Welcome to mirror list, hosted at ThFree Co, Russian Federation.

SimplifyMeshImpl.hpp « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4b6b0f5cbc3c01d692899ec5f8a2de6fcda8119a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
// ///////////////////////////////////////////
//
// Mesh Simplification Tutorial
//
// (C) by Sven Forstmann in 2014
//
// License : MIT
// http://opensource.org/licenses/MIT
//
// https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification
//
// 5/2016: Chris Rorden created minimal version for OSX/Linux/Windows compile
// https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification/
//
// libslic3r refactor by tamasmeszaros

#ifndef SIMPLIFYMESHIMPL_HPP
#define SIMPLIFYMESHIMPL_HPP

#include <vector>
#include <array>
#include <type_traits>
#include <algorithm>
#include <cmath>

#ifndef NDEBUG
#include <ostream>
#include <iostream>
#endif

namespace SimplifyMesh {

using Bary = std::array<double, 3>;
using Index3 = std::array<size_t, 3>;

template<class Vertex> struct vertex_traits {
    using coord_type = typename Vertex::coord_type;
    using compute_type = coord_type;
    
    static coord_type x(const Vertex &v);
    static coord_type& x(Vertex &v);
    
    static coord_type y(const Vertex &v);
    static coord_type& y(Vertex &v);
    
    static coord_type z(const Vertex &v);
    static coord_type& z(Vertex &v);
};

template<class Mesh> struct mesh_traits {
    using vertex_t = typename Mesh::vertex_t;
    
    static size_t   face_count(const Mesh &m);
    static size_t   vertex_count(const Mesh &m);
    static vertex_t vertex(const Mesh &m, size_t vertex_idx);
    static void     vertex(Mesh &m, size_t vertex_idx, const vertex_t &v);
    static Index3   triangle(const Mesh &m, size_t face_idx);
    static void     triangle(Mesh &m, size_t face_idx, const Index3 &t);
    static void     update(Mesh &m, size_t vertex_count, size_t face_count);
};

namespace implementation {

// A shorter C++14 style form of the enable_if metafunction
template<bool B, class T>
using enable_if_t = typename std::enable_if<B, T>::type;

// Meta predicates for floating, integer and generic arithmetic types
template<class T, class O = T>
using FloatingOnly = enable_if_t<std::is_floating_point<T>::value, O>;

template<class T, class O = T>
using IntegerOnly = enable_if_t<std::is_integral<T>::value, O>;

template<class T, class O = T>
using ArithmeticOnly = enable_if_t<std::is_arithmetic<T>::value, O>;

template< class T >
struct remove_cvref {
    using type = typename std::remove_cv<
        typename std::remove_reference<T>::type>::type;
};

template< class T >
using remove_cvref_t = typename remove_cvref<T>::type;

template<class T> FloatingOnly<T, bool> is_approx(T val, T ref) { return std::abs(val - ref) < 1e-8; }
template<class T> IntegerOnly <T, bool> is_approx(T val, T ref) { val == ref; }

template<class T> class SymetricMatrix {
    static const constexpr size_t N = 10;
public:
    
    explicit SymetricMatrix(ArithmeticOnly<T> c = T()) { std::fill(m, m + N, c); }
    
    // Make plane
    SymetricMatrix(T a, T b, T c, T d)
    {
        m[0] = a * a; m[1] = a * b; m[2] = a * c; m[3] = a * d;
        m[4] = b * b; m[5] = b * c; m[6] = b * d;
        m[7] = c * c; m[8] = c * d;
        m[9] = d * d;
    }
    
    T operator[](int c) const { return m[c]; }
    
    // Determinant
    T det(int a11, int a12, int a13,
          int a21, int a22, int a23,
          int a31, int a32, int a33)
    {
        T det = m[a11] * m[a22] * m[a33] + m[a13] * m[a21] * m[a32] +
                m[a12] * m[a23] * m[a31] - m[a13] * m[a22] * m[a31] -
                m[a11] * m[a23] * m[a32] - m[a12] * m[a21] * m[a33];
        
        return det;
    }
    
    const SymetricMatrix& operator+=(const SymetricMatrix& n)
    {
        for (size_t i = 0; i < N; ++i) m[i] += n[i];
        return *this;
    }
    
