Welcome to mirror list, hosted at ThFree Co, Russian Federation.

SupportMaterial.cpp « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 67bd2639b4e9c4f73681e8329b58365977fd3a3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
#include "ClipperUtils.hpp"
#include "ExtrusionEntityCollection.hpp"
#include "Layer.hpp"
#include "Print.hpp"
#include "SupportMaterial.hpp"
#include "Fill/FillBase.hpp"
#include "Geometry.hpp"
#include "Point.hpp"
#include "MutablePolygon.hpp"

#include <cmath>
#include <memory>
#include <boost/log/trivial.hpp>
#include <boost/container/static_vector.hpp>

#include <tbb/parallel_for.h>
#include <tbb/spin_mutex.h>
#include <tbb/task_group.h>

#define SUPPORT_USE_AGG_RASTERIZER

#ifdef SUPPORT_USE_AGG_RASTERIZER
    #include <agg/agg_pixfmt_gray.h>
    #include <agg/agg_renderer_scanline.h>
    #include <agg/agg_scanline_p.h>
    #include <agg/agg_rasterizer_scanline_aa.h>
    #include <agg/agg_path_storage.h>
    #include "PNGReadWrite.hpp"
#else
    #include "EdgeGrid.hpp"
#endif // SUPPORT_USE_AGG_RASTERIZER

// #define SLIC3R_DEBUG

// Make assert active if SLIC3R_DEBUG
#ifdef SLIC3R_DEBUG
    #define DEBUG
    #define _DEBUG
    #undef NDEBUG
    #include "utils.hpp"
    #include "SVG.hpp"
#endif

// #undef NDEBUG
#include <cassert>

namespace Slic3r {

// how much we extend support around the actual contact area
//FIXME this should be dependent on the nozzle diameter!
#define SUPPORT_MATERIAL_MARGIN 1.5 

// Increment used to reach MARGIN in steps to avoid trespassing thin objects
#define NUM_MARGIN_STEPS 3

// Dimensions of a tree-like structure to save material
#define PILLAR_SIZE (2.5)
#define PILLAR_SPACING 10

//#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 3.
//#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 1.5
#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtSquare, 0.

#ifdef SLIC3R_DEBUG
const char* support_surface_type_to_color_name(const PrintObjectSupportMaterial::SupporLayerType surface_type)
{
    switch (surface_type) {
        case PrintObjectSupportMaterial::sltTopContact:     return "rgb(255,0,0)"; // "red";
        case PrintObjectSupportMaterial::sltTopInterface:   return "rgb(0,255,0)"; // "green";
        case PrintObjectSupportMaterial::sltBase:           return "rgb(0,0,255)"; // "blue";
        case PrintObjectSupportMaterial::sltBottomInterface:return "rgb(255,255,128)"; // yellow 
        case PrintObjectSupportMaterial::sltBottomContact:  return "rgb(255,0,255)"; // magenta
        case PrintObjectSupportMaterial::sltRaftInterface:  return "rgb(0,255,255)";
        case PrintObjectSupportMaterial::sltRaftBase:       return "rgb(128,128,128)";
        case PrintObjectSupportMaterial::sltUnknown:        return "rgb(128,0,0)"; // maroon
        default:                                            return "rgb(64,64,64)";
    };
}

Point export_support_surface_type_legend_to_svg_box_size()
{
    return Point(scale_(1.+10.*8.), scale_(3.)); 
}

void export_support_surface_type_legend_to_svg(SVG &svg, const Point &pos)
{
    // 1st row
    coord_t pos_x0 = pos(0) + scale_(1.);
    coord_t pos_x = pos_x0;
    coord_t pos_y = pos(1) + scale_(1.5);
    coord_t step_x = scale_(10.);
    svg.draw_legend(Point(pos_x, pos_y), "top contact"    , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltTopContact));
    pos_x += step_x;
    svg.draw_legend(Point(pos_x, pos_y), "top iface"      , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltTopInterface));
    pos_x += step_x;
    svg.draw_legend(Point(pos_x, pos_y), "base"           , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBase));
    pos_x += step_x;
    svg.draw_legend(Point(pos_x, pos_y), "bottom iface"   , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBottomInterface));
    pos_x += step_x;
    svg.draw_legend(Point(pos_x, pos_y), "bottom contact" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBottomContact));
    // 2nd row
    pos_x = pos_x0;
    pos_y = pos(1)+scale_(2.8);
    svg.draw_legend(Point(pos_x, pos_y), "raft interface" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltRaftInterface));
    pos_x += step_x;
    svg.draw_legend(Point(pos_x, pos_y), "raft base"      , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltRaftBase));
    pos_x += step_x;
    svg.draw_legend(Point(pos_x, pos_y), "unknown"        , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltUnknown));
    pos_x += step_x;
    svg.draw_legend(Point(pos_x, pos_y), "intermediate"   , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltIntermediate));
}

void export_print_z_polygons_to_svg(const char *path, PrintObjectSupportMaterial::MyLayer ** const layers, size_t n_layers)
{
    BoundingBox bbox;
    for (int i = 0; i < n_layers; ++ i)
        bbox.merge(get_extents(layers[i]->polygons));
    Point legend_size = export_support_surface_type_legend_to_svg_box_size();
    Point legend_pos(bbox.min(0), bbox.max(1));
    bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
    SVG svg(path, bbox);
    const float transparency = 0.5f;
    for (int i = 0; i < n_layers; ++ i)
        svg.draw(union_ex(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type), transparency);
    for (int i = 0; i < n_layers; ++ i)
        svg.draw(to_polylines(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type));
    export_support_surface_type_legend_to_svg(svg, legend_pos);
    svg.Close();
}

void export_print_z_polygons_and_extrusions_to_svg(
    const char                                      *path, 
    PrintObjectSupportMaterial::MyLayer ** const     layers, 
    size_t                                           n_layers,
    SupportLayer                                    &support_layer)
{
    BoundingBox bbox;
    for (int i = 0; i < n_layers; ++ i)
        bbox.merge(get_extents(layers[i]->polygons));
    Point legend_size = export_support_surface_type_legend_to_svg_box_size();
    Point legend_pos(bbox.min(0), bbox.max(1));
    bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
    SVG svg(path, bbox);
    const float transparency = 0.5f;
    for (int i = 0; i < n_layers; ++ i)
        svg.draw(union_ex(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type), transparency);
    for (int i = 0; i < n_layers; ++ i)
        svg.draw(to_polylines(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type));

    Polygons polygons_support, polygons_interface;
    support_layer.support_fills.polygons_covered_by_width(polygons_support, float(SCALED_EPSILON));
//    support_layer.support_interface_fills.polygons_covered_by_width(polygons_interface, SCALED_EPSILON);
    svg.draw(union_ex(polygons_support), "brown");
    svg.draw(union_ex(polygons_interface), "black");

    export_support_surface_type_legend_to_svg(svg, legend_pos);
    svg.Close();
}
#endif /* SLIC3R_DEBUG */

#ifdef SUPPORT_USE_AGG_RASTERIZER
static std::vector<unsigned char> rasterize_polygons(const Vec2i &grid_size, const double pixel_size, const Point &left_bottom, const Polygons &polygons)
{
    std::vector<unsigned char>                  data(grid_size.x() * grid_size.y());
    agg::rendering_buffer                       rendering_buffer(data.data(), unsigned(grid_size.x()), unsigned(grid_size.y()), grid_size.x());
    agg::pixfmt_gray8                           pixel_renderer(rendering_buffer);
    agg::renderer_base<agg::pixfmt_gray8>       raw_renderer(pixel_renderer);
    agg::renderer_scanline_aa_solid<agg::renderer_base<agg::pixfmt_gray8>> renderer(raw_renderer);
        
    renderer.color(agg::pixfmt_gray8::color_type(255));
    raw_renderer.clear(agg::pixfmt_gray8::color_type(0));

    agg::scanline_p8                            scanline;
    agg::rasterizer_scanline_aa<>               rasterizer;

    auto convert_pt = [left_bottom, pixel_size](const Point &pt) {
        return Vec2d((pt.x() - left_bottom.x()) / pixel_size, (pt.y() - left_bottom.y()) / pixel_size);
    };
    rasterizer.reset();
    for (const Polygon &polygon : polygons) {
        agg::path_storage path;
        auto it = polygon.points.begin();
        Vec2d pt_front = convert_pt(*it);
        path.move_to(pt_front.x(), pt_front.y());
        while (++ it != polygon.points.end()) {
            Vec2d pt = convert_pt(*it);
            path.line_to(pt.x(), pt.y());
        }
        path.line_to(pt_front.x(), pt_front.y());
        rasterizer.add_path(std::move(path));
    }
    agg::render_scanlines(rasterizer, scanline, renderer);
    return data;
}
// Grid has to have the boundary pixels unset.
static Polygons contours_simplified(const Vec2i &grid_size, const double pixel_size, Point left_bottom, const std::vector<unsigned char> &grid, coord_t offset, bool fill_holes)
{
    assert(std::abs(2 * offset) < pixel_size - 10);

