Welcome to mirror list, hosted at ThFree Co, Russian Federation.

SLABasePool.cpp « SLA « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f1e79357dda3fd6cc00b98c01e5b7654a55eef72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
#include "SLABasePool.hpp"
#include "SLABoilerPlate.hpp"

#include "boost/log/trivial.hpp"
#include "SLABoostAdapter.hpp"
#include "ClipperUtils.hpp"

//#include "SVG.hpp"
//#include "benchmark.h"

namespace Slic3r { namespace sla {

/// Convert the triangulation output to an intermediate mesh.
Contour3D convert(const Polygons& triangles, coord_t z, bool dir) {

    Pointf3s points;
    points.reserve(3*triangles.size());
    Indices indices;
    indices.reserve(points.size());

    for(auto& tr : triangles) {
        auto c = coord_t(points.size()), b = c++, a = c++;
        if(dir) indices.emplace_back(a, b, c);
        else indices.emplace_back(c, b, a);
        for(auto& p : tr.points) {
            points.emplace_back(unscale(x(p), y(p), z));
        }
    }

    return {points, indices};
}

Contour3D walls(const ExPolygon& floor_plate, const ExPolygon& ceiling,
                double floor_z_mm, double ceiling_z_mm,
                ThrowOnCancel thr)
{
    using std::transform; using std::back_inserter;

    ExPolygon poly;
    poly.contour.points = floor_plate.contour.points;
    poly.holes.emplace_back(ceiling.contour);
    auto& h = poly.holes.front();
    std::reverse(h.points.begin(), h.points.end());
    Polygons tri = triangulate(poly);

    Contour3D ret;
    ret.points.reserve(tri.size() * 3);

    double fz = floor_z_mm;
    double cz = ceiling_z_mm;
    auto& rp = ret.points;
    auto& rpi = ret.indices;
    ret.indices.reserve(tri.size() * 3);

    coord_t idx = 0;

    auto hlines = h.lines();
    auto is_upper = [&hlines](const Point& p) {
        return std::any_of(hlines.begin(), hlines.end(),
                               [&p](const Line& l) {
            return l.distance_to(p) < mm(1e-6);
        });
    };

    std::for_each(tri.begin(), tri.end(),
                  [&rp, &rpi, thr, &idx, is_upper, fz, cz](const Polygon& pp)
    {
        thr(); // may throw if cancellation was requested

        for(auto& p : pp.points)
            if(is_upper(p))
                rp.emplace_back(unscale(x(p), y(p), mm(cz)));
            else rp.emplace_back(unscale(x(p), y(p), mm(fz)));

        coord_t a = idx++, b = idx++, c = idx++;
        if(fz > cz) rpi.emplace_back(c, b, a);
        else rpi.emplace_back(a, b, c);
    });

    return ret;
}

/// Offsetting with clipper and smoothing the edges into a curvature.
void offset(ExPolygon& sh, coord_t distance) {
    using ClipperLib::ClipperOffset;
    using ClipperLib::jtRound;
    using ClipperLib::etClosedPolygon;
    using ClipperLib::Paths;
    using ClipperLib::Path;

    auto&& ctour = Slic3rMultiPoint_to_ClipperPath(sh.contour);
    auto&& holes = Slic3rMultiPoints_to_ClipperPaths(sh.holes);

    // If the input is not at least a triangle, we can not do this algorithm
    if(ctour.size() < 3 ||
       std::any_of(holes.begin(), holes.end(),
                   [](const Path& p) { return p.size() < 3; })
            ) {
        BOOST_LOG_TRIVIAL(error) << "Invalid geometry for offsetting!";
        return;
    }

    ClipperOffset offs;
    offs.ArcTolerance = 0.01*mm(1);
    Paths result;
    offs.AddPath(ctour, jtRound, etClosedPolygon);
    offs.AddPaths(holes, jtRound, etClosedPolygon);
    offs.Execute(result, static_cast<double>(distance));

    // Offsetting reverts the orientation and also removes the last vertex
    // so boost will not have a closed polygon.