    SymetricMatrix operator+(const SymetricMatrix& n)
    {
        SymetricMatrix self = *this;
        return self += n;
    }
    
    T m[N];
};

template<class V> using TCoord = typename vertex_traits<remove_cvref_t<V>>::coord_type;
template<class V> using TCompute = typename vertex_traits<remove_cvref_t<V>>::compute_type;
template<class V> inline TCoord<V> x(const V &v) { return vertex_traits<remove_cvref_t<V>>::x(v); }
template<class V> inline TCoord<V> y(const V &v) { return vertex_traits<remove_cvref_t<V>>::y(v); }
template<class V> inline TCoord<V> z(const V &v) { return vertex_traits<remove_cvref_t<V>>::z(v); }
template<class V> inline TCoord<V>& x(V &v) { return vertex_traits<remove_cvref_t<V>>::x(v); }
template<class V> inline TCoord<V>& y(V &v) { return vertex_traits<remove_cvref_t<V>>::y(v); }
template<class V> inline TCoord<V>& z(V &v) { return vertex_traits<remove_cvref_t<V>>::z(v); }
template<class M> using TVertex = typename mesh_traits<remove_cvref_t<M>>::vertex_t;
template<class Mesh> using TMeshCoord = TCoord<TVertex<Mesh>>;

template<class Vertex> TCompute<Vertex> dot(const Vertex &v1, const Vertex &v2)
{
    return TCompute<Vertex>(x(v1)) * x(v2) +
           TCompute<Vertex>(y(v1)) * y(v2) +
           TCompute<Vertex>(z(v1)) * z(v2);
}

template<class Vertex> Vertex cross(const Vertex &a, const Vertex &b)
{
    return Vertex{y(a) * z(b) - z(a) * y(b),
                  z(a) * x(b) - x(a) * z(b),
                  x(a) * y(b) - y(a) * x(b)};
}

template<class Vertex> TCompute<Vertex> lengthsq(const Vertex &v)
{
    return TCompute<Vertex>(x(v)) * x(v) + TCompute<Vertex>(y(v)) * y(v) +
           TCompute<Vertex>(z(v)) * z(v);
}

template<class Vertex> void normalize(Vertex &v)
{
    double square = std::sqrt(lengthsq(v));
    x(v) /= square; y(v) /= square; z(v) /= square;
}

using Bary = std::array<double, 3>;

template<class Vertex>
Bary barycentric(const Vertex &p, const Vertex &a, const Vertex &b, const Vertex &c)
{
    Vertex v0 = (b - a);
    Vertex v1 = (c - a);
    Vertex v2 = (p - a);

    double d00   = dot(v0, v0);
    double d01   = dot(v0, v1);
    double d11   = dot(v1, v1);
    double d20   = dot(v2, v0);
    double d21   = dot(v2, v1);
    double denom = d00 * d11 - d01 * d01;
    double v     = (d11 * d20 - d01 * d21) / denom;
    double w     = (d00 * d21 - d01 * d20) / denom;
    double u     = 1.0 - v - w;

    return {u, v, w};
}

template<class Mesh> class SimplifiableMesh {
    Mesh *m_mesh;

    using Vertex     = TVertex<Mesh>;
    using Coord      = TMeshCoord<Mesh>;
    using HiPrecison = TCompute<TVertex<Mesh>>;
    using SymMat     = SymetricMatrix<HiPrecison>;

    struct FaceInfo {
        size_t idx;
        double err[4] = {0.};
        bool   deleted = false, dirty = false;
        Vertex n;
        explicit FaceInfo(size_t id): idx(id) {}
    };

    struct VertexInfo {
        size_t idx;
        size_t tstart = 0, tcount = 0;
        bool border = false;
        SymMat q;
        explicit VertexInfo(size_t id): idx(id) {}
    };
    
