Welcome to mirror list, hosted at ThFree Co, Russian Federation.

MultiPoint.cpp « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: c3e388e2a0868ca1d1a2b6c4c40f8c1ef76a4a30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
#include "MultiPoint.hpp"
#include "BoundingBox.hpp"

namespace Slic3r {

MultiPoint::operator Points() const
{
    return this->points;
}

void MultiPoint::scale(double factor)
{
    for (Point &pt : points)
        pt *= factor;
}

void MultiPoint::scale(double factor_x, double factor_y)
{
    for (Point &pt : points)
    {
		pt(0) = coord_t(pt(0) * factor_x);
		pt(1) = coord_t(pt(1) * factor_y);
    }
}

void MultiPoint::translate(double x, double y)
{
    Vector v(x, y);
    for (Point &pt : points)
        pt += v;
}

void MultiPoint::translate(const Point &v)
{
    for (Point &pt : points)
        pt += v;
}

void MultiPoint::rotate(double cos_angle, double sin_angle)
{
    for (Point &pt : this->points) {
        double cur_x = double(pt(0));
        double cur_y = double(pt(1));
        pt(0) = coord_t(round(cos_angle * cur_x - sin_angle * cur_y));
        pt(1) = coord_t(round(cos_angle * cur_y + sin_angle * cur_x));
    }
}

void MultiPoint::rotate(double angle, const Point &center)
{
    double s = sin(angle);
    double c = cos(angle);
    for (Point &pt : points) {
        Vec2crd v(pt - center);
        pt(0) = (coord_t)round(double(center(0)) + c * v[0] - s * v[1]);
        pt(1) = (coord_t)round(double(center(1)) + c * v[1] + s * v[0]);
    }
}

void MultiPoint::reverse()
{
    std::reverse(this->points.begin(), this->points.end());
}

Point MultiPoint::first_point() const
{
    return this->points.front();
}

double
MultiPoint::length() const
{
    Lines lines = this->lines();
    double len = 0;
    for (Lines::iterator it = lines.begin(); it != lines.end(); ++it) {
        len += it->length();
    }
    return len;
}

int
MultiPoint::find_point(const Point &point) const
{
    for (const Point &pt : this->points)
        if (pt == point)
            return int(&pt - &this->points.front());
    return -1;  // not found
}

bool
MultiPoint::has_boundary_point(const Point &point) const
{
    double dist = (point.projection_onto(*this) - point).cast<double>().norm();
    return dist < SCALED_EPSILON;
}

BoundingBox
MultiPoint::bounding_box() const
{
    return BoundingBox(this->points);
}

bool 
MultiPoint::has_duplicate_points() const
{
    for (size_t i = 1; i < points.size(); ++i)
        if (points[i-1] == points[i])
            return true;
    return false;
}

bool
MultiPoint::remove_duplicate_points()
{
    size_t j = 0;
    for (size_t i = 1; i < points.size(); ++i) {
        if (points[j] == points[i]) {
            // Just increase index i.
        } else {
            ++ j;
            if (j < i)
                points[j] = points[i];
        }
    }
    if (++ j < points.size()) {
        points.erase(points.begin() + j, points.end());
        return true;
    }
    return false;
}

bool
MultiPoint::intersection(const Line& line, Point* intersection) const
{
    Lines lines = this->lines();
    for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) {
        if (it->intersection(line, intersection)) return true;
    }
    return false;
}

bool MultiPoint::first_intersection(const Line& line, Point* intersection) const
{
    bool   found = false;
    double dmin  = 0.;
    for (const Line &l : this->lines()) {
        Point ip;
        if (l.intersection(line, &ip)) {
            if (! found) {
                found = true;
                dmin = (line.a - ip).cast<double>().norm();
                *intersection = ip;
            } else {
                double d = (line.a - ip).cast<double>().norm();
                if (d < dmin) {
                    dmin = d;
                    *intersection = ip;
                }
            }
        }
    }
    return found;
}

// Projection of a point onto the polygon.
Point MultiPoint::point_projection(const Point &point) const {
    Point proj = point;
    double dmin = std::numeric_limits<double>::max();
    if (!this->points.empty()) {
        for (size_t i = 0; i < this->points.size()-1; ++i) {
            const Point &pt0 = this->points[i];
            const Point &pt1 = this->points[i + 1];
            double d = pt0.distance_to(point);
            if (d < dmin) {
                dmin = d;
                proj = pt0;
            }
            d = pt1.distance_to(point);
            if (d < dmin) {
                dmin = d;
                proj = pt1;
            }
            Vec2d v1(coordf_t(pt1(0) - pt0(0)), coordf_t(pt1(1) - pt0(1)));
            coordf_t div = dot(v1);
            if (div > 0.) {
                Vec2d v2(coordf_t(point(0) - pt0(0)), coordf_t(point(1) - pt0(1)));
                coordf_t t = dot(v1, v2) / div;
                if (t > 0. && t < 1.) {
                    Point foot(coord_t(floor(coordf_t(pt0(0)) + t * v1(0) + 0.5)), coord_t(floor(coordf_t(pt0(1)) + t * v1(1) + 0.5)));
                    d = foot.distance_to(point);
                    if (d < dmin) {
                        dmin = d;
                        proj = foot;
                    }
                }
            }
        }
    }
    return proj;
}