    // Fill in empty cells, which have a left / right neighbor filled.
    // Fill in empty cells, which have the top / bottom neighbor filled.
    std::vector<unsigned char>        cell_inside_data;
    const std::vector<unsigned char> &cell_inside = fill_holes ? cell_inside_data : grid;
    if (fill_holes) {
        cell_inside_data = grid;
        for (int r = 1; r + 1 < grid_size.y(); ++ r) {
            for (int c = 1; c + 1 < grid_size.x(); ++ c) {
                int addr = r * grid_size.x() + c;
                if ((grid[addr - 1] != 0 && grid[addr + 1] != 0) ||
                    (grid[addr - grid_size.x()] != 0 && grid[addr + grid_size.x()] != 0))
                    cell_inside_data[addr] = true;
            }
        }
    }

    // 1) Collect the lines.
    std::vector<Line> lines;
    std::vector<std::pair<Point, int>> start_point_to_line_idx;
    for (int r = 1; r < grid_size.y(); ++ r) {
        for (int c = 1; c < grid_size.x(); ++ c) {
            int  addr    = r * grid_size.x() + c;
            bool left    = cell_inside[addr - 1] != 0;
            bool top     = cell_inside[addr - grid_size.x()] != 0;
            bool current = cell_inside[addr] != 0;
            if (left != current) {
                lines.push_back(
                    left ? 
                        Line(Point(c, r+1), Point(c, r  )) : 
                        Line(Point(c, r  ), Point(c, r+1)));
                start_point_to_line_idx.emplace_back(lines.back().a, int(lines.size()) - 1);
            }
            if (top != current) {
                lines.push_back(
                    top ? 
                        Line(Point(c  , r), Point(c+1, r)) :
                        Line(Point(c+1, r), Point(c  , r))); 
                start_point_to_line_idx.emplace_back(lines.back().a, int(lines.size()) - 1);
            }
        }
    }
    std::sort(start_point_to_line_idx.begin(), start_point_to_line_idx.end(), [](const auto &l, const auto &r){ return l.first < r.first; });

    // 2) Chain the lines.
    std::vector<char> line_processed(lines.size(), false);
    Polygons out;
    for (int i_candidate = 0; i_candidate < int(lines.size()); ++ i_candidate) {
        if (line_processed[i_candidate])
            continue;
        Polygon poly;
        line_processed[i_candidate] = true;
        poly.points.push_back(lines[i_candidate].b);
        int i_line_current = i_candidate;
        for (;;) {
            auto line_range = std::equal_range(std::begin(start_point_to_line_idx), std::end(start_point_to_line_idx), 
                std::make_pair(lines[i_line_current].b, 0), [](const auto& l, const auto& r) { return l.first < r.first; });
            // The interval has to be non empty, there shall be at least one line continuing the current one.
            assert(line_range.first != line_range.second);
            int i_next = -1;
            for (auto it = line_range.first; it != line_range.second; ++ it) {
                if (it->second == i_candidate) {
                    // closing the loop.
                    goto end_of_poly;
                }
                if (line_processed[it->second])
                    continue;
                if (i_next == -1) {
                    i_next = it->second;
                } else {
                    // This is a corner, where two lines meet exactly. Pick the line, which encloses a smallest angle with
                    // the current edge.
                    const Line &line_current = lines[i_line_current];
                    const Line &line_next = lines[it->second];
                    const Vector v1 = line_current.vector();
                    const Vector v2 = line_next.vector();
                    int64_t cross = int64_t(v1(0)) * int64_t(v2(1)) - int64_t(v2(0)) * int64_t(v1(1));
                    if (cross > 0) {
                        // This has to be a convex right angle. There is no better next line.
                        i_next = it->second;
                        break;
                    }
                }
            }
            line_processed[i_next] = true;
            i_line_current = i_next;
            poly.points.push_back(lines[i_line_current].b);
        }
    end_of_poly:
        out.push_back(std::move(poly));
    }

    // 3) Scale the polygons back into world, shrink slightly and remove collinear points.
    for (Polygon &poly : out) {
        for (Point &p : poly.points) {
#if 0
            p.x() = (p.x() + 1) * pixel_size + left_bottom.x();
            p.y() = (p.y() + 1) * pixel_size + left_bottom.y();
#else
            p *= pixel_size;
            p += left_bottom;
#endif
        }
        // Shrink the contour slightly, so if the same contour gets discretized and simplified again, one will get the same result.
        // Remove collinear points.
        Points pts;
        pts.reserve(poly.points.size());
        for (size_t j = 0; j < poly.points.size(); ++ j) {
            size_t j0 = (j == 0) ? poly.points.size() - 1 : j - 1;
            size_t j2 = (j + 1 == poly.points.size()) ? 0 : j + 1;
            Point  v  = poly.points[j2] - poly.points[j0];
            if (v(0) != 0 && v(1) != 0) {
                // This is a corner point. Copy it to the output contour.
                Point p = poly.points[j];
                p(1) += (v(0) < 0) ? - offset : offset;
                p(0) += (v(1) > 0) ? - offset : offset;
                pts.push_back(p);
            } 
        }
        poly.points = std::move(pts);
    }
    return out;
}
#endif // SUPPORT_USE_AGG_RASTERIZER

PrintObjectSupportMaterial::PrintObjectSupportMaterial(const PrintObject *object, const SlicingParameters &slicing_params) :
    m_object                (object),
    m_print_config          (&object->print()->config()),
    m_object_config         (&object->config()),
    m_slicing_params        (slicing_params)
{
    m_support_params.first_layer_flow                   = support_material_1st_layer_flow(object, float(slicing_params.first_print_layer_height));
    m_support_params.support_material_flow              = support_material_flow(object, float(slicing_params.layer_height));
    m_support_params.support_material_interface_flow    = support_material_interface_flow(object, float(slicing_params.layer_height));
    m_support_params.support_layer_height_min           = 0.01;

    // Calculate a minimum support layer height as a minimum over all extruders, but not smaller than 10um.
    m_support_params.support_layer_height_min = 1000000.;
    for (auto lh : m_print_config->min_layer_height.values)
        m_support_params.support_layer_height_min = std::min(m_support_params.support_layer_height_min, std::max(0.01, lh));
    for (auto layer : m_object->layers())
        m_support_params.support_layer_height_min = std::min(m_support_params.support_layer_height_min, std::max(0.01, layer->height));

    if (m_object_config->support_material_interface_layers.value == 0) {
        // No interface layers allowed, print everything with the base support pattern.
        m_support_params.support_material_interface_flow = m_support_params.support_material_flow;
    }

    // Evaluate the XY gap between the object outer perimeters and the support structures.
    // Evaluate the XY gap between the object outer perimeters and the support structures.
    coordf_t external_perimeter_width = 0.;
    coordf_t bridge_flow_ratio = 0;
    for (size_t region_id = 0; region_id < object->num_printing_regions(); ++ region_id) {
        const PrintRegion &region = object->printing_region(region_id);
        external_perimeter_width = std::max(external_perimeter_width, coordf_t(region.flow(*object, frExternalPerimeter, slicing_params.layer_height).width()));
        bridge_flow_ratio += region.config().bridge_flow_ratio;
    }
    m_support_params.gap_xy = m_object_config->support_material_xy_spacing.get_abs_value(external_perimeter_width);
    bridge_flow_ratio /= object->num_printing_regions();

    m_support_params.support_material_bottom_interface_flow = m_slicing_params.soluble_interface || ! m_object_config->thick_bridges ?
        m_support_params.support_material_interface_flow.with_flow_ratio(bridge_flow_ratio) :
        Flow::bridging_flow(bridge_flow_ratio * m_support_params.support_material_interface_flow.nozzle_diameter(), m_support_params.support_material_interface_flow.nozzle_diameter());

    m_support_params.can_merge_support_regions = m_object_config->support_material_extruder.value == m_object_config->support_material_interface_extruder.value;
    if (!m_support_params.can_merge_support_regions && (m_object_config->support_material_extruder.value == 0 || m_object_config->support_material_interface_extruder.value == 0)) {
        // One of the support extruders is of "don't care" type.
        auto object_extruders = m_object->object_extruders();
        if (object_extruders.size() == 1 &&
            *object_extruders.begin() == std::max<unsigned int>(m_object_config->support_material_extruder.value, m_object_config->support_material_interface_extruder.value))
            // Object is printed with the same extruder as the support.
            m_support_params.can_merge_support_regions = true;
    }


    m_support_params.base_angle         = Geometry::deg2rad(float(m_object_config->support_material_angle.value));
    m_support_params.interface_angle    = Geometry::deg2rad(float(m_object_config->support_material_angle.value + 90.));
    m_support_params.interface_spacing  = m_object_config->support_material_interface_spacing.value + m_support_params.support_material_interface_flow.spacing();
    m_support_params.interface_density  = std::min(1., m_support_params.support_material_interface_flow.spacing() / m_support_params.interface_spacing);
    m_support_params.support_spacing    = m_object_config->support_material_spacing.value + m_support_params.support_material_flow.spacing();
    m_support_params.support_density    = std::min(1., m_support_params.support_material_flow.spacing() / m_support_params.support_spacing);
    if (m_object_config->support_material_interface_layers.value == 0) {
        // No interface layers allowed, print everything with the base support pattern.
        m_support_params.interface_spacing = m_support_params.support_spacing;
        m_support_params.interface_density = m_support_params.support_density;
    }

