Welcome to mirror list, hosted at ThFree Co, Russian Federation.

SLAPrint.cpp « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f45d805b6aedf4b168c24916e26f3826c1ad222f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
#include "SLAPrint.hpp"
#include "SLA/SLASupportTree.hpp"
#include "SLA/SLABasePool.hpp"
#include "SLA/SLAAutoSupports.hpp"
#include "MTUtils.hpp"

#include <unordered_set>
#include <numeric>

#include <tbb/parallel_for.h>
#include <boost/log/trivial.hpp>

//#include <tbb/spin_mutex.h>//#include "tbb/mutex.h"

#include "I18N.hpp"

//! macro used to mark string used at localization,
//! return same string
#define L(s) Slic3r::I18N::translate(s)

namespace Slic3r {

using SupportTreePtr = std::unique_ptr<sla::SLASupportTree>;

class SLAPrintObject::SupportData {
public:
    sla::EigenMesh3D emesh;              // index-triangle representation
    sla::PointSet    support_points;     // all the support points (manual/auto)
    SupportTreePtr   support_tree_ptr;   // the supports
    SlicedSupports   support_slices;     // sliced supports
    std::vector<LevelID>    level_ids;
};

namespace {

// should add up to 100 (%)
const std::array<unsigned, slaposCount>     OBJ_STEP_LEVELS =
{
    10,     // slaposObjectSlice,
    30,     // slaposSupportPoints,
    25,     // slaposSupportTree,
    25,     // slaposBasePool,
    5,      // slaposSliceSupports,
    5       // slaposIndexSlices
};

const std::array<std::string, slaposCount> OBJ_STEP_LABELS =
{
    L("Slicing model"),                 // slaposObjectSlice,
    L("Generating support points"),      // slaposSupportPoints,
    L("Generating support tree"),       // slaposSupportTree,
    L("Generating base pool"),          // slaposBasePool,
    L("Slicing supports"),              // slaposSliceSupports,
    L("Slicing supports")               // slaposIndexSlices,
};

// Should also add up to 100 (%)
const std::array<unsigned, slapsCount> PRINT_STEP_LEVELS =
{
    80,     // slapsRasterize
    20,     // slapsValidate
};

const std::array<std::string, slapsCount> PRINT_STEP_LABELS =
{
    L("Rasterizing layers"),         // slapsRasterize
    L("Validating"),                 // slapsValidate
};

}

void SLAPrint::clear()
{
    tbb::mutex::scoped_lock lock(this->state_mutex());
    // The following call should stop background processing if it is running.
    this->invalidate_all_steps();
    for (SLAPrintObject *object : m_objects)
        delete object;
    m_objects.clear();
    m_model.clear_objects();
}

// Transformation without rotation around Z and without a shift by X and Y.
static Transform3d sla_trafo(const ModelObject &model_object)
{
    ModelInstance &model_instance = *model_object.instances.front();
    Vec3d          offset         = model_instance.get_offset();
    Vec3d          rotation       = model_instance.get_rotation();
    offset(0) = 0.;
    offset(1) = 0.;
    rotation(2) = 0.;
    return Geometry::assemble_transform(offset, rotation, model_instance.get_scaling_factor(), model_instance.get_mirror());
}

// List of instances, where the ModelInstance transformation is a composite of sla_trafo and the transformation defined by SLAPrintObject::Instance.
static std::vector<SLAPrintObject::Instance> sla_instances(const ModelObject &model_object)
{
    std::vector<SLAPrintObject::Instance> instances;
    for (ModelInstance *model_instance : model_object.instances)
        if (model_instance->is_printable()) {
            instances.emplace_back(SLAPrintObject::Instance(
                model_instance->id(),
                Point::new_scale(model_instance->get_offset(X), model_instance->get_offset(Y)),
                float(model_instance->get_rotation(Z))));
        }
    return instances;
}

SLAPrint::ApplyStatus SLAPrint::apply(const Model &model, const DynamicPrintConfig &config_in)
{
#ifdef _DEBUG
    check_model_ids_validity(model);
#endif /* _DEBUG */

    // Make a copy of the config, normalize it.
    DynamicPrintConfig config(config_in);
    config.normalize();
    // Collect changes to print config.
    t_config_option_keys print_diff    = m_print_config.diff(config);    
    t_config_option_keys printer_diff  = m_printer_config.diff(config);
    t_config_option_keys material_diff = m_material_config.diff(config);
    t_config_option_keys object_diff   = m_default_object_config.diff(config);
    t_config_option_keys placeholder_parser_diff = this->placeholder_parser().config_diff(config);

    // Do not use the ApplyStatus as we will use the max function when updating apply_status.
    unsigned int apply_status = APPLY_STATUS_UNCHANGED;
    auto update_apply_status = [&apply_status](bool invalidated)
        { apply_status = std::max<unsigned int>(apply_status, invalidated ? APPLY_STATUS_INVALIDATED : APPLY_STATUS_CHANGED); };
    if (! (print_diff.empty() && printer_diff.empty() && material_diff.empty() && object_diff.empty()))
        update_apply_status(false);

    // Grab the lock for the Print / PrintObject milestones.
    tbb::mutex::scoped_lock lock(this->state_mutex());

    // The following call may stop the background processing.
    if (! print_diff.empty())
        update_apply_status(this->invalidate_state_by_config_options(print_diff));
    if (! printer_diff.empty())
        update_apply_status(this->invalidate_state_by_config_options(printer_diff));
    if (! material_diff.empty())
        update_apply_status(this->invalidate_state_by_config_options(material_diff));

    // Apply variables to placeholder parser. The placeholder parser is currently used
    // only to generate the output file name.
	if (! placeholder_parser_diff.empty()) {
        // update_apply_status(this->invalidate_step(slapsRasterize));
		PlaceholderParser &pp = this->placeholder_parser();
		pp.apply_config(config);
        // Set the profile aliases for the PrintBase::output_filename()
		pp.set("print_preset", config_in.option("sla_print_settings_id")->clone());
		pp.set("material_preset", config_in.option("sla_material_settings_id")->clone());
		pp.set("printer_preset", config_in.option("printer_settings_id")->clone());
    }

