Welcome to mirror list, hosted at ThFree Co, Russian Federation.

PrintObjectSlice.cpp « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a64cedd03a2006b00a01e47b374f442b58196ab4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
#include "ElephantFootCompensation.hpp"
#include "I18N.hpp"
#include "Layer.hpp"
#include "Print.hpp"

#include <boost/log/trivial.hpp>

#include <tbb/parallel_for.h>

//! macro used to mark string used at localization, return same string
#define L(s) Slic3r::I18N::translate(s)

namespace Slic3r {

LayerPtrs new_layers(
    PrintObject                 *print_object,
    // Object layers (pairs of bottom/top Z coordinate), without the raft.
    const std::vector<coordf_t> &object_layers)
{
    LayerPtrs out;
    out.reserve(object_layers.size());
    auto     id   = int(print_object->slicing_parameters().raft_layers());
    coordf_t zmin = print_object->slicing_parameters().object_print_z_min;
    Layer   *prev = nullptr;
    for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
        coordf_t lo = object_layers[i_layer];
        coordf_t hi = object_layers[i_layer + 1];
        coordf_t slice_z = 0.5 * (lo + hi);
        Layer *layer = new Layer(id ++, print_object, hi - lo, hi + zmin, slice_z);
        out.emplace_back(layer);
        if (prev != nullptr) {
            prev->upper_layer = layer;
            layer->lower_layer = prev;
        }
        prev = layer;
    }
    return out;
}

template<typename LayerContainer>
static inline std::vector<float> zs_from_layers(const LayerContainer &layers)
{
    std::vector<float> zs;
    zs.reserve(layers.size());
    for (const Layer *l : layers)
        zs.emplace_back((float)l->slice_z);
    return zs;
}

//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
// This function will go away once we get rid of admesh from ModelVolume.
static indexed_triangle_set get_mesh_its_fix_mesh_connectivity(TriangleMesh mesh)
{
    assert(mesh.repaired && mesh.has_shared_vertices());
    if (mesh.stl.stats.number_of_facets > 0) {
        assert(mesh.repaired && mesh.has_shared_vertices());
        auto nr_degenerated = mesh.stl.stats.degenerate_facets;
        stl_check_facets_exact(&mesh.stl);
        if (nr_degenerated != mesh.stl.stats.degenerate_facets)
            // stl_check_facets_exact() removed some newly degenerated faces. Some faces could become degenerate after some mesh transformation.
            stl_generate_shared_vertices(&mesh.stl, mesh.its);
    } else
        mesh.its.clear();
    return std::move(mesh.its);
}

// Slice single triangle mesh.
static std::vector<ExPolygons> slice_volume(
    const ModelVolume             &volume,
    const std::vector<float>      &zs, 
    const MeshSlicingParamsEx     &params,
    const std::function<void()>   &throw_on_cancel_callback)
{
    std::vector<ExPolygons> layers;
    if (! zs.empty()) {
        indexed_triangle_set its = get_mesh_its_fix_mesh_connectivity(volume.mesh());
        if (its.indices.size() > 0) {
            MeshSlicingParamsEx params2 { params };
            params2.trafo = params2.trafo * volume.get_matrix();
            if (params2.trafo.rotation().determinant() < 0.)
                its_flip_triangles(its);
            layers = slice_mesh_ex(its, zs, params2, throw_on_cancel_callback);
            throw_on_cancel_callback();
        }
    }
    return layers;
}

// Slice single triangle mesh.
// Filter the zs not inside the ranges. The ranges are closed at the bottom and open at the top, they are sorted lexicographically and non overlapping.
static std::vector<ExPolygons> slice_volume(
    const ModelVolume                           &volume,
    const std::vector<float>                    &z,
    const std::vector<t_layer_height_range>     &ranges,
    const MeshSlicingParamsEx                   &params,
    const std::function<void()>                 &throw_on_cancel_callback)
{
    std::vector<ExPolygons> out;
    if (! z.empty() && ! ranges.empty()) {
        if (ranges.size() == 1 && z.front() >= ranges.front().first && z.back() < ranges.front().second) {
            // All layers fit into a single range.
            out = slice_volume(volume, z, params, throw_on_cancel_callback);
        } else {
            std::vector<float>                     z_filtered;
            std::vector<std::pair<size_t, size_t>> n_filtered;
            z_filtered.reserve(z.size());
            n_filtered.reserve(2 * ranges.size());
            size_t i = 0;
            for (const t_layer_height_range &range : ranges) {
                for (; i < z.size() && z[i] < range.first; ++ i) ;
                size_t first = i;
                for (; i < z.size() && z[i] < range.second; ++ i)
                    z_filtered.emplace_back(z[i]);
                if (i > first)
                    n_filtered.emplace_back(std::make_pair(first, i));
            }
            if (! n_filtered.empty()) {
                std::vector<ExPolygons> layers = slice_volume(volume, z_filtered, params, throw_on_cancel_callback);
                out.assign(z.size(), ExPolygons());
                i = 0;
                for (const std::pair<size_t, size_t> &span : n_filtered)
                    for (size_t j = span.first; j < span.second; ++ j)
                        out[j] = std::move(layers[i ++]);
            }
        }
    }
    return out;
}