    SupportMaterialPattern  support_pattern = m_object_config->support_material_pattern;
    m_support_params.with_sheath            = m_object_config->support_material_with_sheath;
    m_support_params.base_fill_pattern      = 
        support_pattern == smpHoneycomb ? ipHoneycomb :
        m_support_params.support_density > 0.95 || m_support_params.with_sheath ? ipRectilinear : ipSupportBase;
    m_support_params.interface_fill_pattern = (m_support_params.interface_density > 0.95 ? ipRectilinear : ipSupportBase);
    m_support_params.contact_fill_pattern   =
        (m_object_config->support_material_interface_pattern == smipAuto && m_slicing_params.soluble_interface) ||
        m_object_config->support_material_interface_pattern == smipConcentric ?
        ipConcentric :
        (m_support_params.interface_density > 0.95 ? ipRectilinear : ipSupportBase);
}

// Using the std::deque as an allocator.
inline PrintObjectSupportMaterial::MyLayer& layer_allocate(
    std::deque<PrintObjectSupportMaterial::MyLayer> &layer_storage, 
    PrintObjectSupportMaterial::SupporLayerType      layer_type)
{ 
    layer_storage.push_back(PrintObjectSupportMaterial::MyLayer());
    layer_storage.back().layer_type = layer_type;
    return layer_storage.back();
}

inline PrintObjectSupportMaterial::MyLayer& layer_allocate(
    std::deque<PrintObjectSupportMaterial::MyLayer> &layer_storage,
    tbb::spin_mutex                                 &layer_storage_mutex,
    PrintObjectSupportMaterial::SupporLayerType      layer_type)
{ 
    layer_storage_mutex.lock();
    layer_storage.push_back(PrintObjectSupportMaterial::MyLayer());
    PrintObjectSupportMaterial::MyLayer *layer_new = &layer_storage.back();
    layer_storage_mutex.unlock();
    layer_new->layer_type = layer_type;
    return *layer_new;
}

inline void layers_append(PrintObjectSupportMaterial::MyLayersPtr &dst, const PrintObjectSupportMaterial::MyLayersPtr &src)
{
    dst.insert(dst.end(), src.begin(), src.end());
}

// Support layer that is covered by some form of dense interface.
static constexpr const std::initializer_list<PrintObjectSupportMaterial::SupporLayerType> support_types_interface { 
    PrintObjectSupportMaterial::sltRaftInterface, PrintObjectSupportMaterial::sltBottomContact, PrintObjectSupportMaterial::sltBottomInterface, PrintObjectSupportMaterial::sltTopContact, PrintObjectSupportMaterial::sltTopInterface
};

void PrintObjectSupportMaterial::generate(PrintObject &object)
{
    BOOST_LOG_TRIVIAL(info) << "Support generator - Start";

    coordf_t max_object_layer_height = 0.;
    for (size_t i = 0; i < object.layer_count(); ++ i)
        max_object_layer_height = std::max(max_object_layer_height, object.layers()[i]->height);

    // Layer instances will be allocated by std::deque and they will be kept until the end of this function call.
    // The layers will be referenced by various LayersPtr (of type std::vector<Layer*>)
    MyLayerStorage layer_storage;

    BOOST_LOG_TRIVIAL(info) << "Support generator - Creating top contacts";

    // Per object layer projection of the object below the layer into print bed.
    std::vector<Polygons> buildplate_covered = this->buildplate_covered(object);

    // Determine the top contact surfaces of the support, defined as:
    // contact = overhangs - clearance + margin
    // This method is responsible for identifying what contact surfaces
    // should the support material expose to the object in order to guarantee
    // that it will be effective, regardless of how it's built below.
    // If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette without holes.
    MyLayersPtr top_contacts = this->top_contact_layers(object, buildplate_covered, layer_storage);
    if (top_contacts.empty())
        // Nothing is supported, no supports are generated.
        return;

#ifdef SLIC3R_DEBUG
    static int iRun = 0;
    iRun ++;
    for (const MyLayer *layer : top_contacts)
        Slic3r::SVG::export_expolygons(
            debug_out_path("support-top-contacts-%d-%lf.svg", iRun, layer->print_z), 
            union_ex(layer->polygons));
#endif /* SLIC3R_DEBUG */

    BOOST_LOG_TRIVIAL(info) << "Support generator - Creating bottom contacts";

    // Determine the bottom contact surfaces of the supports over the top surfaces of the object.
    // Depending on whether the support is soluble or not, the contact layer thickness is decided.
    // layer_support_areas contains the per object layer support areas. These per object layer support areas
    // may get merged and trimmed by this->generate_base_layers() if the support layers are not synchronized with object layers.
    std::vector<Polygons> layer_support_areas;
    MyLayersPtr bottom_contacts = this->bottom_contact_layers_and_layer_support_areas(
        object, top_contacts, buildplate_covered,
        layer_storage, layer_support_areas);

#ifdef SLIC3R_DEBUG
    for (size_t layer_id = 0; layer_id < object.layers().size(); ++ layer_id)
        Slic3r::SVG::export_expolygons(
            debug_out_path("support-areas-%d-%lf.svg", iRun, object.layers()[layer_id]->print_z), 
            union_ex(layer_support_areas[layer_id]));
#endif /* SLIC3R_DEBUG */

    BOOST_LOG_TRIVIAL(info) << "Support generator - Creating intermediate layers - indices";

    // Allocate empty layers between the top / bottom support contact layers
    // as placeholders for the base and intermediate support layers.
    // The layers may or may not be synchronized with the object layers, depending on the configuration.
    // For example, a single nozzle multi material printing will need to generate a waste tower, which in turn
    // wastes less material, if there are as little tool changes as possible.
    MyLayersPtr intermediate_layers = this->raft_and_intermediate_support_layers(
        object, bottom_contacts, top_contacts, layer_storage);

    this->trim_support_layers_by_object(object, top_contacts, m_slicing_params.gap_support_object, m_slicing_params.gap_object_support, m_support_params.gap_xy);

#ifdef SLIC3R_DEBUG
    for (const MyLayer *layer : top_contacts)
        Slic3r::SVG::export_expolygons(
            debug_out_path("support-top-contacts-trimmed-by-object-%d-%lf.svg", iRun, layer->print_z), 
            union_ex(layer->polygons));
#endif

    BOOST_LOG_TRIVIAL(info) << "Support generator - Creating base layers";

    // Fill in intermediate layers between the top / bottom support contact layers, trim them by the object.
    this->generate_base_layers(object, bottom_contacts, top_contacts, intermediate_layers, layer_support_areas);

#ifdef SLIC3R_DEBUG
    for (MyLayersPtr::const_iterator it = intermediate_layers.begin(); it != intermediate_layers.end(); ++ it)
        Slic3r::SVG::export_expolygons(
            debug_out_path("support-base-layers-%d-%lf.svg", iRun, (*it)->print_z), 
            union_ex((*it)->polygons));
#endif /* SLIC3R_DEBUG */

    BOOST_LOG_TRIVIAL(info) << "Support generator - Trimming top contacts by bottom contacts";

    // Because the top and bottom contacts are thick slabs, they may overlap causing over extrusion 
    // and unwanted strong bonds to the object.
    // Rather trim the top contacts by their overlapping bottom contacts to leave a gap instead of over extruding
    // top contacts over the bottom contacts.
    this->trim_top_contacts_by_bottom_contacts(object, bottom_contacts, top_contacts);


    BOOST_LOG_TRIVIAL(info) << "Support generator - Creating interfaces";

    // Propagate top / bottom contact layers to generate interface layers 
    // and base interface layers (for soluble interface / non souble base only)
    auto [interface_layers, base_interface_layers] = this->generate_interface_layers(bottom_contacts, top_contacts, intermediate_layers, layer_storage);

    BOOST_LOG_TRIVIAL(info) << "Support generator - Creating raft";

    // If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette with holes filled.
    // There is also a 1st intermediate layer containing bases of support columns.
    // Inflate the bases of the support columns and create the raft base under the object.
    MyLayersPtr raft_layers = this->generate_raft_base(object, top_contacts, interface_layers, base_interface_layers, intermediate_layers, layer_storage);

#ifdef SLIC3R_DEBUG
    for (const MyLayer *l : interface_layers)
        Slic3r::SVG::export_expolygons(
            debug_out_path("support-interface-layers-%d-%lf.svg", iRun, l->print_z), 
            union_ex(l->polygons));
    for (const MyLayer *l : base_interface_layers)
        Slic3r::SVG::export_expolygons(
            debug_out_path("support-base-interface-layers-%d-%lf.svg", iRun, l->print_z), 
            union_ex(l->polygons));
#endif // SLIC3R_DEBUG