    // It is also safe to change m_config now after this->invalidate_state_by_config_options() call.
    m_print_config.apply_only(config, print_diff, true);
    m_printer_config.apply_only(config, printer_diff, true);
    // Handle changes to material config.
    m_material_config.apply_only(config, material_diff, true);
    // Handle changes to object config defaults
    m_default_object_config.apply_only(config, object_diff, true);

    struct ModelObjectStatus {
        enum Status {
            Unknown,
            Old,
            New,
            Moved,
            Deleted,
        };
        ModelObjectStatus(ModelID id, Status status = Unknown) : id(id), status(status) {}
        ModelID                 id;
        Status                  status;
        // Search by id.
        bool operator<(const ModelObjectStatus &rhs) const { return id < rhs.id; }
    };
    std::set<ModelObjectStatus> model_object_status;

    // 1) Synchronize model objects.
    if (model.id() != m_model.id()) {
        // Kill everything, initialize from scratch.
        // Stop background processing.
        this->call_cancell_callback();
        update_apply_status(this->invalidate_all_steps());
        for (SLAPrintObject *object : m_objects) {
            model_object_status.emplace(object->model_object()->id(), ModelObjectStatus::Deleted);
            update_apply_status(object->invalidate_all_steps());
            delete object;
        }
        m_objects.clear();
        m_model.assign_copy(model);
        for (const ModelObject *model_object : m_model.objects)
            model_object_status.emplace(model_object->id(), ModelObjectStatus::New);
    } else {
        if (model_object_list_equal(m_model, model)) {
            // The object list did not change.
            for (const ModelObject *model_object : m_model.objects)
                model_object_status.emplace(model_object->id(), ModelObjectStatus::Old);
        } else if (model_object_list_extended(m_model, model)) {
            // Add new objects. Their volumes and configs will be synchronized later.
            update_apply_status(this->invalidate_step(slapsRasterize));
            for (const ModelObject *model_object : m_model.objects)
                model_object_status.emplace(model_object->id(), ModelObjectStatus::Old);
            for (size_t i = m_model.objects.size(); i < model.objects.size(); ++ i) {
                model_object_status.emplace(model.objects[i]->id(), ModelObjectStatus::New);
                m_model.objects.emplace_back(ModelObject::new_copy(*model.objects[i]));
                m_model.objects.back()->set_model(&m_model);
            }
        } else {
            // Reorder the objects, add new objects.
            // First stop background processing before shuffling or deleting the PrintObjects in the object list.
            this->call_cancell_callback();
            update_apply_status(this->invalidate_step(slapsRasterize));
            // Second create a new list of objects.
            std::vector<ModelObject*> model_objects_old(std::move(m_model.objects));
            m_model.objects.clear();
            m_model.objects.reserve(model.objects.size());
            auto by_id_lower = [](const ModelObject *lhs, const ModelObject *rhs){ return lhs->id() < rhs->id(); };
            std::sort(model_objects_old.begin(), model_objects_old.end(), by_id_lower);
            for (const ModelObject *mobj : model.objects) {
                auto it = std::lower_bound(model_objects_old.begin(), model_objects_old.end(), mobj, by_id_lower);
                if (it == model_objects_old.end() || (*it)->id() != mobj->id()) {
                    // New ModelObject added.
                    m_model.objects.emplace_back(ModelObject::new_copy(*mobj));
                    m_model.objects.back()->set_model(&m_model);
                    model_object_status.emplace(mobj->id(), ModelObjectStatus::New);
                } else {
                    // Existing ModelObject re-added (possibly moved in the list).
                    m_model.objects.emplace_back(*it);
                    model_object_status.emplace(mobj->id(), ModelObjectStatus::Moved);
                }
            }
            bool deleted_any = false;
            for (ModelObject *&model_object : model_objects_old) {
                if (model_object_status.find(ModelObjectStatus(model_object->id())) == model_object_status.end()) {
                    model_object_status.emplace(model_object->id(), ModelObjectStatus::Deleted);
                    deleted_any = true;
                } else
                    // Do not delete this ModelObject instance.
                    model_object = nullptr;
            }
            if (deleted_any) {
                // Delete PrintObjects of the deleted ModelObjects.
                std::vector<SLAPrintObject*> print_objects_old = std::move(m_objects);
                m_objects.clear();
                m_objects.reserve(print_objects_old.size());
                for (SLAPrintObject *print_object : print_objects_old) {
                    auto it_status = model_object_status.find(ModelObjectStatus(print_object->model_object()->id()));
                    assert(it_status != model_object_status.end());
                    if (it_status->status == ModelObjectStatus::Deleted) {
                        update_apply_status(print_object->invalidate_all_steps());
                        delete print_object;
                    } else
                        m_objects.emplace_back(print_object);
                }
                for (ModelObject *model_object : model_objects_old)
                    delete model_object;
            }
        }
    }

    // 2) Map print objects including their transformation matrices.
    struct PrintObjectStatus {
        enum Status {
            Unknown,
            Deleted,
            Reused,
            New
        };
        PrintObjectStatus(SLAPrintObject *print_object, Status status = Unknown) :
            id(print_object->model_object()->id()),
            print_object(print_object),
            trafo(print_object->trafo()),
            status(status) {}
        PrintObjectStatus(ModelID id) : id(id), print_object(nullptr), trafo(Transform3d::Identity()), status(Unknown) {}
        // ID of the ModelObject & PrintObject
        ModelID          id;
        // Pointer to the old PrintObject
        SLAPrintObject  *print_object;
        // Trafo generated with model_object->world_matrix(true)
        Transform3d      trafo;
        Status           status;
        // Search by id.
        bool operator<(const PrintObjectStatus &rhs) const { return id < rhs.id; }
    };
    std::multiset<PrintObjectStatus> print_object_status;
    for (SLAPrintObject *print_object : m_objects)
        print_object_status.emplace(PrintObjectStatus(print_object));