    bool found_the_contour = false;
    sh.holes.clear();
    for(auto& r : result) {
        if(ClipperLib::Orientation(r)) {
            // We don't like if the offsetting generates more than one contour
            // but throwing would be an overkill. Instead, we should warn the
            // caller about the inability to create correct geometries
            if(!found_the_contour) {
                auto rr = ClipperPath_to_Slic3rPolygon(r);
                sh.contour.points.swap(rr.points);
                found_the_contour = true;
            } else {
                BOOST_LOG_TRIVIAL(warning)
                        << "Warning: offsetting result is invalid!";
            }
        } else {
            // TODO If there are multiple contours we can't be sure which hole
            // belongs to the first contour. (But in this case the situation is
            // bad enough to let it go...)
            sh.holes.emplace_back(ClipperPath_to_Slic3rPolygon(r));
        }
    }
}

/// Unification of polygons (with clipper) preserving holes as well.
ExPolygons unify(const ExPolygons& shapes) {
    using ClipperLib::ptSubject;

    ExPolygons retv;

    bool closed = true;
    bool valid = true;

    ClipperLib::Clipper clipper;

    for(auto& path : shapes) {
        auto clipperpath = Slic3rMultiPoint_to_ClipperPath(path.contour);

        if(!clipperpath.empty())
            valid &= clipper.AddPath(clipperpath, ptSubject, closed);

        auto clipperholes = Slic3rMultiPoints_to_ClipperPaths(path.holes);

        for(auto& hole : clipperholes) {
            if(!hole.empty())
                valid &= clipper.AddPath(hole, ptSubject, closed);
        }
    }

    if(!valid) BOOST_LOG_TRIVIAL(warning) << "Unification of invalid shapes!";

    ClipperLib::PolyTree result;
    clipper.Execute(ClipperLib::ctUnion, result, ClipperLib::pftNonZero);

    retv.reserve(static_cast<size_t>(result.Total()));

    // Now we will recursively traverse the polygon tree and serialize it
    // into an ExPolygon with holes. The polygon tree has the clipper-ish
    // PolyTree structure which alternates its nodes as contours and holes

    // A "declaration" of function for traversing leafs which are holes
    std::function<void(ClipperLib::PolyNode*, ExPolygon&)> processHole;

    // Process polygon which calls processHoles which than calls processPoly
    // again until no leafs are left.
    auto processPoly = [&retv, &processHole](ClipperLib::PolyNode *pptr) {
        ExPolygon poly;
        poly.contour.points = ClipperPath_to_Slic3rPolygon(pptr->Contour);
        for(auto h : pptr->Childs) { processHole(h, poly); }
        retv.push_back(poly);
    };

    // Body of the processHole function
    processHole = [&processPoly](ClipperLib::PolyNode *pptr, ExPolygon& poly)
    {
        poly.holes.emplace_back();
        poly.holes.back().points = ClipperPath_to_Slic3rPolygon(pptr->Contour);
        for(auto c : pptr->Childs) processPoly(c);
    };

    // Wrapper for traversing.
    auto traverse = [&processPoly] (ClipperLib::PolyNode *node)
    {
        for(auto ch : node->Childs) {
            processPoly(ch);
        }
    };

    // Here is the actual traverse
    traverse(&result);

    return retv;
}

/// Only a debug function to generate top and bottom plates from a 2D shape.
/// It is not used in the algorithm directly.
inline Contour3D roofs(const ExPolygon& poly, coord_t z_distance) {
    Polygons triangles = triangulate(poly);

    auto lower = convert(triangles, 0, false);
    auto upper = convert(triangles, z_distance, true);
    lower.merge(upper);
    return lower;
}

Contour3D round_edges(const ExPolygon& base_plate,
                      double radius_mm,
                      double degrees,
                      double ceilheight_mm,
                      bool dir,
                      ThrowOnCancel throw_on_cancel,
                      ExPolygon& last_offset, double& last_height)
{
    auto ob = base_plate;
    auto ob_prev = ob;
    double wh = ceilheight_mm, wh_prev = wh;
    Contour3D curvedwalls;

    int steps = 30;
    double stepx = radius_mm / steps;
    coord_t s = dir? 1 : -1;
    degrees = std::fmod(degrees, 180);

    // we use sin for x distance because we interpret the angle starting from
    // PI/2
    int tos = degrees < 90?
               int(radius_mm*std::cos(degrees * PI / 180 - PI/2) / stepx) : steps;

    for(int i = 1; i <= tos; ++i) {
        throw_on_cancel();

        ob = base_plate;

        double r2 = radius_mm * radius_mm;
        double xx = i*stepx;
        double x2 = xx*xx;
        double stepy = std::sqrt(r2 - x2);

        offset(ob, s*mm(xx));
        wh = ceilheight_mm - radius_mm + stepy;