/*
    // Clip with the pillars.
    if (! shape.empty()) {
        this->clip_with_shape(interface, shape);
        this->clip_with_shape(base, shape);
    }
*/

    BOOST_LOG_TRIVIAL(info) << "Support generator - Creating layers";

// For debugging purposes, one may want to show only some of the support extrusions.
//    raft_layers.clear();
//    bottom_contacts.clear();
//    top_contacts.clear();
//    intermediate_layers.clear();
//    interface_layers.clear();

    // Install support layers into the object.
    // A support layer installed on a PrintObject has a unique print_z.
    MyLayersPtr layers_sorted;
    layers_sorted.reserve(raft_layers.size() + bottom_contacts.size() + top_contacts.size() + intermediate_layers.size() + interface_layers.size() + base_interface_layers.size());
    layers_append(layers_sorted, raft_layers);
    layers_append(layers_sorted, bottom_contacts);
    layers_append(layers_sorted, top_contacts);
    layers_append(layers_sorted, intermediate_layers);
    layers_append(layers_sorted, interface_layers);
    layers_append(layers_sorted, base_interface_layers);
    // Sort the layers lexicographically by a raising print_z and a decreasing height.
    std::sort(layers_sorted.begin(), layers_sorted.end(), [](auto *l1, auto *l2) { return *l1 < *l2; });
    int layer_id = 0;
    int layer_id_interface = 0;
    assert(object.support_layers().empty());
    for (size_t i = 0; i < layers_sorted.size();) {
        // Find the last layer with roughly the same print_z, find the minimum layer height of all.
        // Due to the floating point inaccuracies, the print_z may not be the same even if in theory they should.
        size_t j = i + 1;
        coordf_t zmax = layers_sorted[i]->print_z + EPSILON;
        for (; j < layers_sorted.size() && layers_sorted[j]->print_z <= zmax; ++j) ;
        // Assign an average print_z to the set of layers with nearly equal print_z.
        coordf_t zavg = 0.5 * (layers_sorted[i]->print_z + layers_sorted[j - 1]->print_z);
        coordf_t height_min = layers_sorted[i]->height;
        bool     empty = true;
        // For snug supports, layers where the direction of the support interface shall change are accounted for.
        size_t   num_interfaces = 0;
        size_t   num_top_contacts = 0;
        double   top_contact_bottom_z = 0;
        for (size_t u = i; u < j; ++u) {
            MyLayer &layer = *layers_sorted[u];
            if (! layer.polygons.empty()) {
                empty             = false;
                num_interfaces   += one_of(layer.layer_type, support_types_interface);
                if (layer.layer_type == sltTopContact) {
                    ++ num_top_contacts;
                    assert(num_top_contacts <= 1);
                    // All top contact layers sharing this print_z shall also share bottom_z.
                    //assert(num_top_contacts == 1 || (top_contact_bottom_z - layer.bottom_z) < EPSILON);
                    top_contact_bottom_z = layer.bottom_z;
                }
            }
            layer.print_z = zavg;
            height_min = std::min(height_min, layer.height);
        }
        if (! empty) {
            // Here the upper_layer and lower_layer pointers are left to null at the support layers, 
            // as they are never used. These pointers are candidates for removal.
            bool   this_layer_contacts_only = num_top_contacts > 0 && num_top_contacts == num_interfaces;
            size_t this_layer_id_interface  = layer_id_interface;
            if (this_layer_contacts_only) {
                // Find a supporting layer for its interface ID.
                for (auto it = object.support_layers().rbegin(); it != object.support_layers().rend(); ++ it)
                    if (const SupportLayer &other_layer = **it; std::abs(other_layer.print_z - top_contact_bottom_z) < EPSILON) {
                        // other_layer supports this top contact layer. Assign a different support interface direction to this layer
                        // from the layer that supports it.
                        this_layer_id_interface = other_layer.interface_id() + 1;
                    }
            }
            object.add_support_layer(layer_id ++, this_layer_id_interface, height_min, zavg);
            if (num_interfaces && ! this_layer_contacts_only)
                ++ layer_id_interface;
        }
        i = j;
    }

    BOOST_LOG_TRIVIAL(info) << "Support generator - Generating tool paths";

#if 0 // #ifdef SLIC3R_DEBUG
    {
        size_t layer_id = 0;
        for (int i = 0; i < int(layers_sorted.size());) {
            // Find the last layer with roughly the same print_z, find the minimum layer height of all.
            // Due to the floating point inaccuracies, the print_z may not be the same even if in theory they should.
            int j = i + 1;
            coordf_t zmax = layers_sorted[i]->print_z + EPSILON;
            bool empty = true;
            for (; j < layers_sorted.size() && layers_sorted[j]->print_z <= zmax; ++j)
                if (!layers_sorted[j]->polygons.empty())
                    empty = false;
            if (!empty) {
                export_print_z_polygons_to_svg(
                    debug_out_path("support-%d-%lf-before.svg", iRun, layers_sorted[i]->print_z).c_str(),
                    layers_sorted.data() + i, j - i);
                export_print_z_polygons_and_extrusions_to_svg(
                    debug_out_path("support-w-fills-%d-%lf-before.svg", iRun, layers_sorted[i]->print_z).c_str(),
                    layers_sorted.data() + i, j - i,
                    *object.support_layers()[layer_id]);
                ++layer_id;
            }
            i = j;
        }
    }
#endif /* SLIC3R_DEBUG */

    // Generate the actual toolpaths and save them into each layer.
    this->generate_toolpaths(object.support_layers(), raft_layers, bottom_contacts, top_contacts, intermediate_layers, interface_layers, base_interface_layers);

#ifdef SLIC3R_DEBUG
    {
        size_t layer_id = 0;
        for (int i = 0; i < int(layers_sorted.size());) {
            // Find the last layer with roughly the same print_z, find the minimum layer height of all.
            // Due to the floating point inaccuracies, the print_z may not be the same even if in theory they should.
            int j = i + 1;
            coordf_t zmax = layers_sorted[i]->print_z + EPSILON;
            bool empty = true;
            for (; j < layers_sorted.size() && layers_sorted[j]->print_z <= zmax; ++j)
                if (! layers_sorted[j]->polygons.empty())
                    empty = false;
            if (! empty) {
                export_print_z_polygons_to_svg(
                    debug_out_path("support-%d-%lf.svg", iRun, layers_sorted[i]->print_z).c_str(),
                    layers_sorted.data() + i, j - i);
                export_print_z_polygons_and_extrusions_to_svg(
                    debug_out_path("support-w-fills-%d-%lf.svg", iRun, layers_sorted[i]->print_z).c_str(),
                    layers_sorted.data() + i, j - i,
                    *object.support_layers()[layer_id]);
                ++layer_id;
            }
            i = j;
        }
    }
#endif /* SLIC3R_DEBUG */

    BOOST_LOG_TRIVIAL(info) << "Support generator - End";
}

// Collect all polygons of all regions in a layer with a given surface type.
Polygons collect_region_slices_by_type(const Layer &layer, SurfaceType surface_type)
{
    // 1) Count the new polygons first.
    size_t n_polygons_new = 0;
    for (const LayerRegion *region : layer.regions())
        for (const Surface &surface : region->slices.surfaces)
            if (surface.surface_type == surface_type)
                n_polygons_new += surface.expolygon.holes.size() + 1;
    // 2) Collect the new polygons.
    Polygons out;
    out.reserve(n_polygons_new);
    for (const LayerRegion *region : layer.regions())
        for (const Surface &surface : region->slices.surfaces)
            if (surface.surface_type == surface_type)
                polygons_append(out, surface.expolygon);
    return out;
}

// Collect outer contours of all slices of this layer.
// This is useful for calculating the support base with holes filled.
Polygons collect_slices_outer(const Layer &layer)
{
    Polygons out;
    out.reserve(out.size() + layer.lslices.size());
    for (const ExPolygon &expoly : layer.lslices)
        out.emplace_back(expoly.contour);
    return out;
}

struct SupportGridParams {
    SupportGridParams(const PrintObjectConfig &object_config, const Flow &support_material_flow) :
        style(object_config.support_material_style.value),
        grid_resolution(object_config.support_material_spacing.value + support_material_flow.spacing()),
        support_angle(Geometry::deg2rad(object_config.support_material_angle.value)),
        extrusion_width(support_material_flow.spacing()),
        support_material_closing_radius(object_config.support_material_closing_radius.value),
        expansion_to_slice(coord_t(support_material_flow.scaled_spacing() / 2 + 5)),
        expansion_to_propagate(-3) {}