    // 3) Synchronize ModelObjects & PrintObjects.
    std::vector<SLAPrintObject*> print_objects_new;
    print_objects_new.reserve(std::max(m_objects.size(), m_model.objects.size()));
    bool new_objects = false;
    for (size_t idx_model_object = 0; idx_model_object < model.objects.size(); ++ idx_model_object) {
        ModelObject &model_object = *m_model.objects[idx_model_object];
        auto it_status = model_object_status.find(ModelObjectStatus(model_object.id()));
        assert(it_status != model_object_status.end());
        assert(it_status->status != ModelObjectStatus::Deleted);
        if (it_status->status == ModelObjectStatus::New)
            // PrintObject instances will be added in the next loop.
            continue;
        // Update the ModelObject instance, possibly invalidate the linked PrintObjects.
        assert(it_status->status == ModelObjectStatus::Old || it_status->status == ModelObjectStatus::Moved);
        const ModelObject &model_object_new       = *model.objects[idx_model_object];
        auto               it_print_object_status = print_object_status.lower_bound(PrintObjectStatus(model_object.id()));
        if (it_print_object_status != print_object_status.end() && it_print_object_status->id != model_object.id())
            it_print_object_status = print_object_status.end();
        // Check whether a model part volume was added or removed, their transformations or order changed.
        bool model_parts_differ = model_volume_list_changed(model_object, model_object_new, ModelVolume::MODEL_PART);
        bool sla_trafo_differs  = model_object.instances.empty() != model_object_new.instances.empty() ||
            (! model_object.instances.empty() && ! sla_trafo(model_object).isApprox(sla_trafo(model_object_new)));
        if (model_parts_differ || sla_trafo_differs) {
            // The very first step (the slicing step) is invalidated. One may freely remove all associated PrintObjects.
            if (it_print_object_status != print_object_status.end()) {
                update_apply_status(it_print_object_status->print_object->invalidate_all_steps());
                const_cast<PrintObjectStatus&>(*it_print_object_status).status = PrintObjectStatus::Deleted;
            }
            // Copy content of the ModelObject including its ID, do not change the parent.
            model_object.assign_copy(model_object_new);
        } else {
            // Synchronize Object's config.
            bool object_config_changed = model_object.config != model_object_new.config;
            if (object_config_changed)
                model_object.config = model_object_new.config;
            if (! object_diff.empty() || object_config_changed) {
                SLAPrintObjectConfig new_config = m_default_object_config;
                normalize_and_apply_config(new_config, model_object.config);
                if (it_print_object_status != print_object_status.end()) {
                    t_config_option_keys diff = it_print_object_status->print_object->config().diff(new_config);
                    if (! diff.empty()) {
                        update_apply_status(it_print_object_status->print_object->invalidate_state_by_config_options(diff));
                        it_print_object_status->print_object->config_apply_only(new_config, diff, true);
                    }
                }
            }
            if (model_object.sla_support_points != model_object_new.sla_support_points) {
                model_object.sla_support_points = model_object_new.sla_support_points;
                if (it_print_object_status != print_object_status.end())
                    update_apply_status(it_print_object_status->print_object->invalidate_step(slaposSupportPoints));
            }
            // Copy the ModelObject name, input_file and instances. The instances will compared against PrintObject instances in the next step.
            model_object.name       = model_object_new.name;
            model_object.input_file = model_object_new.input_file;
            model_object.clear_instances();
            model_object.instances.reserve(model_object_new.instances.size());
            for (const ModelInstance *model_instance : model_object_new.instances) {
                model_object.instances.emplace_back(new ModelInstance(*model_instance));
                model_object.instances.back()->set_model_object(&model_object);
            }
        }

        std::vector<SLAPrintObject::Instance> new_instances = sla_instances(model_object);
        if (it_print_object_status != print_object_status.end() && it_print_object_status->status != PrintObjectStatus::Deleted) {
            // The SLAPrintObject is already there.
            if (new_instances != it_print_object_status->print_object->instances()) {
                // Instances changed.
                it_print_object_status->print_object->set_instances(new_instances);
                update_apply_status(this->invalidate_step(slapsRasterize));
            }
            print_objects_new.emplace_back(it_print_object_status->print_object);
            const_cast<PrintObjectStatus&>(*it_print_object_status).status = PrintObjectStatus::Reused;
        } else {
            auto print_object = new SLAPrintObject(this, &model_object);
            print_object->set_trafo(sla_trafo(model_object));
            print_object->set_instances(new_instances);
            print_object->config_apply(config, true);
            print_objects_new.emplace_back(print_object);
            new_objects = true;
        }
    }

    if (m_objects != print_objects_new) {
        this->call_cancell_callback();
        update_apply_status(this->invalidate_all_steps());
        m_objects = print_objects_new;
        // Delete the PrintObjects marked as Unknown or Deleted.
        bool deleted_objects = false;
        for (auto &pos : print_object_status)
            if (pos.status == PrintObjectStatus::Unknown || pos.status == PrintObjectStatus::Deleted) {
                update_apply_status(pos.print_object->invalidate_all_steps());
                delete pos.print_object;
                deleted_objects = true;
            }
        if (new_objects)
            update_apply_status(false);
    }

    this->update_object_placeholders();

#ifdef _DEBUG
    check_model_ids_equal(m_model, model);
#endif /* _DEBUG */

    return static_cast<ApplyStatus>(apply_status);
}

namespace {
// Compile the argument for support creation from the static print config.
sla::SupportConfig make_support_cfg(const SLAPrintObjectConfig& c) {
    sla::SupportConfig scfg;

    scfg.head_front_radius_mm = 0.5*c.support_head_front_diameter.getFloat();
    scfg.head_back_radius_mm = 0.5*c.support_pillar_diameter.getFloat();
    scfg.head_penetration_mm = c.support_head_penetration.getFloat();
    scfg.head_width_mm = c.support_head_width.getFloat();
    scfg.object_elevation_mm = c.support_object_elevation.getFloat();
    scfg.tilt = c.support_critical_angle.getFloat() * PI / 180.0 ;
    scfg.max_bridge_length_mm = c.support_max_bridge_length.getFloat();
    scfg.headless_pillar_radius_mm = 0.375*c.support_pillar_diameter.getFloat();
    scfg.pillar_widening_factor = c.support_pillar_widening_factor.getFloat();
    scfg.base_radius_mm = 0.5*c.support_base_diameter.getFloat();
    scfg.base_height_mm = c.support_base_height.getFloat();

    return scfg;
}

void swapXY(ExPolygon& expoly) {
    for(auto& p : expoly.contour.points) std::swap(p(X), p(Y));
    for(auto& h : expoly.holes) for(auto& p : h.points) std::swap(p(X), p(Y));
}