    struct Ref { size_t face; size_t vertex; };
    
    std::vector<Ref> m_refs;
    std::vector<FaceInfo> m_faceinfo;
    std::vector<VertexInfo> m_vertexinfo;
    
    void compact_faces();
    void compact();
    
    size_t mesh_vcount() const { return mesh_traits<Mesh>::vertex_count(*m_mesh); }
    size_t mesh_facecount() const { return mesh_traits<Mesh>::face_count(*m_mesh); }
    
    size_t vcount() const { return m_vertexinfo.size(); }
    
    inline Vertex read_vertex(size_t vi) const
    {
        return mesh_traits<Mesh>::vertex(*m_mesh, vi);
    }
    
    inline Vertex read_vertex(const VertexInfo &vinf) const
    {
        return read_vertex(vinf.idx);
    }
    
    inline void write_vertex(size_t idx, const Vertex &v) const
    {
        mesh_traits<Mesh>::vertex(*m_mesh, idx, v);
    }
    
    inline void write_vertex(const VertexInfo &vinf, const Vertex &v) const
    {
        write_vertex(vinf.idx, v);
    }
    
    inline Index3 read_triangle(size_t fi) const
    {
        return mesh_traits<Mesh>::triangle(*m_mesh, fi);
    }
    
    inline Index3 read_triangle(const FaceInfo &finf) const
    {
        return read_triangle(finf.idx);
    }
    
    inline void write_triangle(size_t idx, const Index3 &t)
    {
        return mesh_traits<Mesh>::triangle(*m_mesh, idx, t);
    }
    
    inline void write_triangle(const FaceInfo &finf, const Index3 &t)
    {
        return write_triangle(finf.idx, t);
    }    
    
    inline std::array<Vertex, 3> triangle_vertices(const Index3 &f) const
    {
        std::array<Vertex, 3> p;
        for (size_t i = 0; i < 3; ++i) p[i] = read_vertex(f[i]);
        return p;
    }

    // Error between vertex and Quadric    
    static double vertex_error(const SymMat &q, const Vertex &v)
    {
        Coord _x = x(v) , _y = y(v), _z = z(v);
        return q[0] * _x * _x + 2 * q[1] * _x * _y + 2 * q[2] * _x * _z +
               2 * q[3] * _x + q[4] * _y * _y + 2 * q[5] * _y * _z +
               2 * q[6] * _y + q[7] * _z * _z + 2 * q[8] * _z + q[9];
    }
    
    // Error for one edge    
    double calculate_error(size_t id_v1, size_t id_v2, Vertex &p_result);
    
    void calculate_error(FaceInfo &fi)
    {
        Vertex p;
        Index3 t = read_triangle(fi);
        for (size_t j = 0; j < 3; ++j)
            fi.err[j] = calculate_error(t[j], t[(j + 1) % 3], p);
        
        fi.err[3] = std::min(fi.err[0], std::min(fi.err[1], fi.err[2]));
    }
    
    void update_mesh(int iteration);
    
    // Update triangle connections and edge error after a edge is collapsed
    void update_triangles(size_t i, VertexInfo &vi, std::vector<bool> &deleted, int &deleted_triangles);
    
    // Check if a triangle flips when this edge is removed
    bool flipped(const Vertex &p, size_t i0, size_t i1, VertexInfo &v0, VertexInfo &v1, std::vector<bool> &deleted);
    
public:
    
    explicit SimplifiableMesh(Mesh *m) : m_mesh{m}
    {
        static_assert(
            std::is_arithmetic<Coord>::value,
            "Coordinate type of mesh has to be an arithmetic type!");
        
        m_faceinfo.reserve(mesh_traits<Mesh>::face_count(*m));
        m_vertexinfo.reserve(mesh_traits<Mesh>::vertex_count(*m));
        for (size_t i = 0; i < mesh_facecount(); ++i) m_faceinfo.emplace_back(i);
        for (size_t i = 0; i < mesh_vcount(); ++i) m_vertexinfo.emplace_back(i);
        
