is_rotation_ninety_degrees(rotation.x()) && is_rotation_ninety_degrees(rotation.y()) && is_rotation_ninety_degrees(rotation.z());
}

} }

#endif