struct VolumeSlices
{
    ObjectID                volume_id;
    std::vector<ExPolygons> slices;
};

static inline bool model_volume_needs_slicing(const ModelVolume &mv)
{
    ModelVolumeType type = mv.type();
    return type == ModelVolumeType::MODEL_PART || type == ModelVolumeType::NEGATIVE_VOLUME || type == ModelVolumeType::PARAMETER_MODIFIER;
}

// Slice printable volumes, negative volumes and modifier volumes, sorted by ModelVolume::id().
// Apply closing radius.
// Apply positive XY compensation to ModelVolumeType::MODEL_PART and ModelVolumeType::PARAMETER_MODIFIER, not to ModelVolumeType::NEGATIVE_VOLUME.
// Apply contour simplification.
static std::vector<VolumeSlices> slice_volumes_inner(
    const PrintConfig                                        &print_config,
    const PrintObjectConfig                                  &print_object_config,
    const Transform3d                                        &object_trafo,
    ModelVolumePtrs                                           model_volumes,
    const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges,
    const std::vector<float>                                 &zs,
    const std::function<void()>                              &throw_on_cancel_callback)
{
    model_volumes_sort_by_id(model_volumes);

    std::vector<VolumeSlices> out;
    out.reserve(model_volumes.size());

    std::vector<t_layer_height_range> slicing_ranges;
    if (layer_ranges.size() > 1)
        slicing_ranges.reserve(layer_ranges.size());

    MeshSlicingParamsEx params_base;
    params_base.closing_radius = print_object_config.slice_closing_radius.value;
    params_base.extra_offset   = 0;
    params_base.trafo          = object_trafo;
    params_base.resolution     = print_config.resolution.value;

    const auto extra_offset = std::max(0.f, float(print_object_config.xy_size_compensation.value));

    for (const ModelVolume *model_volume : model_volumes)
        if (model_volume_needs_slicing(*model_volume)) {
            MeshSlicingParamsEx params { params_base };
            if (! model_volume->is_negative_volume())
                params.extra_offset = extra_offset;
            if (layer_ranges.size() == 1) {
                if (const PrintObjectRegions::LayerRangeRegions &layer_range = layer_ranges.front(); layer_range.has_volume(model_volume->id())) {
                    if (model_volume->is_model_part() && print_config.spiral_vase) {
                        auto it = std::find_if(layer_range.volume_regions.begin(), layer_range.volume_regions.end(), 
                            [model_volume](const auto &slice){ return model_volume == slice.model_volume; });
                        params.mode = MeshSlicingParams::SlicingMode::PositiveLargestContour;
                        // Slice the bottom layers with SlicingMode::Regular.
                        // This needs to be in sync with LayerRegion::make_perimeters() spiral_vase!
                        params.mode_below = MeshSlicingParams::SlicingMode::Regular;
                        const PrintRegionConfig &region_config = it->region->config();
                        params.slicing_mode_normal_below_layer = size_t(region_config.bottom_solid_layers.value);
                        for (; params.slicing_mode_normal_below_layer < zs.size() && zs[params.slicing_mode_normal_below_layer] < region_config.bottom_solid_min_thickness - EPSILON;
                            ++ params.slicing_mode_normal_below_layer);
                    }
                    out.push_back({
                        model_volume->id(), 
                        slice_volume(*model_volume, zs, params, throw_on_cancel_callback)
                    });
                }
            } else {
                assert(! print_config.spiral_vase);
                slicing_ranges.clear();
                for (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
                    if (layer_range.has_volume(model_volume->id()))
                        slicing_ranges.emplace_back(layer_range.layer_height_range);
                if (! slicing_ranges.empty())
                    out.push_back({ 
                        model_volume->id(), 
                        slice_volume(*model_volume, zs, slicing_ranges, params, throw_on_cancel_callback)
                    });
            }
            if (! out.empty() && out.back().slices.empty())
                out.pop_back();
        }