        Contour3D pwalls;
        pwalls = walls(ob, ob_prev, wh, wh_prev, throw_on_cancel);

        curvedwalls.merge(pwalls);
        ob_prev = ob;
        wh_prev = wh;
    }

    if(degrees > 90) {
        double tox = radius_mm - radius_mm*std::cos(degrees * PI / 180 - PI/2);
        int tos = int(tox / stepx);

        for(int i = 1; i <= tos; ++i) {
            throw_on_cancel();
            ob = base_plate;

            double r2 = radius_mm * radius_mm;
            double xx = radius_mm - i*stepx;
            double x2 = xx*xx;
            double stepy = std::sqrt(r2 - x2);
            offset(ob, s*mm(xx));
            wh = ceilheight_mm - radius_mm - stepy;

            Contour3D pwalls;
            pwalls = walls(ob_prev, ob, wh_prev, wh, throw_on_cancel);

            curvedwalls.merge(pwalls);
            ob_prev = ob;
            wh_prev = wh;
        }
    }

    last_offset = std::move(ob);
    last_height = wh;

    return curvedwalls;
}

/// Generating the concave part of the 3D pool with the bottom plate and the
/// side walls.
Contour3D inner_bed(const ExPolygon& poly, double depth_mm,
                           double begin_h_mm = 0) {

    Polygons triangles = triangulate(poly);

    coord_t depth = mm(depth_mm);
    coord_t begin_h = mm(begin_h_mm);

    auto bottom = convert(triangles, -depth + begin_h, false);
    auto lines = poly.lines();

    // Generate outer walls
    auto fp = [](const Point& p, Point::coord_type z) {
        return unscale(x(p), y(p), z);
    };

    for(auto& l : lines) {
        auto s = coord_t(bottom.points.size());

        bottom.points.emplace_back(fp(l.a, -depth + begin_h));
        bottom.points.emplace_back(fp(l.b, -depth + begin_h));
        bottom.points.emplace_back(fp(l.a, begin_h));
        bottom.points.emplace_back(fp(l.b, begin_h));

        bottom.indices.emplace_back(s + 3, s + 1, s);
        bottom.indices.emplace_back(s + 2, s + 3, s);
    }

    return bottom;
}

inline Point centroid(Points& pp) {
    Point c;
    switch(pp.size()) {
    case 0: break;
    case 1: c = pp.front(); break;
    case 2: c = (pp[0] + pp[1]) / 2; break;
    default: {
        auto MAX = std::numeric_limits<Point::coord_type>::max();
        auto MIN = std::numeric_limits<Point::coord_type>::min();
        Point min = {MAX, MAX}, max = {MIN, MIN};

        for(auto& p : pp) {
            if(p(0) < min(0)) min(0) = p(0);
            if(p(1) < min(1)) min(1) = p(1);
            if(p(0) > max(0)) max(0) = p(0);
            if(p(1) > max(1)) max(1) = p(1);
        }
        c(0) = min(0) + (max(0) - min(0)) / 2;
        c(1) = min(1) + (max(1) - min(1)) / 2;

        // TODO: fails for non convex cluster
//        c = std::accumulate(pp.begin(), pp.end(), Point{0, 0});
//        x(c) /= coord_t(pp.size()); y(c) /= coord_t(pp.size());
        break;
    }
    }

    return c;
}

inline Point centroid(const ExPolygon& poly) {
    return poly.contour.centroid();
}

/// A fake concave hull that is constructed by connecting separate shapes
/// with explicit bridges. Bridges are generated from each shape's centroid
/// to the center of the "scene" which is the centroid calculated from the shape
/// centroids (a star is created...)
ExPolygons concave_hull(const ExPolygons& polys, double max_dist_mm = 50,
                        ThrowOnCancel throw_on_cancel = [](){})
{
    namespace bgi = boost::geometry::index;
    using SpatElement = std::pair<BoundingBox, unsigned>;
    using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;

    if(polys.empty()) return ExPolygons();

    ExPolygons punion = unify(polys);   // could be redundant

    if(punion.size() == 1) return punion;