}

std::vector<float> SLAPrint::calculate_heights(const BoundingBoxf3& bb3d,
                                               float elevation,
                                               float initial_layer_height,
                                               float layer_height) const
{
    std::vector<float> heights;
    float minZ = float(bb3d.min(Z)) - float(elevation);
    float maxZ = float(bb3d.max(Z));
    auto flh = float(layer_height);
    auto gnd = float(bb3d.min(Z));

    // The first layer (the one before the initial height) is added only
    // if there is no pad and no elevation value
    if(minZ >= gnd) heights.emplace_back(minZ);

    for(float h = minZ + initial_layer_height; h < maxZ; h += flh)
        if(h >= gnd) heights.emplace_back(h);

    return heights;
}

template<class...Args>
void report_status(SLAPrint& p, int st, const std::string& msg, Args&&...args) {
    BOOST_LOG_TRIVIAL(info) << st << "% " << msg;
    p.set_status(st, msg, std::forward<Args>(args)...);
}


void SLAPrint::process()
{
    using namespace sla;
    using ExPolygon = Slic3r::ExPolygon;

    // Assumption: at this point the print objects should be populated only with
    // the model objects we have to process and the instances are also filtered

    // shortcut to initial layer height
    double ilhd = m_material_config.initial_layer_height.getFloat();
    auto   ilh  = float(ilhd);
    const size_t objcount = m_objects.size();

    const unsigned min_objstatus = 0;   // where the per object operations start
    const unsigned max_objstatus = 80;  // where the per object operations end

    // the coefficient that multiplies the per object status values which
    // are set up for <0, 100>. They need to be scaled into the whole process
    const double ostepd = (max_objstatus - min_objstatus) / (objcount * 100.0);

    // The slicing will be performed on an imaginary 1D grid which starts from
    // the bottom of the bounding box created around the supported model. So
    // the first layer which is usually thicker will be part of the supports
    // not the model geometry. Exception is when the model is not in the air
    // (elevation is zero) and no pad creation was requested. In this case the
    // model geometry starts on the ground level and the initial layer is part
    // of it. In any case, the model and the supports have to be sliced in the
    // same imaginary grid (the height vector argument to TriangleMeshSlicer).

    // Slicing the model object. This method is oversimplified and needs to
    // be compared with the fff slicing algorithm for verification
    auto slice_model = [this, ilh](SLAPrintObject& po) {
        double lh = po.m_config.layer_height.getFloat();

        TriangleMesh mesh = po.transformed_mesh();
        TriangleMeshSlicer slicer(&mesh);

        // The 1D grid heights
        std::vector<float> heights = calculate_heights(mesh.bounding_box(),
                                                       float(po.get_elevation()),
                                                       ilh, float(lh));

        auto& layers = po.m_model_slices; layers.clear();
        slicer.slice(heights, &layers, [this](){ throw_if_canceled(); });
    };

    // In this step we check the slices, identify island and cover them with
    // support points. Then we sprinkle the rest of the mesh.
    auto support_points = [this, ilh](SLAPrintObject& po) {
        const ModelObject& mo = *po.m_model_object;
        po.m_supportdata.reset(new SLAPrintObject::SupportData());
        po.m_supportdata->emesh = sla::to_eigenmesh(po.transformed_mesh());

        BOOST_LOG_TRIVIAL(debug) << "Support point count "
                                 << mo.sla_support_points.size();

        // If there are no points on the front-end, we will do the
        // autoplacement. Otherwise we will just blindly copy the frontend data
        // into the backend cache.
        if(mo.sla_support_points.empty()) {
            // calculate heights of slices (slices are calculated already)
            double lh = po.m_config.layer_height.getFloat();

            std::vector<float> heights =
                    calculate_heights(po.transformed_mesh().bounding_box(),
                                      float(po.get_elevation()),
                                      ilh, float(lh));

            this->throw_if_canceled();
            SLAAutoSupports::Config config;
            const SLAPrintObjectConfig& cfg = po.config();
            config.minimal_z = float(cfg.support_minimal_z);
            config.density_at_45 = cfg.support_density_at_45 / 10000.f;
            config.density_at_horizontal = cfg.support_density_at_horizontal / 10000.f;

            // Construction of this object does the calculation.
            this->throw_if_canceled();
            SLAAutoSupports auto_supports(po.transformed_mesh(),
                                          po.m_supportdata->emesh,
                                          po.get_model_slices(),
                                          heights,
                                          config, 
                                          [this]() { throw_if_canceled(); });

            // Now let's extract the result.
            const std::vector<Vec3d>& points = auto_supports.output();
            this->throw_if_canceled();
            po.m_supportdata->support_points = sla::to_point_set(points);

            BOOST_LOG_TRIVIAL(debug) << "Automatic support points: "
                                     << po.m_supportdata->support_points.rows();
        }
        else {
            // There are some points on the front-end, no calculation will be done.
            po.m_supportdata->support_points =
                    sla::to_point_set(po.transformed_support_points());
        }
    };

    // In this step we create the supports
    auto support_tree = [this, objcount, ostepd](SLAPrintObject& po) {
        if(!po.m_supportdata) return;

        if(!po.m_config.supports_enable.getBool()) {
            // Generate empty support tree. It can still host a pad
            po.m_supportdata->support_tree_ptr.reset(new SLASupportTree());
            return;
        }

        try {
            sla::SupportConfig scfg = make_support_cfg(po.m_config);
            sla::Controller ctl;