    return out;
}

static inline VolumeSlices& volume_slices_find_by_id(std::vector<VolumeSlices> &volume_slices, const ObjectID id)
{
    auto it = lower_bound_by_predicate(volume_slices.begin(), volume_slices.end(), [id](const VolumeSlices &vs) { return vs.volume_id < id; });
    assert(it != volume_slices.end() && it->volume_id == id);
    return *it;
}

static inline bool overlap_in_xy(const BoundingBoxf3 &l, const BoundingBoxf3 &r)
{
    return ! (l.max.x() < r.min.x() || l.min.x() > r.max.x() ||
              l.max.y() < r.min.y() || l.min.y() > r.max.y());
}

static std::vector<std::vector<ExPolygons>> slices_to_regions(
    ModelVolumePtrs                                           model_volumes,
    const PrintObjectRegions                                 &print_object_regions,
    const std::vector<float>                                 &zs,
    std::vector<VolumeSlices>                               &&volume_slices,
    // If clipping is disabled, then ExPolygons produced by different volumes will never be merged, thus they will be allowed to overlap.
    // It is up to the model designer to handle these overlaps.
    const bool                                                clip_multipart_objects,
    const std::function<void()>                              &throw_on_cancel_callback)
{
    model_volumes_sort_by_id(model_volumes);

    std::vector<std::vector<ExPolygons>> slices_by_region(print_object_regions.all_regions.size(), std::vector<ExPolygons>(zs.size(), ExPolygons()));

    // First shuffle slices into regions if there is no overlap with another region possible, collect zs of the complex cases.
    std::vector<std::pair<size_t, float>> zs_complex;
    {
        size_t z_idx = 0;
        for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
            for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.first; ++ z_idx) ;
            if (layer_range.volume_regions.empty()) {
            } else if (layer_range.volume_regions.size() == 1) {
                const ModelVolume *model_volume = layer_range.volume_regions.front().model_volume;
                assert(model_volume != nullptr);
                if (model_volume->is_model_part()) {
                    VolumeSlices &slices_src = volume_slices_find_by_id(volume_slices, model_volume->id());
                    auto         &slices_dst = slices_by_region[layer_range.volume_regions.front().region->print_object_region_id()];
                    for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.second; ++ z_idx)
                        slices_dst[z_idx] = std::move(slices_src.slices[z_idx]);
                }
            } else {
                zs_complex.reserve(zs.size());
                for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.second; ++ z_idx) {
                    float z                          = zs[z_idx];
                    int   idx_first_printable_region = -1;
                    bool  complex                    = false;
                    for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region) {
                        const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[idx_region];
                        if (region.bbox->min.z() <= z && region.bbox->max.z() >= z) {
                            if (idx_first_printable_region == -1 && region.model_volume->is_model_part())
                                idx_first_printable_region = idx_region;
                            else if (idx_first_printable_region != -1) {
                                // Test for overlap with some other region.
                                for (int idx_region2 = idx_first_printable_region; idx_region2 < idx_region; ++ idx_region2) {
                                    const PrintObjectRegions::VolumeRegion &region2 = layer_range.volume_regions[idx_region2];
                                    if (region2.bbox->min.z() <= z && region2.bbox->max.z() >= z && overlap_in_xy(*region.bbox, *region2.bbox)) {
                                        complex = true;
                                        break;
                                    }
                                }
                            }
                        }
                    }
                    if (complex)
                        zs_complex.push_back({ z_idx, z });
                    else if (idx_first_printable_region >= 0) {
                        const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[idx_first_printable_region];
                        slices_by_region[region.region->print_object_region_id()][z_idx] = std::move(volume_slices_find_by_id(volume_slices, region.model_volume->id()).slices[z_idx]);
                    }
                }
            }
            throw_on_cancel_callback();
        }
    }