    // We get the centroids of all the islands in the 2D slice
    Points centroids; centroids.reserve(punion.size());
    std::transform(punion.begin(), punion.end(), std::back_inserter(centroids),
                   [](const ExPolygon& poly) { return centroid(poly); });


    SpatIndex boxindex; unsigned idx = 0;
    std::for_each(punion.begin(), punion.end(),
                  [&boxindex, &idx](const ExPolygon& expo) {
        BoundingBox bb(expo);
        boxindex.insert(std::make_pair(bb, idx++));
    });


    // Centroid of the centroids of islands. This is where the additional
    // connector sticks are routed.
    Point cc = centroid(centroids);

    punion.reserve(punion.size() + centroids.size());

    idx = 0;
    std::transform(centroids.begin(), centroids.end(),
                   std::back_inserter(punion),
                   [&punion, &boxindex, cc, max_dist_mm, &idx, throw_on_cancel]
                   (const Point& c)
    {
        throw_on_cancel();
        double dx = x(c) - x(cc), dy = y(c) - y(cc);
        double l = std::sqrt(dx * dx + dy * dy);
        double nx = dx / l, ny = dy / l;
        double max_dist = mm(max_dist_mm);

        ExPolygon& expo = punion[idx++];
        BoundingBox querybb(expo);

        querybb.offset(max_dist);
        std::vector<SpatElement> result;
        boxindex.query(bgi::intersects(querybb), std::back_inserter(result));
        if(result.size() <= 1) return ExPolygon();

        ExPolygon r;
        auto& ctour = r.contour.points;

        ctour.reserve(3);
        ctour.emplace_back(cc);

        Point d(coord_t(mm(1)*nx), coord_t(mm(1)*ny));
        ctour.emplace_back(c + Point( -y(d),  x(d) ));
        ctour.emplace_back(c + Point(  y(d), -x(d) ));
        offset(r, mm(1));

        return r;
    });

    punion = unify(punion);

    return punion;
}

void base_plate(const TriangleMesh &mesh, ExPolygons &output, float h,
                float layerh, ThrowOnCancel thrfn)
{
    TriangleMesh m = mesh;
    TriangleMeshSlicer slicer(&m);

    auto bb = mesh.bounding_box();
    float gnd = float(bb.min(Z));
    std::vector<float> heights = {float(bb.min(Z))};
    for(float hi = gnd + layerh; hi <= gnd + h; hi += layerh)
        heights.emplace_back(hi);

    std::vector<ExPolygons> out; out.reserve(size_t(std::ceil(h/layerh)));
    slicer.slice(heights, &out, thrfn);

    size_t count = 0; for(auto& o : out) count += o.size();
    ExPolygons tmp; tmp.reserve(count);
    for(auto& o : out) for(auto& e : o) tmp.emplace_back(std::move(e));

    ExPolygons utmp = unify(tmp);
    for(auto& o : utmp) {
        auto&& smp = o.simplify(0.1/SCALING_FACTOR);
        output.insert(output.end(), smp.begin(), smp.end());
    }
}

void create_base_pool(const ExPolygons &ground_layer, TriangleMesh& out,
                      const PoolConfig& cfg)
{

    double mergedist = 2*(1.8*cfg.min_wall_thickness_mm + 4*cfg.edge_radius_mm)+
                       cfg.max_merge_distance_mm;

    // Here we get the base polygon from which the pad has to be generated.
    // We create an artificial concave hull from this polygon and that will
    // serve as the bottom plate of the pad. We will offset this concave hull
    // and then offset back the result with clipper with rounding edges ON. This
    // trick will create a nice rounded pad shape.
    auto concavehs = concave_hull(ground_layer, mergedist, cfg.throw_on_cancel);

    const double thickness      = cfg.min_wall_thickness_mm;
    const double wingheight     = cfg.min_wall_height_mm;
    const double fullheight     = wingheight + thickness;
    const double tilt = PI/4;
    const double wingdist       = wingheight / std::tan(tilt);

    // scaled values
    const coord_t s_thickness   = mm(thickness);
    const coord_t s_eradius     = mm(cfg.edge_radius_mm);
    const coord_t s_safety_dist = 2*s_eradius + coord_t(0.8*s_thickness);
    // const coord_t wheight    = mm(cfg.min_wall_height_mm);
    coord_t s_wingdist          = mm(wingdist);

    auto& thrcl = cfg.throw_on_cancel;

    for(ExPolygon& concaveh : concavehs) {
        if(concaveh.contour.points.empty()) return;