    }
    
    template<class ProgressFn> void simplify_mesh_lossless(ProgressFn &&fn);
    void simplify_mesh_lossless() { simplify_mesh_lossless([](int){}); }
};

template<class Mesh> void SimplifiableMesh<Mesh>::compact_faces()
{
    auto it = std::remove_if(m_faceinfo.begin(), m_faceinfo.end(),
                             [](const FaceInfo &inf) { return inf.deleted; });
    
    m_faceinfo.erase(it, m_faceinfo.end());
}

template<class M> void SimplifiableMesh<M>::compact()
{   
    for (auto &vi : m_vertexinfo) vi.tcount = 0;
    
    compact_faces();
    
    for (FaceInfo &fi : m_faceinfo)
        for (size_t vidx : read_triangle(fi)) m_vertexinfo[vidx].tcount = 1;
    
    size_t dst = 0;
    for (VertexInfo &vi : m_vertexinfo) {
        if (vi.tcount) {
            vi.tstart = dst;
            write_vertex(dst++, read_vertex(vi)); 
        }
    }
    
    size_t vertex_count = dst;
    
    dst = 0;
    for (const FaceInfo &fi : m_faceinfo) {
        Index3 t = read_triangle(fi);
        for (size_t &idx : t) idx = m_vertexinfo[idx].tstart;
        write_triangle(dst++, t);
    }
    
    mesh_traits<M>::update(*m_mesh, vertex_count, m_faceinfo.size());
}

template<class Mesh>
double SimplifiableMesh<Mesh>::calculate_error(size_t id_v1, size_t id_v2, Vertex &p_result)
{
    // compute interpolated vertex
    
    SymMat q = m_vertexinfo[id_v1].q + m_vertexinfo[id_v2].q;
    
    bool border = m_vertexinfo[id_v1].border & m_vertexinfo[id_v2].border;
    double     error = 0;
    HiPrecison det   = q.det(0, 1, 2, 1, 4, 5, 2, 5, 7);
    
    if (!is_approx(det, HiPrecison(0)) && !border)
    {
        // q_delta is invertible
        x(p_result) = Coord(-1) / det * q.det(1, 2, 3, 4, 5, 6, 5, 7, 8);	// vx = A41/det(q_delta)
        y(p_result) = Coord( 1) / det * q.det(0, 2, 3, 1, 5, 6, 2, 7, 8);	// vy = A42/det(q_delta)
        z(p_result) = Coord(-1) / det * q.det(0, 1, 3, 1, 4, 6, 2, 5, 8);	// vz = A43/det(q_delta)
        
        error = vertex_error(q, p_result);
    } else {
        // det = 0 -> try to find best result
        Vertex p1     = read_vertex(id_v1);
        Vertex p2     = read_vertex(id_v2);
        Vertex p3     = (p1 + p2) / 2;
        double error1 = vertex_error(q, p1);
        double error2 = vertex_error(q, p2);
        double error3 = vertex_error(q, p3);
        error         = std::min(error1, std::min(error2, error3));

        if (is_approx(error1, error)) p_result = p1;
        if (is_approx(error2, error)) p_result = p2;
        if (is_approx(error3, error)) p_result = p3;
    }

    return error;
}

template<class Mesh> void SimplifiableMesh<Mesh>::update_mesh(int iteration)
{
    if (iteration > 0) compact_faces();
    
    assert(mesh_vcount() == m_vertexinfo.size());
        