    // Second perform region clipping and assignment in parallel.
    if (! zs_complex.empty()) {
        std::vector<std::vector<VolumeSlices*>> layer_ranges_regions_to_slices(print_object_regions.layer_ranges.size(), std::vector<VolumeSlices*>());
        for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
            std::vector<VolumeSlices*> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[&layer_range - print_object_regions.layer_ranges.data()];
            layer_range_regions_to_slices.reserve(layer_range.volume_regions.size());
            for (const PrintObjectRegions::VolumeRegion &region : layer_range.volume_regions)
                layer_range_regions_to_slices.push_back(&volume_slices_find_by_id(volume_slices, region.model_volume->id()));
        }
        tbb::parallel_for(
            tbb::blocked_range<size_t>(0, zs_complex.size()),
            [&slices_by_region, &print_object_regions, &zs_complex, &layer_ranges_regions_to_slices, clip_multipart_objects, &throw_on_cancel_callback]
                (const tbb::blocked_range<size_t> &range) {
                float z              = zs_complex[range.begin()].second;
                auto  it_layer_range = lower_bound_by_predicate(print_object_regions.layer_ranges.begin(), print_object_regions.layer_ranges.end(), 
                    [z](const PrintObjectRegions::LayerRangeRegions &lr){ return lr.layer_height_range.second < z; });
                assert(it_layer_range != print_object_regions.layer_ranges.end() && it_layer_range->layer_height_range.first <= z && z <= it_layer_range->layer_height_range.second);
                if (z == it_layer_range->layer_height_range.second)
                    if (auto it_next = it_layer_range; ++ it_next != print_object_regions.layer_ranges.end() && it_next->layer_height_range.first == z)
                        it_layer_range = it_next;
                assert(it_layer_range != print_object_regions.layer_ranges.end() && it_layer_range->layer_height_range.first <= z && z <= it_layer_range->layer_height_range.second);
                // Per volume_regions slices at this Z height.
                struct RegionSlice { 
                    ExPolygons  expolygons;
                    // Identifier of this region in PrintObjectRegions::all_regions
                    int         region_id;
                    ObjectID    volume_id;
                    bool operator<(const RegionSlice &rhs) const {
                        bool this_empty = this->region_id < 0 || this->expolygons.empty();
                        bool rhs_empty  = rhs.region_id < 0 || rhs.expolygons.empty();
                        // Sort the empty items to the end of the list.
                        // Sort by region_id & volume_id lexicographically.
                        return ! this_empty && (rhs_empty || (this->region_id < rhs.region_id || (this->region_id == rhs.region_id && volume_id < volume_id)));
                    }
                };
                std::vector<RegionSlice> temp_slices;
                for (size_t zs_complex_idx = range.begin(); zs_complex_idx < range.end(); ++ zs_complex_idx) {
                    auto [z_idx, z] = zs_complex[zs_complex_idx];
                    for (; it_layer_range->layer_height_range.second <= z; ++ it_layer_range)
                        assert(it_layer_range != print_object_regions.layer_ranges.end());
                    assert(it_layer_range != print_object_regions.layer_ranges.end() && it_layer_range->layer_height_range.first <= z && z < it_layer_range->layer_height_range.second);
                    const PrintObjectRegions::LayerRangeRegions &layer_range = *it_layer_range;
                    {
                        std::vector<VolumeSlices*> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[it_layer_range - print_object_regions.layer_ranges.begin()];
                        // Per volume_regions slices at thiz Z height.
                        temp_slices.clear();
                        temp_slices.reserve(layer_range.volume_regions.size());
                        for (VolumeSlices* &slices : layer_range_regions_to_slices) {
                            const PrintObjectRegions::VolumeRegion &volume_region = layer_range.volume_regions[&slices - layer_range_regions_to_slices.data()];
                            temp_slices.push_back({ std::move(slices->slices[z_idx]), volume_region.region ? volume_region.region->print_object_region_id() : -1, volume_region.model_volume->id() });
                        }
                    }
                    for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region)
                        if (! temp_slices[idx_region].expolygons.empty()) {
                            const PrintObjectRegions::VolumeRegion &region = layer_range.volume_regions[idx_region];
                            if (region.model_volume->is_modifier()) {
                                assert(region.parent > -1);
                                bool next_region_same_modifier = idx_region + 1 < int(temp_slices.size()) && layer_range.volume_regions[idx_region + 1].model_volume == region.model_volume;
                                RegionSlice &parent_slice = temp_slices[region.parent];
                                RegionSlice &this_slice   = temp_slices[idx_region];
                                ExPolygons   source       = std::move(this_slice.expolygons);
                                if (parent_slice.expolygons.empty()) {
                                    this_slice  .expolygons.clear();
                                } else {
                                    this_slice  .expolygons = intersection_ex(parent_slice.expolygons, source);
                                    parent_slice.expolygons = diff_ex        (parent_slice.expolygons, source);
                                }
                                if (next_region_same_modifier)
                                    // To be used in the following iteration.
                                    temp_slices[idx_region + 1].expolygons = std::move(source);
                            } else if ((region.model_volume->is_model_part() && clip_multipart_objects) || region.model_volume->is_negative_volume()) {
                                // Clip every non-zero region preceding it.
                                for (int idx_region2 = 0; idx_region2 < idx_region; ++ idx_region2)
                                    if (! temp_slices[idx_region2].expolygons.empty()) {
                                        if (const PrintObjectRegions::VolumeRegion &region2 = layer_range.volume_regions[idx_region2];
                                            ! region2.model_volume->is_negative_volume() && overlap_in_xy(*region.bbox, *region2.bbox))
                                            temp_slices[idx_region2].expolygons = diff_ex(temp_slices[idx_region2].expolygons, temp_slices[idx_region].expolygons);
                                    }
                            }
                        }
                    // Sort by region_id, push empty slices to the end.
                    std::sort(temp_slices.begin(), temp_slices.end());
                    // Remove the empty slices.
                    temp_slices.erase(std::find_if(temp_slices.begin(), temp_slices.end(), [](const auto &slice) { return slice.region_id == -1 || slice.expolygons.empty(); }), temp_slices.end());
                    // Merge slices and store them to the output.
                    for (int i = 0; i < int(temp_slices.size());) {
                        // Find a range of temp_slices with the same region_id.
                        int j = i;
                        bool merged = false;
                        ExPolygons &expolygons = temp_slices[i].expolygons;
                        for (++ j; 
                             j < int(temp_slices.size()) && 
                                temp_slices[i].region_id == temp_slices[j].region_id && 
                                (clip_multipart_objects || temp_slices[i].volume_id == temp_slices[j].volume_id); 
                             ++ j)
                            if (ExPolygons &expolygons2 = temp_slices[j].expolygons; ! expolygons2.empty()) {
                                if (expolygons.empty()) {
                                    expolygons = std::move(expolygons2);
                                } else {
                                    append(expolygons, std::move(expolygons2));
                                    merged = true;
                                }
                            }
                        if (merged)
                            expolygons = offset2_ex(expolygons, float(scale_(EPSILON)), -float(scale_(EPSILON)));
                        slices_by_region[temp_slices[i].region_id][z_idx] = std::move(expolygons);
                        i = j;
                    }
                    throw_on_cancel_callback();
                }
            });
    }