std::vector<Point> MultiPoint::_douglas_peucker(const std::vector<Point>& pts, const double tolerance)
{
    std::vector<Point> result_pts;
	double tolerance_sq = tolerance * tolerance;
    if (! pts.empty()) {
        const Point  *anchor      = &pts.front();
        size_t        anchor_idx  = 0;
        const Point  *floater     = &pts.back();
        size_t        floater_idx = pts.size() - 1;
        result_pts.reserve(pts.size());
        result_pts.emplace_back(*anchor);
        if (anchor_idx != floater_idx) {
            assert(pts.size() > 1);
            std::vector<size_t> dpStack;
            dpStack.reserve(pts.size());
            dpStack.emplace_back(floater_idx);
            for (;;) {
                double max_dist_sq  = 0.0;
                size_t furthest_idx = anchor_idx;
                // find point furthest from line seg created by (anchor, floater) and note it
                for (size_t i = anchor_idx + 1; i < floater_idx; ++ i) {
                    double dist_sq = Line::distance_to_squared(pts[i], *anchor, *floater);
                    if (dist_sq > max_dist_sq) {
                        max_dist_sq  = dist_sq;
                        furthest_idx = i;
                    }
                }
                // remove point if less than tolerance
                if (max_dist_sq <= tolerance_sq) {
                    result_pts.emplace_back(*floater);
                    anchor_idx = floater_idx;
                    anchor     = floater;
                    assert(dpStack.back() == floater_idx);
                    dpStack.pop_back();
                    if (dpStack.empty())
                        break;
                    floater_idx = dpStack.back();
                } else {
                    floater_idx = furthest_idx;
                    dpStack.emplace_back(floater_idx);
                }
                floater = &pts[floater_idx];
            }
        }
    }
    return result_pts;
}

// Visivalingam simplification algorithm https://github.com/slic3r/Slic3r/pull/3825
// thanks to @fuchstraumer
/*
     struct - vis_node
     Used with the visivalignam simplification algorithm, which needs to be able to find a points
    successors and predecessors to operate succesfully. Since this struct is only used in one
    location, it could probably be dropped into a namespace to avoid polluting the slic3r namespace.
     Source: https://github.com/shortsleeves/visvalingam_simplify
     ^ Provided original algorithm implementation. I've only changed things a bit to "clean" them up
    (i.e be more like my personal style), and managed to do this without requiring a binheap implementation
 */
struct vis_node{
    vis_node(const size_t& idx, const size_t& _prev_idx, const size_t& _next_idx, const double& _area) : pt_idx(idx), prev_idx(_prev_idx), next_idx(_next_idx), area(_area) {}
    // Indices into a Points container, from which this object was constructed
    size_t pt_idx, prev_idx, next_idx;
    // Effective area of this "node"
    double area;
    // Overloaded operator used to sort the binheap
    // Greater area = "more important" node. So, this node is less than the 
    // other node if it's area is less than the other node's area
    bool operator<(const vis_node& other) { return (this->area < other.area); }
};
Points MultiPoint::visivalingam(const Points& pts, const double& tolerance)
{
    // Make sure there's enough points in "pts" to bother with simplification.
    assert(pts.size() >= 2);
     // Result object
    Points results;
     // Lambda to calculate effective area spanned by a point and its immediate 
    // successor + predecessor.
    auto effective_area = [pts](const size_t& curr_pt_idx, const size_t& prev_pt_idx, const size_t& next_pt_idx)->coordf_t {
        const Point& curr = pts[curr_pt_idx];
        const Point& prev = pts[prev_pt_idx];
        const Point& next = pts[next_pt_idx];
        // Use point objects as vector-distances
		const Vec2d curr_to_next = (next - curr).cast<double>();
		const Vec2d prev_to_next = (prev - curr).cast<double>();
        // Take cross product of these two vector distances
		return 0.50 * abs(cross2(curr_to_next, prev_to_next));
    };
     // We store the effective areas for each node
    std::vector<coordf_t> areas;
    areas.reserve(pts.size());
     // Construct the initial set of nodes. We will make a heap out of the "heap" vector using 
    // std::make_heap. node_list is used later.
    std::vector<vis_node*> node_list;
    node_list.resize(pts.size());
    std::vector<vis_node*> heap;
    heap.reserve(pts.size());
    for (size_t i = 1; i < pts.size() - 1; ++ i) {
        // Get effective area of current node.
        coordf_t area = effective_area(i, i - 1, i + 1);
        // If area is greater than some arbitrarily small value, use it.
        node_list[i] = new vis_node(i, i - 1, i + 1, area);
        heap.push_back(node_list[i]);
    }
     // Call std::make_heap, which uses the < operator by default to make "heap" into 
    // a binheap, sorted by the < operator we defind in the vis_node struct
    std::make_heap(heap.begin(), heap.end());
     // Start comparing areas. Set min_area to an outrageous value initially.
    double min_area = -std::numeric_limits<double>::max();
    while (!heap.empty()) {
         // Get current node.
        vis_node* curr = heap.front();
         // Pop node we just retrieved off the heap. pop_heap moves front element in vector
        // to the back, so we can call pop_back()
        std::pop_heap(heap.begin(), heap.end());
        heap.pop_back();
         // Sanity assert check
        assert(curr == node_list[curr->pt_idx]);
         // If the current pt'ss area is less than that of the previous pt's area
        // use the last pt's area instead. This ensures we don't elimate the current
        // point without eliminating the previous 
        min_area = std::max(min_area, curr->area);
         // Update prev
        vis_node* prev = node_list[curr->prev_idx];
        if(prev != nullptr){
            prev->next_idx = curr->next_idx;
            prev->area = effective_area(prev->pt_idx, prev->prev_idx, prev->next_idx);
            // For some reason, std::make_heap() is the fastest way to resort the heap. Probably needs testing.
            std::make_heap(heap.begin(), heap.end());
        }
         // Update next
        vis_node* next = node_list[curr->next_idx];
        if(next != nullptr){
            next->prev_idx = curr->prev_idx;
            next->area = effective_area(next->pt_idx, next->prev_idx, next->next_idx);
            std::make_heap(heap.begin(), heap.end());
        }
         areas[curr->pt_idx] = min_area;
        node_list[curr->pt_idx] = nullptr;
        delete curr;
    }
    // Clear node list and shrink_to_fit() (to free actual memory). Not necessary. Could be removed.
    node_list.clear();
    node_list.shrink_to_fit();
    // This lambda is how we test whether or not to keep a point.
    auto use_point = [areas, tolerance](const size_t& idx)->bool {
        assert(idx < areas.size());
        // Return true at front/back of path/areas
        if(idx == 0 || idx == areas.size() - 1){
            return true;
        }
        // Return true if area at idx is greater than minimum area to consider "valid"
        else{
            return areas[idx] > tolerance;
        }
    };
    // Use previously defined lambda to build results.
    for (size_t i = 0; i < pts.size(); ++i) {
        if (use_point(i)){
            results.push_back(pts[i]);
        }
    }
     // Check that results has at least two points
    assert(results.size() >= 2);
     // Return simplified vector of points
    return results;
}