    //
    // Init Quadrics by Plane & Edge Errors
    //
    // required at the beginning ( iteration == 0 )
    // recomputing during the simplification is not required,
    // but mostly improves the result for closed meshes
    //
    if (iteration == 0) {
                
        for (VertexInfo &vinf : m_vertexinfo) vinf.q = SymMat{};
        for (FaceInfo   &finf : m_faceinfo) {
            Index3 t = read_triangle(finf);
            std::array<Vertex, 3> p = triangle_vertices(t);
            Vertex                n = cross(Vertex(p[1] - p[0]), Vertex(p[2] - p[0]));
            normalize(n);
            finf.n = n;
            
            for (size_t fi : t)
                m_vertexinfo[fi].q += SymMat(x(n), y(n), z(n), -dot(n, p[0]));
            
            calculate_error(finf);
        }
    }
    
    // Init Reference ID list
    for (VertexInfo &vi : m_vertexinfo) { vi.tstart = 0; vi.tcount = 0; }
    
    for (FaceInfo &fi : m_faceinfo)
        for (size_t vidx : read_triangle(fi))
            m_vertexinfo[vidx].tcount++;
    
    size_t tstart = 0;
    for (VertexInfo &vi : m_vertexinfo) {
        vi.tstart = tstart;
        tstart += vi.tcount;
        vi.tcount = 0;
    }
    
    // Write References
    m_refs.resize(m_faceinfo.size() * 3);
    for (size_t i = 0; i < m_faceinfo.size(); ++i) {
        const FaceInfo &fi = m_faceinfo[i];
        Index3 t = read_triangle(fi);
        for (size_t j = 0; j < 3; ++j) {
            VertexInfo &vi = m_vertexinfo[t[j]];
            
            assert(vi.tstart + vi.tcount < m_refs.size());
            
            Ref &ref = m_refs[vi.tstart + vi.tcount];
            ref.face = i;
            ref.vertex = j;
            vi.tcount++;
        }
    }
    
    // Identify boundary : vertices[].border=0,1
    if (iteration == 0) {
        for (VertexInfo &vi: m_vertexinfo) vi.border = false;
        
        std::vector<size_t> vcount, vids;
        
        for (VertexInfo &vi: m_vertexinfo) {
            vcount.clear();
            vids.clear();
            
            for(size_t j = 0; j < vi.tcount; ++j) {
                assert(vi.tstart + j < m_refs.size());
                FaceInfo &fi = m_faceinfo[m_refs[vi.tstart + j].face];
                Index3 t = read_triangle(fi);
                
                for (size_t fid : t) {
                    size_t ofs=0;
                    while (ofs < vcount.size())
                    {
                        if (vids[ofs] == fid) break;
                        ofs++;
                    }
                    if (ofs == vcount.size())
                    {
                        vcount.emplace_back(1);
                        vids.emplace_back(fid);
                    }
                    else
                        vcount[ofs]++;
                }
            }
            
            for (size_t j = 0; j < vcount.size(); ++j)
                if(vcount[j] == 1) m_vertexinfo[vids[j]].border = true;
        }
    }
}

template<class Mesh>
void SimplifiableMesh<Mesh>::update_triangles(size_t             i0,
                                              VertexInfo &       vi,
                                              std::vector<bool> &deleted,
                                              int &deleted_triangles)
{
    Vertex p;
    for (size_t k = 0; k < vi.tcount; ++k) {
        assert(vi.tstart + k < m_refs.size());
        
        Ref &r = m_refs[vi.tstart + k];
        FaceInfo &fi = m_faceinfo[r.face];
        
        if (fi.deleted) continue;
        
        if (deleted[k]) {
            fi.deleted = true;
            deleted_triangles++;
            continue;
        }
        
        Index3 t = read_triangle(fi);
        t[r.vertex] = i0;
        write_triangle(fi, t);
        
        fi.dirty  = true;
        fi.err[0] = calculate_error(t[0], t[1], p);
        fi.err[1] = calculate_error(t[1], t[2], p);
        fi.err[2] = calculate_error(t[2], t[0], p);
        fi.err[3] = std::min(fi.err[0], std::min(fi.err[1], fi.err[2]));
        m_refs.emplace_back(r);
    }
}

template<class Mesh>
bool SimplifiableMesh<Mesh>::flipped(const Vertex &    p,
                                     size_t            /*i0*/,
                                     size_t            i1,
                                     VertexInfo &      v0,
                                     VertexInfo &      /*v1*/,
                                     std::vector<bool> &deleted)
{
    for (size_t k = 0; k < v0.tcount; ++k) {
        size_t ridx = v0.tstart + k;
        assert(ridx < m_refs.size());
        