    return slices_by_region;
}

std::string fix_slicing_errors(LayerPtrs &layers, const std::function<void()> &throw_if_canceled)
{
    // Collect layers with slicing errors.
    // These layers will be fixed in parallel.
    std::vector<size_t> buggy_layers;
    buggy_layers.reserve(layers.size());
    for (size_t idx_layer = 0; idx_layer < layers.size(); ++ idx_layer)
        if (layers[idx_layer]->slicing_errors)
            buggy_layers.push_back(idx_layer);

    BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin";
    tbb::parallel_for(
        tbb::blocked_range<size_t>(0, buggy_layers.size()),
        [&layers, &throw_if_canceled, &buggy_layers](const tbb::blocked_range<size_t>& range) {
            for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) {
                throw_if_canceled();
                size_t idx_layer = buggy_layers[buggy_layer_idx];
                Layer *layer     = layers[idx_layer];
                assert(layer->slicing_errors);
                // Try to repair the layer surfaces by merging all contours and all holes from neighbor layers.
                // BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer;
                for (size_t region_id = 0; region_id < layer->region_count(); ++ region_id) {
                    LayerRegion *layerm = layer->get_region(region_id);
                    // Find the first valid layer below / above the current layer.
                    const Surfaces *upper_surfaces = nullptr;
                    const Surfaces *lower_surfaces = nullptr;
                    for (size_t j = idx_layer + 1; j < layers.size(); ++ j)
                        if (! layers[j]->slicing_errors) {
                            upper_surfaces = &layers[j]->regions()[region_id]->slices.surfaces;
                            break;
                        }
                    for (int j = int(idx_layer) - 1; j >= 0; -- j)
                        if (! layers[j]->slicing_errors) {
                            lower_surfaces = &layers[j]->regions()[region_id]->slices.surfaces;
                            break;
                        }
                    // Collect outer contours and holes from the valid layers above & below.
                    Polygons outer;
                    outer.reserve(
                        ((upper_surfaces == nullptr) ? 0 : upper_surfaces->size()) + 
                        ((lower_surfaces == nullptr) ? 0 : lower_surfaces->size()));
                    size_t num_holes = 0;
                    if (upper_surfaces)
                        for (const auto &surface : *upper_surfaces) {
                            outer.push_back(surface.expolygon.contour);
                            num_holes += surface.expolygon.holes.size();
                        }
                    if (lower_surfaces)
                        for (const auto &surface : *lower_surfaces) {
                            outer.push_back(surface.expolygon.contour);
                            num_holes += surface.expolygon.holes.size();
                        }
                    Polygons holes;
                    holes.reserve(num_holes);
                    if (upper_surfaces)
                        for (const auto &surface : *upper_surfaces)
                            polygons_append(holes, surface.expolygon.holes);
                    if (lower_surfaces)
                        for (const auto &surface : *lower_surfaces)
                            polygons_append(holes, surface.expolygon.holes);
                    layerm->slices.set(diff_ex(union_(outer), holes), stInternal);
                }
                // Update layer slices after repairing the single regions.
                layer->make_slices();
            }
        });
    throw_if_canceled();
    BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";