            // some magic to scale the status values coming from the support
            // tree creation into the whole print process
            auto stfirst = OBJ_STEP_LEVELS.begin();
            auto stthis = stfirst + slaposSupportTree;
            // we need to add up the status portions until this operation
            int init = std::accumulate(stfirst, stthis, 0);
            init = int(init * ostepd);     // scale the init portion

            // scaling for the sub operations
            double d = *stthis / (objcount * 100.0);

            ctl.statuscb = [this, init, d](unsigned st, const std::string& msg)
            {
                report_status(*this, int(init + st*d), msg);
            };

            ctl.stopcondition = [this](){ return canceled(); };
            ctl.cancelfn = [this]() { throw_if_canceled(); };

            po.m_supportdata->support_tree_ptr.reset(
                        new SLASupportTree(po.m_supportdata->support_points,
                                           po.m_supportdata->emesh, scfg, ctl));

            // Create the unified mesh
            auto rc = SlicingStatus::RELOAD_SCENE;

            // This is to prevent "Done." being displayed during merged_mesh()
            report_status(*this, -1, L("Visualizing supports"));
            po.m_supportdata->support_tree_ptr->merged_mesh();

            BOOST_LOG_TRIVIAL(debug) << "Processed support point count "
                                     << po.m_supportdata->support_points.rows();

            // Check the mesh for later troubleshooting.
            if(po.support_mesh().empty())
                BOOST_LOG_TRIVIAL(warning) << "Support mesh is empty";

            report_status(*this, -1, L("Visualizing supports"), rc);
        } catch(sla::SLASupportsStoppedException&) {
            // no need to rethrow
            // throw_if_canceled();
        }
    };

    // This step generates the sla base pad
    auto base_pool = [this](SLAPrintObject& po) {
        // this step can only go after the support tree has been created
        // and before the supports had been sliced. (or the slicing has to be
        // repeated)

        if(!po.m_supportdata || !po.m_supportdata->support_tree_ptr) {
            BOOST_LOG_TRIVIAL(warning) << "Uninitialized support data at "
                                       << "pad creation.";
            return;
        }

        if(po.m_config.pad_enable.getBool())
        {
            double wt = po.m_config.pad_wall_thickness.getFloat();
            double h =  po.m_config.pad_wall_height.getFloat();
            double md = po.m_config.pad_max_merge_distance.getFloat();
            double er = po.m_config.pad_edge_radius.getFloat();
            double lh = po.m_config.layer_height.getFloat();
            double elevation = po.m_config.support_object_elevation.getFloat();
            if(!po.m_config.supports_enable.getBool()) elevation = 0;
            sla::PoolConfig pcfg(wt, h, md, er);

            ExPolygons bp;
            double pad_h = sla::get_pad_elevation(pcfg);
            auto&& trmesh = po.transformed_mesh();

            // This call can get pretty time consuming
            auto thrfn = [this](){ throw_if_canceled(); };

            if(elevation < pad_h)
                sla::base_plate(trmesh, bp, float(pad_h), float(lh),
                                            thrfn);

            pcfg.throw_on_cancel = thrfn;
            po.m_supportdata->support_tree_ptr->add_pad(bp, pcfg);
        } else {
            po.m_supportdata->support_tree_ptr->remove_pad();
        }

        po.throw_if_canceled();
        auto rc = SlicingStatus::RELOAD_SCENE;
        report_status(*this, -1, L("Visualizing supports"), rc);
    };

    // Slicing the support geometries similarly to the model slicing procedure.
    // If the pad had been added previously (see step "base_pool" than it will
    // be part of the slices)
    auto slice_supports = [ilh](SLAPrintObject& po) {
        auto& sd = po.m_supportdata;
        if(sd && sd->support_tree_ptr) {
            auto lh = float(po.m_config.layer_height.getFloat());
            sd->support_slices = sd->support_tree_ptr->slice(lh, ilh);
        }
    };

    // We have the layer polygon collection but we need to unite them into
    // an index where the key is the height level in discrete levels (clipper)
    auto index_slices = [ilhd](SLAPrintObject& po) {
        po.m_slice_index.clear();
        auto sih = LevelID(scale_(ilhd));

        // Establish the slice grid boundaries
        auto bb = po.transformed_mesh().bounding_box();
        double modelgnd = bb.min(Z);
        double elevation = po.get_elevation();
        double lh = po.m_config.layer_height.getFloat();
        double minZ = modelgnd - elevation;

        // scaled values:
        auto sminZ = LevelID(scale_(minZ));
        auto smaxZ = LevelID(scale_(bb.max(Z)));
        auto smodelgnd = LevelID(scale_(modelgnd));
        auto slh = LevelID(scale_(lh));

        // It is important that the next levels match the levels in
        // model_slice method. Only difference is that here it works with
        // scaled coordinates
        po.m_level_ids.clear();
        if(sminZ >= smodelgnd) po.m_level_ids.emplace_back(sminZ);
        for(LevelID h = sminZ + sih; h < smaxZ; h += slh)
            if(h >= smodelgnd) po.m_level_ids.emplace_back(h);

        std::vector<ExPolygons>& oslices = po.m_model_slices;

        // If everything went well this code should not run at all, but
        // let's be robust...
        // assert(levelids.size() == oslices.size());
        if(po.m_level_ids.size() < oslices.size()) { // extend the levels until...