    SupportMaterialStyle    style;
    double                  grid_resolution;
    double                  support_angle;
    double                  extrusion_width;
    double                  support_material_closing_radius;
    coord_t                 expansion_to_slice;
    coord_t                 expansion_to_propagate;
};

class SupportGridPattern
{
public:
    SupportGridPattern(
        // Support islands, to be stretched into a grid. Already trimmed with min(lower_layer_offset, m_gap_xy)
        const Polygons          *support_polygons, 
        // Trimming polygons, to trim the stretched support islands. support_polygons were already trimmed with trimming_polygons.
        const Polygons          *trimming_polygons,
        const SupportGridParams &params) :
        m_style(params.style),
        m_support_polygons(support_polygons), m_trimming_polygons(trimming_polygons),
        m_support_spacing(params.grid_resolution), m_support_angle(params.support_angle),
        m_extrusion_width(params.extrusion_width),
        m_support_material_closing_radius(params.support_material_closing_radius)
    {
        switch (m_style) {
        case smsGrid:
        {
            // Prepare the grid data, it will be reused when extracting support structures.
            if (m_support_angle != 0.) {
                // Create a copy of the rotated contours.
                m_support_polygons_rotated  = *support_polygons;
                m_trimming_polygons_rotated = *trimming_polygons;
                m_support_polygons  = &m_support_polygons_rotated;
                m_trimming_polygons = &m_trimming_polygons_rotated;
                polygons_rotate(m_support_polygons_rotated, - params.support_angle);
                polygons_rotate(m_trimming_polygons_rotated, - params.support_angle);
            }

            // Resolution of the sparse support grid.
            coord_t grid_resolution = coord_t(scale_(m_support_spacing));
            BoundingBox bbox = get_extents(*m_support_polygons);
            bbox.offset(20);
            // Align the bounding box with the sparse support grid.
            bbox.align_to_grid(grid_resolution);

    #ifdef SUPPORT_USE_AGG_RASTERIZER
            m_bbox       = bbox;
            // Oversample the grid to avoid leaking of supports through or around the object walls.
            int extrusion_width_scaled = scale_(params.extrusion_width);
            int oversampling = std::clamp(int(scale_(m_support_spacing) / (extrusion_width_scaled + 100)), 1, 8);
            m_pixel_size = std::max<double>(extrusion_width_scaled + 21, scale_(m_support_spacing / oversampling));
            // Add one empty column / row boundaries.
            m_bbox.offset(m_pixel_size);
            // Grid size fitting the support polygons plus one pixel boundary around the polygons.
            Vec2i grid_size_raw(int(ceil((m_bbox.max.x() - m_bbox.min.x()) / m_pixel_size)),
                                int(ceil((m_bbox.max.y() - m_bbox.min.y()) / m_pixel_size)));
            // Overlay macro blocks of (oversampling x oversampling) over the grid.
            Vec2i grid_blocks((grid_size_raw.x() + oversampling - 1 - 2) / oversampling, 
                              (grid_size_raw.y() + oversampling - 1 - 2) / oversampling);
            // and resize the grid to fit the macro blocks + one pixel boundary.
            m_grid_size = grid_blocks * oversampling + Vec2i(2, 2);
            assert(m_grid_size.x() >= grid_size_raw.x());
            assert(m_grid_size.y() >= grid_size_raw.y());
            m_grid2 = rasterize_polygons(m_grid_size, m_pixel_size, m_bbox.min, *m_support_polygons);

            seed_fill_block(m_grid2, m_grid_size,
                dilate_trimming_region(rasterize_polygons(m_grid_size, m_pixel_size, m_bbox.min, *m_trimming_polygons), m_grid_size),
                grid_blocks, oversampling);

    #ifdef SLIC3R_DEBUG
            {
                static int irun;
                Slic3r::png::write_gray_to_file_scaled(debug_out_path("support-rasterizer-%d.png", irun++), m_grid_size.x(), m_grid_size.y(), m_grid2.data(), 4);
            }
    #endif // SLIC3R_DEBUG

    #else // SUPPORT_USE_AGG_RASTERIZER
            // Create an EdgeGrid, initialize it with projection, initialize signed distance field.
            m_grid.set_bbox(bbox);
            m_grid.create(*m_support_polygons, grid_resolution);
    #if 0
            if (m_grid.has_intersecting_edges()) {
                // EdgeGrid fails to produce valid signed distance function for self-intersecting polygons.
                m_support_polygons_rotated = simplify_polygons(*m_support_polygons);
                m_support_polygons = &m_support_polygons_rotated;
                m_grid.set_bbox(bbox);
                m_grid.create(*m_support_polygons, grid_resolution);
    //            assert(! m_grid.has_intersecting_edges());
                printf("SupportGridPattern: fixing polygons with intersection %s\n",
                    m_grid.has_intersecting_edges() ? "FAILED" : "SUCCEEDED");
            }
    #endif
            m_grid.calculate_sdf();
    #endif // SUPPORT_USE_AGG_RASTERIZER
            break;
        }

        case smsSnug:
        default:
            // nothing to prepare
            break;
        }
    }

    // Extract polygons from the grid, offsetted by offset_in_grid,
    // and trim the extracted polygons by trimming_polygons.
    // Trimming by the trimming_polygons may split the extracted polygons into pieces.
    // Remove all the pieces, which do not contain any of the island_samples.
    Polygons extract_support(const coord_t offset_in_grid, bool fill_holes
#ifdef SLIC3R_DEBUG
        , const char *step_name, int iRun, size_t layer_id, double print_z
#endif
        )
    {
        switch (m_style) {
        case smsGrid:
        {
    #ifdef SUPPORT_USE_AGG_RASTERIZER
            Polygons support_polygons_simplified = contours_simplified(m_grid_size, m_pixel_size, m_bbox.min, m_grid2, offset_in_grid, fill_holes);
    #else // SUPPORT_USE_AGG_RASTERIZER
            // Generate islands, so each island may be tested for overlap with island_samples.
            assert(std::abs(2 * offset_in_grid) < m_grid.resolution());
            Polygons support_polygons_simplified = m_grid.contours_simplified(offset_in_grid, fill_holes);
    #endif // SUPPORT_USE_AGG_RASTERIZER

            ExPolygons islands = diff_ex(support_polygons_simplified, *m_trimming_polygons);

            // Extract polygons, which contain some of the island_samples.
            Polygons out;

            // Sample a single point per input support polygon, keep it as a reference to maintain corresponding
            // polygons if ever these polygons get split into parts by the trimming polygons.
            // As offset_in_grid may be negative, m_support_polygons may stick slightly outside of islands.
            // Trim ti with islands.
            Points samples = island_samples(
                offset_in_grid > 0 ? 
                    // Expanding, thus m_support_polygons are all inside islands.
                    union_ex(*m_support_polygons) :
                    // Shrinking, thus m_support_polygons may be trimmed a tiny bit by islands.
                    intersection_ex(*m_support_polygons, islands));

            std::vector<std::pair<Point,bool>> samples_inside;
            for (ExPolygon &island : islands) {
                BoundingBox bbox = get_extents(island.contour);
                // Samples are sorted lexicographically.
                auto it_lower = std::lower_bound(samples.begin(), samples.end(), Point(bbox.min - Point(1, 1)));
                auto it_upper = std::upper_bound(samples.begin(), samples.end(), Point(bbox.max + Point(1, 1)));
                samples_inside.clear();
                for (auto it = it_lower; it != it_upper; ++ it)
                    if (bbox.contains(*it))
                        samples_inside.push_back(std::make_pair(*it, false));
                if (! samples_inside.empty()) {
                    // For all samples_inside count the boundary crossing.
                    for (size_t i_contour = 0; i_contour <= island.holes.size(); ++ i_contour) {
                        Polygon &contour = (i_contour == 0) ? island.contour : island.holes[i_contour - 1];
                        Points::const_iterator i = contour.points.begin();
                        Points::const_iterator j = contour.points.end() - 1;
                        for (; i != contour.points.end(); j = i ++) {
                            //FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point(1) well.
                            // Does the ray with y == point(1) intersect this line segment?
                            for (auto &sample_inside : samples_inside) {
                                if (((*i)(1) > sample_inside.first(1)) != ((*j)(1) > sample_inside.first(1))) {
                                    double x1 = (double)sample_inside.first(0);
                                    double x2 = (double)(*i)(0) + (double)((*j)(0) - (*i)(0)) * (double)(sample_inside.first(1) - (*i)(1)) / (double)((*j)(1) - (*i)(1));
                                    if (x1 < x2)
                                        sample_inside.second = !sample_inside.second;
                                }
                            }
                        }
                    }
                    // If any of the sample is inside this island, add this island to the output.
                    for (auto &sample_inside : samples_inside)
                        if (sample_inside.second) {
                            polygons_append(out, std::move(island));
                            island.clear();
                            break;
                        }
                }
            }