    // remove empty layers from bottom
    while (! layers.empty() && (layers.front()->lslices.empty() || layers.front()->empty())) {
        delete layers.front();
        layers.erase(layers.begin());
        layers.front()->lower_layer = nullptr;
        for (size_t i = 0; i < layers.size(); ++ i)
            layers[i]->set_id(layers[i]->id() - 1);
    }

    return buggy_layers.empty() ? "" :
        "The model has overlapping or self-intersecting facets. I tried to repair it, "
        "however you might want to check the results or repair the input file and retry.\n";
}

// Called by make_perimeters()
// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
// 3) Slices the object meshes
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
// 5) Applies size compensation (offsets the slices in XY plane)
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
// Resulting expolygons of layer regions are marked as Internal.
void PrintObject::slice()
{
    if (! this->set_started(posSlice))
        return;
    m_print->set_status(10, L("Processing triangulated mesh"));
    std::vector<coordf_t> layer_height_profile;
    this->update_layer_height_profile(*this->model_object(), m_slicing_params, layer_height_profile);
    m_print->throw_if_canceled();
    m_typed_slices = false;
    this->clear_layers();
    m_layers = new_layers(this, generate_object_layers(m_slicing_params, layer_height_profile));
    this->slice_volumes();
    m_print->throw_if_canceled();
    // Fix the model.
    //FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend.
    std::string warning = fix_slicing_errors(m_layers, [this](){ m_print->throw_if_canceled(); });
    m_print->throw_if_canceled();
    if (! warning.empty())
        BOOST_LOG_TRIVIAL(info) << warning;
    // Update bounding boxes, back up raw slices of complex models.
    tbb::parallel_for(
        tbb::blocked_range<size_t>(0, m_layers.size()),
        [this](const tbb::blocked_range<size_t>& range) {
            for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
                m_print->throw_if_canceled();
                Layer &layer = *m_layers[layer_idx];
                layer.lslices_bboxes.clear();
                layer.lslices_bboxes.reserve(layer.lslices.size());
                for (const ExPolygon &expoly : layer.lslices)
                	layer.lslices_bboxes.emplace_back(get_extents(expoly));
                layer.backup_untyped_slices();
            }
        });
    if (m_layers.empty())
        throw Slic3r::SlicingError("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n");    
    this->set_done(posSlice);
}

// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
// 3) Slices the object meshes
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
// 5) Applies size compensation (offsets the slices in XY plane)
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
// Resulting expolygons of layer regions are marked as Internal.
//
// this should be idempotent
void PrintObject::slice_volumes()
{
    BOOST_LOG_TRIVIAL(info) << "Slicing volumes..." << log_memory_info();
    const Print *print                      = this->print();
    const auto   throw_on_cancel_callback   = std::function<void()>([print](){ print->throw_if_canceled(); });

    // Clear old LayerRegions, allocate for new PrintRegions.
    for (Layer* layer : m_layers) {
        layer->m_regions.clear();
        layer->m_regions.reserve(m_shared_regions->all_regions.size());
        for (const std::unique_ptr<PrintRegion> &pr : m_shared_regions->all_regions)
            layer->m_regions.emplace_back(new LayerRegion(layer, pr.get()));
    }

    std::vector<float>                   slice_zs      = zs_from_layers(m_layers);
    Transform3d                          trafo         = this->trafo();
    trafo.pretranslate(Vec3d(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0));
    std::vector<std::vector<ExPolygons>> region_slices = slices_to_regions(this->model_object()->volumes, *m_shared_regions, slice_zs,
        slice_volumes_inner(
            print->config(), this->config(), trafo,
            this->model_object()->volumes, m_shared_regions->layer_ranges, slice_zs, throw_on_cancel_callback),
        m_config.clip_multipart_objects,
        throw_on_cancel_callback);

    for (size_t region_id = 0; region_id < region_slices.size(); ++ region_id) {
        std::vector<ExPolygons> &by_layer = region_slices[region_id];
        for (size_t layer_id = 0; layer_id < by_layer.size(); ++ layer_id)
            m_layers[layer_id]->regions()[region_id]->slices.append(std::move(by_layer[layer_id]), stInternal);
    }
    region_slices.clear();
    