            BOOST_LOG_TRIVIAL(warning)
                    << "Height level mismatch at rasterization!\n";

            LevelID lastlvl = po.m_level_ids.back();
            while(po.m_level_ids.size() < oslices.size()) {
                lastlvl += slh;
                po.m_level_ids.emplace_back(lastlvl);
            }
        }

        for(size_t i = 0; i < oslices.size(); ++i) {
            LevelID h = po.m_level_ids[i];

            float fh = float(double(h) * SCALING_FACTOR);

            // now for the public slice index:
            SLAPrintObject::SliceRecord& sr = po.m_slice_index[fh];
            // There should be only one slice layer for each print object
            assert(sr.model_slices_idx == SLAPrintObject::SliceRecord::NONE);
            sr.model_slices_idx = i;
        }

        if(po.m_supportdata) { // deal with the support slices if present
            std::vector<ExPolygons>& sslices = po.m_supportdata->support_slices;
            po.m_supportdata->level_ids.clear();
            po.m_supportdata->level_ids.reserve(sslices.size());

            for(int i = 0; i < int(sslices.size()); ++i) {
                int a = i == 0 ? 0 : 1;
                int b = i == 0 ? 0 : i - 1;
                LevelID h = sminZ + a * sih + b * slh;
                po.m_supportdata->level_ids.emplace_back(h);

                float fh = float(double(h) * SCALING_FACTOR);

                SLAPrintObject::SliceRecord& sr = po.m_slice_index[fh];
                assert(sr.support_slices_idx == SLAPrintObject::SliceRecord::NONE);
                sr.support_slices_idx = SLAPrintObject::SliceRecord::Idx(i);
            }
        }
    };

    // Rasterizing the model objects, and their supports
    auto rasterize = [this, max_objstatus]() {
        if(canceled()) return;

        // clear the rasterizer input
        m_printer_input.clear();

        for(SLAPrintObject * o : m_objects) {
            auto& po = *o;
            std::vector<ExPolygons>& oslices = po.m_model_slices;

            // We need to adjust the min Z level of the slices to be zero
            LevelID smfirst =
                    po.m_supportdata && !po.m_supportdata->level_ids.empty() ?
                        po.m_supportdata->level_ids.front() : 0;
            LevelID mfirst = po.m_level_ids.empty()? 0 : po.m_level_ids.front();
            LevelID gndlvl = -(std::min(smfirst, mfirst));

            // now merge this object's support and object slices with the rest
            // of the print object slices

            for(size_t i = 0; i < oslices.size(); ++i) {
                auto& lyrs = m_printer_input[gndlvl + po.m_level_ids[i]];
                lyrs.emplace_back(oslices[i], po.m_instances);
            }

            if(!po.m_supportdata) continue;
            std::vector<ExPolygons>& sslices = po.m_supportdata->support_slices;
            for(size_t i = 0; i < sslices.size(); ++i) {
                LayerRefs& lyrs =
                       m_printer_input[gndlvl + po.m_supportdata->level_ids[i]];
                lyrs.emplace_back(sslices[i], po.m_instances);
            }
        }

        // collect all the keys
        std::vector<long long> keys; keys.reserve(m_printer_input.size());
        for(auto& e : m_printer_input) keys.emplace_back(e.first);

        // If the raster has vertical orientation, we will flip the coordinates
        bool flpXY = m_printer_config.display_orientation.getInt() ==
                SLADisplayOrientation::sladoPortrait;

        { // create a raster printer for the current print parameters
            // I don't know any better
            auto& ocfg = m_objects.front()->m_config;
            auto& matcfg = m_material_config;
            auto& printcfg = m_printer_config;

            double w = printcfg.display_width.getFloat();
            double h = printcfg.display_height.getFloat();
            auto pw = unsigned(printcfg.display_pixels_x.getInt());
            auto ph = unsigned(printcfg.display_pixels_y.getInt());
            double lh = ocfg.layer_height.getFloat();
            double exp_t = matcfg.exposure_time.getFloat();
            double iexp_t = matcfg.initial_exposure_time.getFloat();

            if(flpXY) { std::swap(w, h); std::swap(pw, ph); }

            m_printer.reset(new SLAPrinter(w, h, pw, ph, lh, exp_t, iexp_t,
                                           flpXY? SLAPrinter::RO_PORTRAIT :
                                                  SLAPrinter::RO_LANDSCAPE));
        }

        // Allocate space for all the layers
        SLAPrinter& printer = *m_printer;
        auto lvlcnt = unsigned(m_printer_input.size());
        printer.layers(lvlcnt);

        // slot is the portion of 100% that is realted to rasterization
        unsigned slot = PRINT_STEP_LEVELS[slapsRasterize];
        // ist: initial state; pst: previous state
        unsigned ist = max_objstatus, pst = ist;
        // coefficient to map the rasterization state (0-99) to the allocated
        // portion (slot) of the process state
        double sd = (100 - ist) / 100.0;
        SpinMutex slck;

        // procedure to process one height level. This will run in parallel
        auto lvlfn =
        [this, &slck, &keys, &printer, slot, sd, ist, &pst, flpXY]
            (unsigned level_id)
        {
            if(canceled()) return;

            LayerRefs& lrange = m_printer_input[keys[level_id]];

            // Switch to the appropriate layer in the printer
            printer.begin_layer(level_id);

            for(auto& lyrref : lrange) { // for all layers in the current level
                if(canceled()) break;
                const Layer& sl = lyrref.lref;   // get the layer reference
                const LayerCopies& copies = lyrref.copies;

                // Draw all the polygons in the slice to the actual layer.
                for(auto& cp : copies) {
                    for(ExPolygon slice : sl) {
                        // The order is important here:
                        // apply rotation before translation...
                        slice.rotate(double(cp.rotation));
                        slice.translate(cp.shift(X), cp.shift(Y));
                        if(flpXY) swapXY(slice);
                        printer.draw_polygon(slice, level_id);
                    }
                }
            }

            // Finish the layer for later saving it.
            printer.finish_layer(level_id);

            // Status indication guarded with the spinlock
            auto st = ist + unsigned(sd*level_id*slot/m_printer_input.size());
            { std::lock_guard<SpinMutex> lck(slck);
            if( st > pst) {
                report_status(*this, int(st), PRINT_STEP_LABELS[slapsRasterize]);
                pst = st;
            }
            }
        };

        // last minute escape
        if(canceled()) return;

        // Sequential version (for testing)
        // for(unsigned l = 0; l < lvlcnt; ++l) process_level(l);

        // Print all the layers in parallel
        tbb::parallel_for<unsigned, decltype(lvlfn)>(0, lvlcnt, lvlfn);
    };

    using slaposFn = std::function<void(SLAPrintObject&)>;
    using slapsFn  = std::function<void(void)>;