        FaceInfo &fi = m_faceinfo[m_refs[ridx].face];
        if (fi.deleted) continue;
        
        Index3 t = read_triangle(fi);
        int s = m_refs[ridx].vertex;
        size_t id1 = t[(s+1) % 3];
        size_t id2 = t[(s+2) % 3];

        if(id1 == i1 || id2 == i1) // delete ?
        {
            deleted[k] = true;
            continue;
        }
        
        Vertex d1 = read_vertex(id1) - p;
        normalize(d1);
        Vertex d2 = read_vertex(id2) - p;
        normalize(d2);
        
        if (std::abs(dot(d1, d2)) > 0.999) return true;
        
        Vertex n = cross(d1, d2);
        normalize(n);
        
        deleted[k] = false;
        if (dot(n, fi.n) < 0.2) return true;
    }
    
    return false;
}

template<class Mesh>
template<class Fn> void SimplifiableMesh<Mesh>::simplify_mesh_lossless(Fn &&fn)
{
    // init
    for (FaceInfo &fi : m_faceinfo) fi.deleted = false;
    
    // main iteration loop
    int deleted_triangles=0;
    std::vector<bool> deleted0, deleted1;
    
    for (int iteration = 0; iteration < 9999; iteration ++) {
        // update mesh constantly
        update_mesh(iteration);
        
        // clear dirty flag
        for (FaceInfo &fi : m_faceinfo) fi.dirty = false;
        
        //
        // All triangles with edges below the threshold will be removed
        //
        // The following numbers works well for most models.
        // If it does not, try to adjust the 3 parameters
        //
        double threshold = std::numeric_limits<double>::epsilon(); //1.0E-3 EPS; // Really? (tm)
        
        fn(iteration);
        
        for (FaceInfo &fi : m_faceinfo) {
            if (fi.err[3] > threshold || fi.deleted || fi.dirty) continue;
            
            for (size_t j = 0; j < 3; ++j) {
                if (fi.err[j] > threshold) continue;
                
                Index3 t = read_triangle(fi);
                size_t i0 = t[j];
                VertexInfo &v0 = m_vertexinfo[i0];
                
                size_t i1 = t[(j + 1) % 3];
                VertexInfo &v1 = m_vertexinfo[i1];

                // Border check
                if(v0.border != v1.border) continue;

                // Compute vertex to collapse to
                Vertex p;
                calculate_error(i0, i1, p);

                deleted0.resize(v0.tcount); // normals temporarily
                deleted1.resize(v1.tcount); // normals temporarily

                // don't remove if flipped
                if (flipped(p, i0, i1, v0, v1, deleted0)) continue;
                if (flipped(p, i1, i0, v1, v0, deleted1)) continue;

                // not flipped, so remove edge
                write_vertex(v0, p);
                v0.q = v1.q + v0.q;
                size_t tstart = m_refs.size();

                update_triangles(i0, v0, deleted0, deleted_triangles);
                update_triangles(i0, v1, deleted1, deleted_triangles);
                
                assert(m_refs.size() >= tstart);
                
                size_t tcount = m_refs.size() - tstart;

                if(tcount <= v0.tcount)
                {
                    // save ram
                    if (tcount) {
                        auto from = m_refs.begin() + tstart, to = from + tcount;
                        std::copy(from, to, m_refs.begin() + v0.tstart);
                    }
                }
                else
                    // append
                    v0.tstart = tstart;

                v0.tcount = tcount;
                break;
            }
        }
        
        if (deleted_triangles <= 0) break;
        deleted_triangles = 0;
    }
    
    compact();
}

} // namespace implementation
} // namespace SimplifyMesh

#endif // SIMPLIFYMESHIMPL_HPP