#if 0
        // Second clip the volumes in the order they are presented at the user interface.
        BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - parallel clipping - start";
        tbb::parallel_for(
            tbb::blocked_range<size_t>(0, slice_zs.size()),
            [this, &sliced_volumes, num_modifiers](const tbb::blocked_range<size_t>& range) {
                float delta   = float(scale_(m_config.xy_size_compensation.value));
                // Only upscale together with clipping if there are no modifiers, as the modifiers shall be applied before upscaling
                // (upscaling may grow the object outside of the modifier mesh).
                bool  upscale = delta > 0 && num_modifiers == 0;
                for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
                    m_print->throw_if_canceled();
                    // Trim volumes in a single layer, one by the other, possibly apply upscaling.
                    {
                        Polygons processed;
                        for (SlicedVolume &sliced_volume : sliced_volumes) 
                        	if (! sliced_volume.expolygons_by_layer.empty()) {
	                            ExPolygons slices = std::move(sliced_volume.expolygons_by_layer[layer_id]);
	                            if (upscale)
	                                slices = offset_ex(std::move(slices), delta);
	                            if (! processed.empty())
	                                // Trim by the slices of already processed regions.
	                                slices = diff_ex(slices, processed);
	                            if (size_t(&sliced_volume - &sliced_volumes.front()) + 1 < sliced_volumes.size())
	                                // Collect the already processed regions to trim the to be processed regions.
	                                polygons_append(processed, slices);
	                            sliced_volume.expolygons_by_layer[layer_id] = std::move(slices);
	                        }
                    }
                    // Collect and union volumes of a single region.
                    for (int region_id = 0; region_id < int(m_region_volumes.size()); ++ region_id) {
                        ExPolygons expolygons;
                        size_t     num_volumes = 0;
                        for (SlicedVolume &sliced_volume : sliced_volumes)
                            if (sliced_volume.region_id == region_id && ! sliced_volume.expolygons_by_layer.empty() && ! sliced_volume.expolygons_by_layer[layer_id].empty()) {
                                ++ num_volumes;
                                append(expolygons, std::move(sliced_volume.expolygons_by_layer[layer_id]));
                            }
                        if (num_volumes > 1)
                            // Merge the islands using a positive / negative offset.
                            expolygons = offset_ex(offset_ex(expolygons, float(scale_(EPSILON))), -float(scale_(EPSILON)));
                        m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons), stInternal);
                    }
                }
            });
        BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - parallel clipping - end";
        clipped  = true;
        upscaled = m_config.xy_size_compensation.value > 0 && num_modifiers == 0;
    }
#endif

    BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - removing top empty layers";
    while (! m_layers.empty()) {
        const Layer *layer = m_layers.back();
        if (! layer->empty())
            break;
        delete layer;
        m_layers.pop_back();
    }
    if (! m_layers.empty())
        m_layers.back()->upper_layer = nullptr;
    m_print->throw_if_canceled();

    BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - begin";
    {
        // Compensation value, scaled. Only applying the negative scaling here, as the positive scaling has already been applied during slicing.
        const auto  xy_compensation_scaled              = scaled<float>(std::min(m_config.xy_size_compensation.value, 0.));
        const float elephant_foot_compensation_scaled 	= (m_config.raft_layers == 0) ? 
        	// Only enable Elephant foot compensation if printing directly on the print bed.
            float(scale_(m_config.elefant_foot_compensation.value)) :
        	0.f;
        // Uncompensated slices for the first layer in case the Elephant foot compensation is applied.
	    ExPolygons  lslices_1st_layer;
	    tbb::parallel_for(
	        tbb::blocked_range<size_t>(0, m_layers.size()),
			[this, xy_compensation_scaled, elephant_foot_compensation_scaled, &lslices_1st_layer]
				(const tbb::blocked_range<size_t>& range) {
	            for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
	                m_print->throw_if_canceled();
	                Layer *layer = m_layers[layer_id];
	                // Apply size compensation and perform clipping of multi-part objects.
	                float elfoot = (layer_id == 0) ? elephant_foot_compensation_scaled : 0.f;
	                if (layer->m_regions.size() == 1) {
	                    // Optimized version for a single region layer.
	                    // Single region, growing or shrinking.
	                    LayerRegion *layerm = layer->m_regions.front();
	                    if (elfoot > 0) {
		                    // Apply the elephant foot compensation and store the 1st layer slices without the Elephant foot compensation applied.
		                    lslices_1st_layer = to_expolygons(std::move(layerm->slices.surfaces));
		                    float delta = xy_compensation_scaled;
	                        if (delta > elfoot) {
	                            delta -= elfoot;
	                            elfoot = 0.f;
	                        } else if (delta > 0)
	                            elfoot -= delta;
							layerm->slices.set(
								union_ex(
									Slic3r::elephant_foot_compensation(
										(delta == 0.f) ? lslices_1st_layer : offset_ex(lslices_1st_layer, delta), 
	                            		layerm->flow(frExternalPerimeter), unscale<double>(elfoot))),
								stInternal);
							if (xy_compensation_scaled < 0.f)
								lslices_1st_layer = offset_ex(std::move(lslices_1st_layer), xy_compensation_scaled);
	                    } else if (xy_compensation_scaled < 0.f) {
	                        // Apply the XY compensation.
	                        layerm->slices.set(
                                offset_ex(to_expolygons(std::move(layerm->slices.surfaces)), xy_compensation_scaled),
	                            stInternal);
	                    }
	                } else {
	                    if (xy_compensation_scaled < 0.f || elfoot > 0.f) {
	                        // Apply the negative XY compensation.
	                        Polygons trimming;
	                        static const float eps = float(scale_(m_config.slice_closing_radius.value) * 1.5);
	                        if (elfoot > 0.f) {
	                        	lslices_1st_layer = offset_ex(layer->merged(eps), std::min(xy_compensation_scaled, 0.f) - eps);
								trimming = to_polygons(Slic3r::elephant_foot_compensation(lslices_1st_layer,
									layer->m_regions.front()->flow(frExternalPerimeter), unscale<double>(elfoot)));
	                        } else
		                        trimming = offset(layer->merged(float(SCALED_EPSILON)), xy_compensation_scaled - float(SCALED_EPSILON));
	                        for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id)
	                            layer->m_regions[region_id]->trim_surfaces(trimming);
	                    }
	                }
	                // Merge all regions' slices to get islands, chain them by a shortest path.
	                layer->make_slices();
	            }
	        });
	    if (elephant_foot_compensation_scaled > 0.f && ! m_layers.empty()) {
	    	// The Elephant foot has been compensated, therefore the 1st layer's lslices are shrank with the Elephant foot compensation value.
	    	// Store the uncompensated value there.
	    	assert(m_layers.front()->id() == 0);
			m_layers.front()->lslices = std::move(lslices_1st_layer);
		}
	}

    m_print->throw_if_canceled();
    BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - end";
}

std::vector<ExPolygons> PrintObject::slice_support_volumes(const ModelVolumeType model_volume_type) const
{
    auto it_volume     = this->model_object()->volumes.begin();
    auto it_volume_end = this->model_object()->volumes.end();
    for (; it_volume != it_volume_end && (*it_volume)->type() != model_volume_type; ++ it_volume) ;
    std::vector<ExPolygons> slices;
    if (it_volume != it_volume_end) {
        // Found at least a single support volume of model_volume_type.
        std::vector<float> zs = zs_from_layers(this->layers());
        std::vector<char>  merge_layers;
        bool               merge = false;
        const Print       *print = this->print();
        auto               throw_on_cancel_callback = std::function<void()>([print](){ print->throw_if_canceled(); });
        for (; it_volume != it_volume_end; ++ it_volume)
            if ((*it_volume)->type() == model_volume_type) {
                std::vector<ExPolygons> slices2 = slice_volume(*(*it_volume), zs, MeshSlicingParamsEx{}, throw_on_cancel_callback);
                if (slices.empty())
                    slices = std::move(slices2);
                else if (! slices2.empty()) {
                    if (merge_layers.empty())
                        merge_layers.assign(zs.size(), false);
                    for (size_t i = 0; i < zs.size(); ++ i) {
                        if (slices[i].empty())
                            slices[i] = std::move(slices2[i]);
                        else if (! slices2[i].empty()) {
                            append(slices[i], std::move(slices2[i]));
                            merge_layers[i] = true;
                            merge = true;
                        }
                    }
                }
            }
        if (merge) {
            std::vector<ExPolygons*> to_merge;
            to_merge.reserve(zs.size());
            for (size_t i = 0; i < zs.size(); ++ i)
                if (merge_layers[i])
                    to_merge.emplace_back(&slices[i]);
            tbb::parallel_for(
                tbb::blocked_range<size_t>(0, to_merge.size()),
                [&to_merge](const tbb::blocked_range<size_t> &range) {
                    for (size_t i = range.begin(); i < range.end(); ++ i)
                        *to_merge[i] = union_ex(*to_merge[i]);
            });
        }
    }
    return slices;
}

} // namespace Slic3r