    // This is the actual order of steps done on each PrintObject
    std::array<SLAPrintObjectStep, slaposCount> objectsteps = {
        slaposObjectSlice,      // SupportPoints will need this step
        slaposSupportPoints,
        slaposSupportTree,
        slaposBasePool,
        slaposSliceSupports,
        slaposIndexSlices
    };

    std::array<slaposFn, slaposCount> pobj_program =
    {
        slice_model,
        support_points,
        support_tree,
        base_pool,
        slice_supports,
        index_slices
    };

    std::array<slapsFn, slapsCount> print_program =
    {
        rasterize,
        [](){}  // validate
    };

    unsigned st = min_objstatus;
    unsigned incr = 0;

    BOOST_LOG_TRIVIAL(info) << "Start slicing process.";

    // TODO: this loop could run in parallel but should not exhaust all the CPU
    // power available
    for(SLAPrintObject * po : m_objects) {

        BOOST_LOG_TRIVIAL(info) << "Slicing object " << po->model_object()->name;

        for(size_t s = 0; s < objectsteps.size(); ++s) {
            auto currentstep = objectsteps[s];

            // Cancellation checking. Each step will check for cancellation
            // on its own and return earlier gracefully. Just after it returns
            // execution gets to this point and throws the canceled signal.
            throw_if_canceled();

            st += unsigned(incr * ostepd);

            if(po->m_stepmask[currentstep] && po->set_started(currentstep)) {
                report_status(*this, int(st), OBJ_STEP_LABELS[currentstep]);
                pobj_program[currentstep](*po);
                throw_if_canceled();
                po->set_done(currentstep);
            }

            incr = OBJ_STEP_LEVELS[currentstep];
        }
    }

    std::array<SLAPrintStep, slapsCount> printsteps = {
        slapsRasterize, slapsValidate
    };

    // this would disable the rasterization step
//    m_stepmask[slapsRasterize] = false;

    double pstd = (100 - max_objstatus) / 100.0;
    st = max_objstatus;
    for(size_t s = 0; s < print_program.size(); ++s) {
        auto currentstep = printsteps[s];

        throw_if_canceled();

        if(m_stepmask[currentstep] && set_started(currentstep))
        {
            report_status(*this, int(st), PRINT_STEP_LABELS[currentstep]);
            print_program[currentstep]();
            throw_if_canceled();
            set_done(currentstep);
        }

        st += unsigned(PRINT_STEP_LEVELS[currentstep] * pstd);
    }

    // If everything vent well
    report_status(*this, 100, L("Slicing done"));
}

bool SLAPrint::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
{
    if (opt_keys.empty())
        return false;

    // Cache the plenty of parameters, which influence the final rasterization only,
    // or they are only notes not influencing the rasterization step.
    static std::unordered_set<std::string> steps_rasterize = {
        "exposure_time",
        "initial_exposure_time",
        "material_correction_printing",
        "material_correction_curing",
        "display_width",
        "display_height",
        "display_pixels_x",
        "display_pixels_y",
        "display_orientation",
        "printer_correction"
    };

    static std::unordered_set<std::string> steps_ignore = {
        "bed_shape",
        "max_print_height",
        "printer_technology",
        "output_filename_format"
    };

    std::vector<SLAPrintStep> steps;
    std::vector<SLAPrintObjectStep> osteps;
    bool invalidated = false;

    for (const t_config_option_key &opt_key : opt_keys) {
        if (steps_rasterize.find(opt_key) != steps_rasterize.end()) {
            // These options only affect the final rasterization, or they are just notes without influence on the output,
            // so there is nothing to invalidate.
            steps.emplace_back(slapsRasterize);
        } else if (steps_ignore.find(opt_key) != steps_ignore.end()) {
            // These steps have no influence on the output. Just ignore them.
        } else if (opt_key == "initial_layer_height") {
            steps.emplace_back(slapsRasterize);
            osteps.emplace_back(slaposObjectSlice);
        } else {
            // All values should be covered.
            assert(false);
        }
    }

    sort_remove_duplicates(steps);
    for (SLAPrintStep step : steps)
        invalidated |= this->invalidate_step(step);
    sort_remove_duplicates(osteps);
    for (SLAPrintObjectStep ostep : osteps)
        for (SLAPrintObject *object : m_objects)
            invalidated |= object->invalidate_step(ostep);
    return invalidated;
}

// Returns true if an object step is done on all objects and there's at least one object.
bool SLAPrint::is_step_done(SLAPrintObjectStep step) const
{
    if (m_objects.empty())
        return false;
    tbb::mutex::scoped_lock lock(this->state_mutex());
    for (const SLAPrintObject *object : m_objects)
        if (! object->m_state.is_done_unguarded(step))
            return false;
    return true;
}

SLAPrintObject::SLAPrintObject(SLAPrint *print, ModelObject *model_object):
    Inherited(print, model_object),
    m_stepmask(slaposCount, true),
    m_transformed_rmesh( [this](TriangleMesh& obj){
            obj = m_model_object->raw_mesh(); obj.transform(m_trafo);
        })
{
}

SLAPrintObject::~SLAPrintObject() {}

// Called by SLAPrint::apply_config().
// This method only accepts SLAPrintObjectConfig option keys.
bool SLAPrintObject::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
{
    if (opt_keys.empty())
        return false;

    std::vector<SLAPrintObjectStep> steps;
    bool invalidated = false;
    for (const t_config_option_key &opt_key : opt_keys) {
		if (opt_key == "layer_height") {
			steps.emplace_back(slaposObjectSlice);
        } else if (opt_key == "supports_enable") {
            steps.emplace_back(slaposSupportPoints);
		} else if (
               opt_key == "support_head_front_diameter"
            || opt_key == "support_head_penetration"
            || opt_key == "support_head_width"
            || opt_key == "support_pillar_diameter"
            || opt_key == "support_base_diameter"
            || opt_key == "support_base_height"
            || opt_key == "support_critical_angle"
            || opt_key == "support_max_bridge_length"
            || opt_key == "support_object_elevation") {
            steps.emplace_back(slaposSupportTree);
        } else if (
               opt_key == "pad_enable"
            || opt_key == "pad_wall_thickness"
            || opt_key == "pad_wall_height"
            || opt_key == "pad_max_merge_distance"
            || opt_key == "pad_edge_radius") {
            steps.emplace_back(slaposBasePool);
        } else {
            // All keys should be covered.
            assert(false);
        }
    }