        // Get rif of any holes in the concave hull output.
        concaveh.holes.clear();

        // Here lies the trick that does the smooting only with clipper offset
        // calls. The offset is configured to round edges. Inner edges will
        // be rounded because we offset twice: ones to get the outer (top) plate
        // and again to get the inner (bottom) plate
        auto outer_base = concaveh;
        outer_base.holes.clear();
        offset(outer_base, s_safety_dist + s_wingdist + s_thickness);
        auto inner_base = outer_base;
        offset(inner_base, -(s_thickness + s_wingdist));

        // Punching a hole in the top plate for the cavity
        ExPolygon top_poly;
        ExPolygon middle_base;
        top_poly.contour = outer_base.contour;

        if(wingheight > 0) {
            middle_base = outer_base;
            offset(middle_base, -s_thickness);
            top_poly.holes.emplace_back(middle_base.contour);
            auto& tph = top_poly.holes.back().points;
            std::reverse(tph.begin(), tph.end());
        }

        Contour3D pool;

        ExPolygon ob = outer_base; double wh = 0;

        // now we will calculate the angle or portion of the circle from
        // pi/2 that will connect perfectly with the bottom plate.
        // this is a tangent point calculation problem and the equation can
        // be found for example here:
        // http://www.ambrsoft.com/TrigoCalc/Circles2/CirclePoint/CirclePointDistance.htm
        // the y coordinate would be:
        // y = cy + (r^2*py - r*px*sqrt(px^2 + py^2 - r^2) / (px^2 + py^2)
        // where px and py are the coordinates of the point outside the circle
        // cx and cy are the circle center, r is the radius
        // We place the circle center to (0, 0) in the calculation the make
        // things easier.
        // to get the angle we use arcsin function and subtract 90 degrees then
        // flip the sign to get the right input to the round_edge function.
        double r = cfg.edge_radius_mm;
        double cy = 0;
        double cx = 0;
        double px = thickness + wingdist;
        double py = r - fullheight;

        double pxcx = px - cx;
        double pycy = py - cy;
        double b_2 = pxcx*pxcx + pycy*pycy;
        double r_2 = r*r;
        double D = std::sqrt(b_2 - r_2);
        double vy = (r_2*pycy - r*pxcx*D) / b_2;
        double phi = -(std::asin(vy/r) * 180 / PI - 90);


        // Generate the smoothed edge geometry
        auto walledges = round_edges(ob,
                                     r,
                                     phi,
                                     0,    // z position of the input plane
                                     true,
                                     thrcl,
                                     ob, wh);
        pool.merge(walledges);

        // Now that we have the rounded edge connencting the top plate with
        // the outer side walls, we can generate and merge the sidewall geometry
        auto pwalls = walls(ob, inner_base, wh, -fullheight, thrcl);
        pool.merge(pwalls);

        if(wingheight > 0) {
            // Generate the smoothed edge geometry
            auto cavityedges = round_edges(middle_base,
                                           r,
                                           phi - 90, // from tangent lines
                                           0,
                                           false,
                                           thrcl,
                                           ob, wh);
            pool.merge(cavityedges);

            // Next is the cavity walls connecting to the top plate's
            // artificially created hole.
            auto cavitywalls = walls(inner_base, ob, -wingheight, wh, thrcl);
            pool.merge(cavitywalls);
        }

        // Now we need to triangulate the top and bottom plates as well as the
        // cavity bottom plate which is the same as the bottom plate but it is
        // eleveted by the thickness.
        Polygons top_triangles, bottom_triangles;

        triangulate(top_poly, top_triangles);
        triangulate(inner_base, bottom_triangles);

        auto top_plate = convert(top_triangles, 0, false);
        auto bottom_plate = convert(bottom_triangles, -mm(fullheight), true);

        pool.merge(top_plate);
        pool.merge(bottom_plate);

        if(wingheight > 0) {
            Polygons middle_triangles;
            triangulate(inner_base, middle_triangles);
            auto middle_plate = convert(middle_triangles, -mm(wingheight), false);
            pool.merge(middle_plate);
        }

        out.merge(mesh(pool));
    }
}

}
}