void MultiPoint3::translate(double x, double y)
{
    for (Vec3crd &p : points) {
        p(0) += coord_t(x);
        p(1) += coord_t(y);
    }
}

void MultiPoint3::translate(const Point& vector)
{
    this->translate(vector(0), vector(1));
}

double MultiPoint3::length() const
{
    double len = 0.0;
    for (const Line3& line : this->lines())
        len += line.length();
    return len;
}

BoundingBox3 MultiPoint3::bounding_box() const
{
    return BoundingBox3(points);
}

bool MultiPoint3::remove_duplicate_points()
{
    size_t j = 0;
    for (size_t i = 1; i < points.size(); ++i) {
        if (points[j] == points[i]) {
            // Just increase index i.
        } else {
            ++ j;
            if (j < i)
                points[j] = points[i];
        }
    }

    if (++j < points.size())
    {
        points.erase(points.begin() + j, points.end());
        return true;
    }

    return false;
}

BoundingBox get_extents(const MultiPoint &mp)
{ 
    return BoundingBox(mp.points);
}

BoundingBox get_extents_rotated(const Points &points, double angle)
{ 
    BoundingBox bbox;
    if (! points.empty()) {
        double s = sin(angle);
        double c = cos(angle);
        Points::const_iterator it = points.begin();
        double cur_x = (double)(*it)(0);
        double cur_y = (double)(*it)(1);
        bbox.min(0) = bbox.max(0) = (coord_t)round(c * cur_x - s * cur_y);
        bbox.min(1) = bbox.max(1) = (coord_t)round(c * cur_y + s * cur_x);
        for (++it; it != points.end(); ++it) {
            double cur_x = (double)(*it)(0);
            double cur_y = (double)(*it)(1);
            coord_t x = (coord_t)round(c * cur_x - s * cur_y);
            coord_t y = (coord_t)round(c * cur_y + s * cur_x);
            bbox.min(0) = std::min(x, bbox.min(0));
            bbox.min(1) = std::min(y, bbox.min(1));
            bbox.max(0) = std::max(x, bbox.max(0));
            bbox.max(1) = std::max(y, bbox.max(1));
        }
        bbox.defined = true;
    }
    return bbox;
}

BoundingBox get_extents_rotated(const MultiPoint &mp, double angle)
{
    return get_extents_rotated(mp.points, angle);
}

}