    #ifdef SLIC3R_DEBUG
            BoundingBox bbox = get_extents(*m_trimming_polygons);
            if (! islands.empty())
                bbox.merge(get_extents(islands));
            if (!out.empty())
                bbox.merge(get_extents(out));
            if (!support_polygons_simplified.empty())
                bbox.merge(get_extents(support_polygons_simplified));
            SVG svg(debug_out_path("extract_support_from_grid_trimmed-%s-%d-%d-%lf.svg", step_name, iRun, layer_id, print_z).c_str(), bbox);
            svg.draw(union_ex(support_polygons_simplified), "gray", 0.25f);
            svg.draw(islands, "red", 0.5f);
            svg.draw(union_ex(out), "green", 0.5f);
            svg.draw(union_ex(*m_support_polygons), "blue", 0.5f);
            svg.draw_outline(islands, "red", "red", scale_(0.05));
            svg.draw_outline(union_ex(out), "green", "green", scale_(0.05));
            svg.draw_outline(union_ex(*m_support_polygons), "blue", "blue", scale_(0.05));
            for (const Point &pt : samples)
                svg.draw(pt, "black", coord_t(scale_(0.15)));
            svg.Close();
    #endif /* SLIC3R_DEBUG */

            if (m_support_angle != 0.)
                polygons_rotate(out, m_support_angle);
            return out;
        }
        case smsSnug:
            // Merge the support polygons by applying morphological closing and inwards smoothing.
            auto closing_distance   = scaled<float>(m_support_material_closing_radius);
            auto smoothing_distance = scaled<float>(m_extrusion_width);
#ifdef SLIC3R_DEBUG
            SVG::export_expolygons(debug_out_path("extract_support_from_grid_trimmed-%s-%d-%d-%lf.svg", step_name, iRun, layer_id, print_z),
                { { { diff_ex(expand(*m_support_polygons, closing_distance), closing(*m_support_polygons, closing_distance, SUPPORT_SURFACES_OFFSET_PARAMETERS)) }, { "closed", "blue",   0.5f } },
                  { { union_ex(smooth_outward(closing(*m_support_polygons, closing_distance, SUPPORT_SURFACES_OFFSET_PARAMETERS), smoothing_distance)) },           { "regularized", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } },
                  { { union_ex(*m_support_polygons) },                                                                                                              { "src",   "green",  0.5f } },
                });
#endif /* SLIC3R_DEBUG */
            //FIXME do we want to trim with the object here? On one side the columns will be thinner, on the other side support interfaces may disappear for snug supports.
            // return diff(smooth_outward(closing(*m_support_polygons, closing_distance, SUPPORT_SURFACES_OFFSET_PARAMETERS), smoothing_distance), *m_trimming_polygons);
            return smooth_outward(closing(*m_support_polygons, closing_distance, SUPPORT_SURFACES_OFFSET_PARAMETERS), smoothing_distance);
        }
        assert(false);
        return Polygons();
    }

#if defined(SLIC3R_DEBUG) && ! defined(SUPPORT_USE_AGG_RASTERIZER)
    void serialize(const std::string &path)
    {
        FILE *file = ::fopen(path.c_str(), "wb");
        ::fwrite(&m_support_spacing, 8, 1, file);
        ::fwrite(&m_support_angle, 8, 1, file);
        uint32_t n_polygons = m_support_polygons->size();
        ::fwrite(&n_polygons, 4, 1, file);
        for (uint32_t i = 0; i < n_polygons; ++ i) {
            const Polygon &poly = (*m_support_polygons)[i];
            uint32_t n_points = poly.size();
            ::fwrite(&n_points, 4, 1, file);
            for (uint32_t j = 0; j < n_points; ++ j) {
                const Point &pt = poly.points[j];
                ::fwrite(&pt.x(), sizeof(coord_t), 1, file);
                ::fwrite(&pt.y(), sizeof(coord_t), 1, file);
            }
        }
        n_polygons = m_trimming_polygons->size();
        ::fwrite(&n_polygons, 4, 1, file);
        for (uint32_t i = 0; i < n_polygons; ++ i) {
            const Polygon &poly = (*m_trimming_polygons)[i];
            uint32_t n_points = poly.size();
            ::fwrite(&n_points, 4, 1, file);
            for (uint32_t j = 0; j < n_points; ++ j) {
                const Point &pt = poly.points[j];
                ::fwrite(&pt.x(), sizeof(coord_t), 1, file);
                ::fwrite(&pt.y(), sizeof(coord_t), 1, file);
            }
        }
        ::fclose(file);
    }

    static SupportGridPattern deserialize(const std::string &path, int which = -1)
    {
        SupportGridPattern out;
        out.deserialize_(path, which);
        return out;
    }

    // Deserialization constructor
    bool deserialize_(const std::string &path, int which = -1)
    {
        FILE *file = ::fopen(path.c_str(), "rb");
        if (file == nullptr)
            return false;

        m_support_polygons = &m_support_polygons_deserialized;
        m_trimming_polygons = &m_trimming_polygons_deserialized;

        ::fread(&m_support_spacing, 8, 1, file);
        ::fread(&m_support_angle, 8, 1, file);
        //FIXME
        //m_support_spacing *= 0.01 / 2;
        uint32_t n_polygons;
        ::fread(&n_polygons, 4, 1, file);
        m_support_polygons_deserialized.reserve(n_polygons);
        int32_t scale = 1;
        for (uint32_t i = 0; i < n_polygons; ++ i) {
            Polygon poly;
            uint32_t n_points;
            ::fread(&n_points, 4, 1, file);
            poly.points.reserve(n_points);
            for (uint32_t j = 0; j < n_points; ++ j) {
                coord_t x, y;
                ::fread(&x, sizeof(coord_t), 1, file);
                ::fread(&y, sizeof(coord_t), 1, file);
                poly.points.emplace_back(Point(x * scale, y * scale));
            }
            if (which == -1 || which == i)
                m_support_polygons_deserialized.emplace_back(std::move(poly));
            printf("Polygon %d, area: %lf\n", i, area(poly.points));
        }
        ::fread(&n_polygons, 4, 1, file);
        m_trimming_polygons_deserialized.reserve(n_polygons);
        for (uint32_t i = 0; i < n_polygons; ++ i) {
            Polygon poly;
            uint32_t n_points;
            ::fread(&n_points, 4, 1, file);
            poly.points.reserve(n_points);
            for (uint32_t j = 0; j < n_points; ++ j) {
                coord_t x, y;
                ::fread(&x, sizeof(coord_t), 1, file);
                ::fread(&y, sizeof(coord_t), 1, file);
                poly.points.emplace_back(Point(x * scale, y * scale));
            }
            m_trimming_polygons_deserialized.emplace_back(std::move(poly));
        }
        ::fclose(file);

        m_support_polygons_deserialized = simplify_polygons(m_support_polygons_deserialized, false);
        //m_support_polygons_deserialized = to_polygons(union_ex(m_support_polygons_deserialized, false));

        // Create an EdgeGrid, initialize it with projection, initialize signed distance field.
        coord_t grid_resolution = coord_t(scale_(m_support_spacing));
        BoundingBox bbox = get_extents(*m_support_polygons);
        bbox.offset(20);
        bbox.align_to_grid(grid_resolution);
        m_grid.set_bbox(bbox);
        m_grid.create(*m_support_polygons, grid_resolution);
        m_grid.calculate_sdf();
        return true;
    }

    const Polygons& support_polygons() const { return *m_support_polygons; }
    const Polygons& trimming_polygons() const { return *m_trimming_polygons; }
    const EdgeGrid::Grid& grid() const { return m_grid; }

#endif // defined(SLIC3R_DEBUG) && ! defined(SUPPORT_USE_AGG_RASTERIZER)

private:
    SupportGridPattern() {}
    SupportGridPattern& operator=(const SupportGridPattern &rhs);

#ifdef SUPPORT_USE_AGG_RASTERIZER
    // Dilate the trimming region (unmask the boundary pixels).
    static std::vector<unsigned char> dilate_trimming_region(const std::vector<unsigned char> &trimming, const Vec2i &grid_size)
    {
        std::vector<unsigned char> dilated(trimming.size(), 0);
        for (int r = 1; r + 1 < grid_size.y(); ++ r)
            for (int c = 1; c + 1 < grid_size.x(); ++ c) {
                //int addr = c + r * m_grid_size.x();
                // 4-neighborhood is not sufficient.
                // dilated[addr] = trimming[addr] != 0 && trimming[addr - 1] != 0 && trimming[addr + 1] != 0 && trimming[addr - m_grid_size.x()] != 0 && trimming[addr + m_grid_size.x()] != 0;
                // 8-neighborhood
                int addr = c + (r - 1) * grid_size.x();
                bool b = trimming[addr - 1] != 0 && trimming[addr] != 0 && trimming[addr + 1] != 0;
                addr += grid_size.x();
                b = b && trimming[addr - 1] != 0 && trimming[addr] != 0 && trimming[addr + 1] != 0;
                addr += grid_size.x();
                b = b && trimming[addr - 1] != 0 && trimming[addr] != 0 && trimming[addr + 1] != 0;
                dilated[addr - grid_size.x()] = b;
            }
        return dilated;
    }