    sort_remove_duplicates(steps);
    for (SLAPrintObjectStep step : steps)
        invalidated |= this->invalidate_step(step);
    return invalidated;
}

bool SLAPrintObject::invalidate_step(SLAPrintObjectStep step)
{
    bool invalidated = Inherited::invalidate_step(step);
    // propagate to dependent steps
    if (step == slaposObjectSlice) {
        invalidated |= this->invalidate_all_steps();
    } else if (step == slaposSupportPoints) {
        invalidated |= this->invalidate_steps({ slaposSupportTree, slaposBasePool, slaposSliceSupports, slaposIndexSlices });
        invalidated |= m_print->invalidate_step(slapsRasterize);
    } else if (step == slaposSupportTree) {
        invalidated |= this->invalidate_steps({ slaposBasePool, slaposSliceSupports, slaposIndexSlices });
        invalidated |= m_print->invalidate_step(slapsRasterize);
    } else if (step == slaposBasePool) {
        invalidated |= this->invalidate_steps({slaposSliceSupports, slaposIndexSlices});
        invalidated |= m_print->invalidate_step(slapsRasterize);
    } else if (step == slaposSliceSupports) {
        invalidated |= this->invalidate_step(slaposIndexSlices);
        invalidated |= m_print->invalidate_step(slapsRasterize);
    } else if(step == slaposIndexSlices) {
        invalidated |= m_print->invalidate_step(slapsRasterize);
    }
    return invalidated;
}

bool SLAPrintObject::invalidate_all_steps()
{
    return Inherited::invalidate_all_steps() | m_print->invalidate_all_steps();
}

double SLAPrintObject::get_elevation() const {
    bool se = m_config.supports_enable.getBool();
    double ret = se? m_config.support_object_elevation.getFloat() : 0;

    // if the pad is enabled, then half of the pad height is its base plate
    if(m_config.pad_enable.getBool()) {
        // Normally the elevation for the pad itself would be the thickness of
        // its walls but currently it is half of its thickness. Whatever it
        // will be in the future, we provide the config to the get_pad_elevation
        // method and we will have the correct value
        sla::PoolConfig pcfg;
        pcfg.min_wall_height_mm = m_config.pad_wall_height.getFloat();
        pcfg.min_wall_thickness_mm = m_config.pad_wall_thickness.getFloat();
        pcfg.edge_radius_mm = m_config.pad_edge_radius.getFloat();
        pcfg.max_merge_distance_mm = m_config.pad_max_merge_distance.getFloat();
        ret += sla::get_pad_elevation(pcfg);
    }

    return ret;
}

double SLAPrintObject::get_current_elevation() const
{
    bool se = m_config.supports_enable.getBool();
    bool has_supports = is_step_done(slaposSupportTree);
    bool has_pad = is_step_done(slaposBasePool);

    if(!has_supports && !has_pad)
        return 0;
    else if(has_supports && !has_pad)
        return se ? m_config.support_object_elevation.getFloat() : 0;

    return get_elevation();
}

namespace { // dummy empty static containers for return values in some methods
const std::vector<ExPolygons> EMPTY_SLICES;
const TriangleMesh EMPTY_MESH;
}

const Eigen::MatrixXd& SLAPrintObject::get_support_points() const
{
    return m_supportdata->support_points;
}

const std::vector<ExPolygons> &SLAPrintObject::get_support_slices() const
{
    // assert(is_step_done(slaposSliceSupports));
    if (!m_supportdata) return EMPTY_SLICES;
    return m_supportdata->support_slices;
}

const SLAPrintObject::SliceIndex &SLAPrintObject::get_slice_index() const
{
    // assert(is_step_done(slaposIndexSlices));
    return m_slice_index;
}

const std::vector<ExPolygons> &SLAPrintObject::get_model_slices() const
{
    // assert(is_step_done(slaposObjectSlice));
    return m_model_slices;
}

bool SLAPrintObject::has_mesh(SLAPrintObjectStep step) const
{
    switch (step) {
    case slaposSupportTree:
        return ! this->support_mesh().empty();
    case slaposBasePool:
        return ! this->pad_mesh().empty();
    default:
        return false;
    }
}

TriangleMesh SLAPrintObject::get_mesh(SLAPrintObjectStep step) const
{
    switch (step) {
    case slaposSupportTree:
        return this->support_mesh();
    case slaposBasePool:
        return this->pad_mesh();
    default:
        return TriangleMesh();
    }
}

const TriangleMesh& SLAPrintObject::support_mesh() const
{
    if(m_config.supports_enable.getBool() && m_supportdata &&
       m_supportdata->support_tree_ptr) {
        return m_supportdata->support_tree_ptr->merged_mesh();
    }

    return EMPTY_MESH;
}

const TriangleMesh& SLAPrintObject::pad_mesh() const
{
    if(m_config.pad_enable.getBool() && m_supportdata && m_supportdata->support_tree_ptr)
        return m_supportdata->support_tree_ptr->get_pad();

    return EMPTY_MESH;
}

const TriangleMesh &SLAPrintObject::transformed_mesh() const {
    // we need to transform the raw mesh...
    // currently all the instances share the same x and y rotation and scaling
    // so we have to extract those from e.g. the first instance and apply to the
    // raw mesh. This is also true for the support points.
    // BUT: when the support structure is spawned for each instance than it has
    // to omit the X, Y rotation and scaling as those have been already applied
    // or apply an inverse transformation on the support structure after it
    // has been created.

    return m_transformed_rmesh.get();
}

std::vector<Vec3d> SLAPrintObject::transformed_support_points() const
{
    assert(m_model_object != nullptr);
    auto& spts = m_model_object->sla_support_points;

    // this could be cached as well
    std::vector<Vec3d> ret; ret.reserve(spts.size());

    for(auto& sp : spts) ret.emplace_back( trafo() * Vec3d(sp.cast<double>()));

    return ret;
}

} // namespace Slic3r