    // Seed fill each of the (oversampling x oversampling) block up to the dilated trimming region.
    static void seed_fill_block(std::vector<unsigned char> &grid, Vec2i grid_size, const std::vector<unsigned char> &trimming,const Vec2i &grid_blocks, int oversampling)
    {
        int size      = oversampling;
        int stride    = grid_size.x();
        for (int block_r = 0; block_r < grid_blocks.y(); ++ block_r)
            for (int block_c = 0; block_c < grid_blocks.x(); ++ block_c) {
                // Propagate the support pixels over the macro cell up to the trimming mask.
                int                  addr      = block_c * size + 1 + (block_r * size + 1) * stride;
                unsigned char       *grid_data = grid.data() + addr;
                const unsigned char *mask_data = trimming.data() + addr;
                // Top to bottom propagation.
                #define PROPAGATION_STEP(offset) \
                    do { \
                        int addr = r * stride + c; \
                        int addr2 = addr + offset; \
                        if (grid_data[addr2] && ! mask_data[addr] && ! mask_data[addr2]) \
                            grid_data[addr] = 1; \
                    } while (0);
                for (int r = 0; r < size; ++ r) {
                    if (r > 0)
                        for (int c = 0; c < size; ++ c)
                            PROPAGATION_STEP(- stride);
                    for (int c = 1; c < size; ++ c)
                        PROPAGATION_STEP(- 1);
                    for (int c = size - 2; c >= 0; -- c)
                        PROPAGATION_STEP(+ 1);
                }
                // Bottom to top propagation.
                for (int r = size - 2; r >= 0; -- r) {
                    for (int c = 0; c < size; ++ c)
                        PROPAGATION_STEP(+ stride);
                    for (int c = 1; c < size; ++ c)
                        PROPAGATION_STEP(- 1);
                    for (int c = size - 2; c >= 0; -- c)
                        PROPAGATION_STEP(+ 1);
                }
                #undef PROPAGATION_STEP
            }
    }
#endif // SUPPORT_USE_AGG_RASTERIZER

#if 0
    // Get some internal point of an expolygon, to be used as a representative
    // sample to test, whether this island is inside another island.
    //FIXME this was quick, but not sufficiently robust.
    static Point island_sample(const ExPolygon &expoly)
    {
        // Find the lowest point lexicographically.
        const Point *pt_min = &expoly.contour.points.front();
        for (size_t i = 1; i < expoly.contour.points.size(); ++ i)
            if (expoly.contour.points[i] < *pt_min)
                pt_min = &expoly.contour.points[i];

        // Lowest corner will always be convex, in worst case denegenerate with zero angle.
        const Point &p1 = (pt_min == &expoly.contour.points.front()) ? expoly.contour.points.back() : *(pt_min - 1);
        const Point &p2 = *pt_min;
        const Point &p3 = (pt_min == &expoly.contour.points.back()) ? expoly.contour.points.front() : *(pt_min + 1);

        Vector v  = (p3 - p2) + (p1 - p2);
        double l2 = double(v(0))*double(v(0))+double(v(1))*double(v(1));
        if (l2 == 0.)
            return p2;
        double coef = 20. / sqrt(l2);
        return Point(p2(0) + coef * v(0), p2(1) + coef * v(1));
    }
#endif

    // Sample one internal point per expolygon.
    // FIXME this is quite an overkill to calculate a complete offset just to get a single point, but at least it is robust.
    static Points island_samples(const ExPolygons &expolygons)
    {
        Points pts;
        pts.reserve(expolygons.size());
        for (const ExPolygon &expoly : expolygons)
            if (expoly.contour.points.size() > 2) {
                #if 0
                    pts.push_back(island_sample(expoly));
                #else 
                    Polygons polygons = offset(expoly, - 20.f);
                    for (const Polygon &poly : polygons)
                        if (! poly.points.empty()) {
                            // Take a small fixed number of samples of this polygon for robustness.
                            int num_points  = int(poly.points.size());
                            int num_samples = std::min(num_points, 4);
                            int stride = num_points / num_samples;
                            for (int i = 0; i < num_points; i += stride)
                                pts.push_back(poly.points[i]);
                            break;
                        }
                #endif
            }
        // Sort the points lexicographically, so a binary search could be used to locate points inside a bounding box.
        std::sort(pts.begin(), pts.end());
        return pts;
    } 

    SupportMaterialStyle    m_style;
    const Polygons         *m_support_polygons;
    const Polygons         *m_trimming_polygons;
    Polygons                m_support_polygons_rotated;
    Polygons                m_trimming_polygons_rotated;
    // Angle in radians, by which the whole support is rotated.
    coordf_t                m_support_angle;
    // X spacing of the support lines parallel with the Y axis.
    coordf_t                m_support_spacing;
    coordf_t                m_extrusion_width;
    // For snug supports: Morphological closing of support areas.
    coordf_t                m_support_material_closing_radius;

#ifdef SUPPORT_USE_AGG_RASTERIZER
    Vec2i                       m_grid_size;
    double                      m_pixel_size;
    BoundingBox                 m_bbox;
    std::vector<unsigned char>  m_grid2;
#else // SUPPORT_USE_AGG_RASTERIZER
    Slic3r::EdgeGrid::Grid      m_grid;
#endif // SUPPORT_USE_AGG_RASTERIZER

#ifdef SLIC3R_DEBUG
    // support for deserialization of m_support_polygons, m_trimming_polygons
    Polygons                m_support_polygons_deserialized;
    Polygons                m_trimming_polygons_deserialized;
#endif /* SLIC3R_DEBUG */
};

namespace SupportMaterialInternal {
    static inline bool has_bridging_perimeters(const ExtrusionLoop &loop)
    {
        for (const ExtrusionPath &ep : loop.paths)
            if (ep.role() == erOverhangPerimeter && ! ep.polyline.empty())
                return int(ep.size()) >= (ep.is_closed() ? 3 : 2);
        return false;
    }
    static bool has_bridging_perimeters(const ExtrusionEntityCollection &perimeters)
    {
        for (const ExtrusionEntity *ee : perimeters.entities) {
            if (ee->is_collection()) {
                for (const ExtrusionEntity *ee2 : static_cast<const ExtrusionEntityCollection*>(ee)->entities) {
                    assert(! ee2->is_collection());
                    if (ee2->is_loop())
                        if (has_bridging_perimeters(*static_cast<const ExtrusionLoop*>(ee2)))
                            return true;
                }
            } else if (ee->is_loop() && has_bridging_perimeters(*static_cast<const ExtrusionLoop*>(ee)))
                return true;
        }
        return false;
    }
    static bool has_bridging_fills(const ExtrusionEntityCollection &fills)
    {
        for (const ExtrusionEntity *ee : fills.entities) {
            assert(ee->is_collection());
            for (const ExtrusionEntity *ee2 : static_cast<const ExtrusionEntityCollection*>(ee)->entities) {
                assert(! ee2->is_collection());
                assert(! ee2->is_loop());
                if (ee2->role() == erBridgeInfill)
                    return true;
            }
        }
        return false;
    }
    static bool has_bridging_extrusions(const Layer &layer) 
    {
        for (const LayerRegion *region : layer.regions()) {
            if (SupportMaterialInternal::has_bridging_perimeters(region->perimeters))
                return true;
            if (region->fill_surfaces.has(stBottomBridge) && has_bridging_fills(region->fills))
                return true;
        }
        return false;
    }

    static inline void collect_bridging_perimeter_areas(const ExtrusionLoop &loop, const float expansion_scaled, Polygons &out)
    {
        assert(expansion_scaled >= 0.f);
        for (const ExtrusionPath &ep : loop.paths)
            if (ep.role() == erOverhangPerimeter && ! ep.polyline.empty()) {
                float exp = 0.5f * (float)scale_(ep.width) + expansion_scaled;
                if (ep.is_closed()) {
                    if (ep.size() >= 3) {
                        // This is a complete loop.
                        // Add the outer contour first.
                        Polygon poly;
                        poly.points = ep.polyline.points;
                        poly.points.pop_back();
                        if (poly.area() < 0)
                            poly.reverse();
                        polygons_append(out, offset(poly, exp, SUPPORT_SURFACES_OFFSET_PARAMETERS));
                        Polygons holes = offset(poly, - exp, SUPPORT_SURFACES_OFFSET_PARAMETERS);
                        polygons_reverse(holes);
                        polygons_append(out, holes);
                    }
                } else if (ep.size() >= 2) {
                    // Offset the polyline.
                    polygons_append(out, offset(ep.polyline, exp, SUPPORT_SURFACES_OFFSET_PARAMETERS));
                }
            }
    }
    static void collect_bridging_perimeter_areas(const ExtrusionEntityCollection &perimeters, const float expansion_scaled, Polygons &out)
    {
        for (const ExtrusionEntity *ee : perimeters.entities) {
            if (ee->is_collection()) {
                for (const ExtrusionEntity *ee2 : static_cast<const ExtrusionEntityCollection*>(ee)->entities) {
                    assert(! ee2->is_collection());
                    if (ee2->is_loop())
                        collect_bridging_perimeter_areas(*static_cast<const ExtrusionLoop*>(ee2), expansion_scaled, out);
                }
            } else if (ee->is_loop())
                collect_bridging_perimeter_areas(*static_cast<const ExtrusionLoop*>(ee), expansion_scaled, out);
        }
    }

    static void remove_bridges_from_contacts(
        const PrintConfig   &print_config, 
        const Layer         &lower_layer,
        const Polygons      &lower_layer_polygons,
        const LayerRegion   &layerm,
        float                fw, 
        Polygons            &contact_polygons)
    {
        // compute the area of bridging perimeters
        Polygons bridges;
        {
            // Surface supporting this layer, expanded by 0.5 * nozzle_diameter, as we consider this kind of overhang to be sufficiently supported.
            Polygons lower_grown_slices = expand(lower_layer_polygons,
                //FIXME to mimic the decision in the perimeter generator, we should use half the external perimeter width.
                0.5f * float(scale_(print_config.nozzle_diameter.get_at(layerm.region().config().perimeter_extruder-1))),
                SUPPORT_SURFACES_OFFSET_PARAMETERS);
            // Collect perimeters of this layer.
            //FIXME split_at_first_point() could split a bridge mid-way
        #if 0
            Polylines overhang_perimeters = layerm.perimeters.as_polylines();
            // workaround for Clipper bug, see Slic3r::Polygon::clip_as_polyline()
            for (Polyline &polyline : overhang_perimeters)
                polyline.points[0].x += 1;
            // Trim the perimeters of this layer by the lower layer to get the unsupported pieces of perimeters.
            overhang_perimeters = diff_pl(overhang_perimeters, lower_grown_slices);
        #else
            Polylines overhang_perimeters = diff_pl(layerm.perimeters.as_polylines(), lower_grown_slices);
        #endif
            
            // only consider straight overhangs
            // only consider overhangs having endpoints inside layer's slices
            // convert bridging polylines into polygons by inflating them with their thickness
            // since we're dealing with bridges, we can't assume width is larger than spacing,
            // so we take the largest value and also apply safety offset to be ensure no gaps
            // are left in between
            Flow perimeter_bridge_flow = layerm.bridging_flow(frPerimeter);
            //FIXME one may want to use a maximum of bridging flow width and normal flow width, as the perimeters are calculated using the normal flow
            // and then turned to bridging flow, thus their centerlines are derived from non-bridging flow and expanding them by a bridging flow
            // may not expand them to the edge of their respective islands.
            const float w = float(0.5 * std::max(perimeter_bridge_flow.scaled_width(), perimeter_bridge_flow.scaled_spacing())) + scaled<float>(0.001);
            for (Polyline &polyline : overhang_perimeters)
                if (polyline.is_straight()) {
                    // This is a bridge 
                    polyline.extend_start(fw);
                    polyline.extend_end(fw);
                    // Is the straight perimeter segment supported at both sides?
                    Point pts[2]       = { polyline.first_point(), polyline.last_point() };
                    bool  supported[2] = { false, false };
                    for (size_t i = 0; i < lower_layer.lslices.size() && ! (supported[0] && supported[1]); ++ i)
                        for (int j = 0; j < 2; ++ j)
                            if (! supported[j] && lower_layer.lslices_bboxes[i].contains(pts[j]) && lower_layer.lslices[i].contains(pts[j]))
                                supported[j] = true;
                    if (supported[0] && supported[1])
                        // Offset a polyline into a thick line.
                        polygons_append(bridges, offset(polyline, w));
                }
            bridges = union_(bridges);
        }
        // remove the entire bridges and only support the unsupported edges
        //FIXME the brided regions are already collected as layerm.bridged. Use it?
        for (const Surface &surface : layerm.fill_surfaces.surfaces)
            if (surface.surface_type == stBottomBridge && surface.bridge_angle != -1)
                polygons_append(bridges, surface.expolygon);
        //FIXME add the gap filled areas. Extrude the gaps with a bridge flow?
        // Remove the unsupported ends of the bridges from the bridged areas.
        //FIXME add supports at regular intervals to support long bridges!
        bridges = diff(bridges,
                // Offset unsupported edges into polygons.
                offset(layerm.unsupported_bridge_edges, scale_(SUPPORT_MATERIAL_MARGIN), SUPPORT_SURFACES_OFFSET_PARAMETERS));
        // Remove bridged areas from the supported areas.
        contact_polygons = diff(contact_polygons, bridges, ApplySafetyOffset::Yes);

        #ifdef SLIC3R_DEBUG
            static int iRun = 0;
            SVG::export_expolygons(debug_out_path("support-top-contacts-remove-bridges-run%d.svg", iRun ++),
                { { { union_ex(offset(layerm.unsupported_bridge_edges, scale_(SUPPORT_MATERIAL_MARGIN), SUPPORT_SURFACES_OFFSET_PARAMETERS)) }, { "unsupported_bridge_edges", "orange", 0.5f } },
                  { { union_ex(contact_polygons) },            { "contact_polygons",           "blue",   0.5f } },
                  { { union_ex(bridges) },                     { "bridges",                    "red",    "black", "", scaled<coord_t>(0.1f), 0.5f } } });
        #endif /* SLIC3R_DEBUG */
    }
}

std::vector<Polygons> PrintObjectSupportMaterial::buildplate_covered(const PrintObject &object) const
{
    // Build support on a build plate only? If so, then collect and union all the surfaces below the current layer.
    // Unfortunately this is an inherently serial process.
    const bool            buildplate_only = this->build_plate_only();
    std::vector<Polygons> buildplate_covered;
    if (buildplate_only) {
        BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::buildplate_covered() - start";
        buildplate_covered.assign(object.layers().size(), Polygons());
        //FIXME prefix sum algorithm, parallelize it! Parallelization will also likely be more numerically stable.
        for (size_t layer_id = 1; layer_id < object.layers().size(); ++ layer_id) {
            const Layer &lower_layer = *object.layers()[layer_id-1];
            // Merge the new slices with the preceding slices.
            // Apply the safety offset to the newly added polygons, so they will connect
            // with the polygons collected before,
            // but don't apply the safety offset during the union operation as it would
            // inflate the polygons over and over.
            Polygons &covered = buildplate_covered[layer_id];
            covered = buildplate_covered[layer_id - 1];
            polygons_append(covered, offset(lower_layer.lslices, scale_(0.01)));
            covered = union_(covered);
        }
        BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::buildplate_covered() - end";
    }
    return buildplate_covered;
}

struct SupportAnnotations
{
    SupportAnnotations(const PrintObject &object, const std::vector<Polygons> &buildplate_covered) :
        enforcers_layers(object.slice_support_enforcers()),
        blockers_layers(object.slice_support_blockers()),
        buildplate_covered(buildplate_covered)
    {
        // Append custom supports.
        object.project_and_append_custom_facets(false, EnforcerBlockerType::ENFORCER, enforcers_layers);
        object.project_and_append_custom_facets(false, EnforcerBlockerType::BLOCKER, blockers_layers);
    }

    std::vector<Polygons>         enforcers_layers;
    std::vector<Polygons>         blockers_layers;
    const std::vector<Polygons>&  buildplate_covered;
};

struct SlicesMarginCache
{
    float       offset { -1 };
    // Trimming polygons, including possibly the "build plate only" mask.
    Polygons    polygons;
    // Trimming polygons, without the "build plate only" mask. If empty, use polygons.
    Polygons    all_polygons;
};

// Tuple: overhang_polygons, contact_polygons, enforcer_polygons, no_interface_offset
// no_interface_offset: minimum of external perimeter widths
static inline std::tuple<Polygons, Polygons, Polygons, float> detect_overhangs(
    const Layer             &layer,
    const size_t             layer_id,
    const Polygons          &lower_layer_polygons,
    const PrintConfig       &print_config, 
    const PrintObjectConfig &object_config,
    SupportAnnotations      &annotations, 
    SlicesMarginCache       &slices_margin, 
    const double             gap_xy
#ifdef SLIC3R_DEBUG
    , size_t                 iRun
#endif // SLIC3R_DEBUG
    )
{
    // Snug overhang polygons.
    Polygons overhang_polygons;
    // Expanded for stability, trimmed by gap_xy.
    Polygons contact_polygons;
    // Enforcers projected to overhangs, trimmed
    Polygons enforcer_polygons;

    const bool   support_auto    = object_config.support_material.value && object_config.support_material_auto.value;
    const bool   buildplate_only = ! annotations.buildplate_covered.empty();
    // If user specified a custom angle threshold, convert it to radians.
    // Zero means automatic overhang detection.
    const double threshold_rad   = (object_config.support_material_threshold.value > 0) ?
        M_PI * double(object_config.support_material_threshold.value + 1) / 180. : // +1 makes the threshold inclusive
        0.;
    float        no_interface_offset = 0.f;

    if (layer_id == 0) 
    {
        // This is the first object layer, so the object is being printed on a raft and
        // we're here just to get the object footprint for the raft.
#if 0
        // The following line was filling excessive holes in the raft, see GH #430
        overhang_polygons = collect_slices_outer(layer);
#else
        // Don't fill in the holes. The user may apply a higher raft_expansion if one wants a better 1st layer adhesion.
        overhang_polygons = to_polygons(layer.lslices);
#endif
        // Expand for better stability.
        contact_polygons = object_config.raft_expansion.value > 0 ? expand(overhang_polygons, scaled<float>(object_config.raft_expansion.value)) : overhang_polygons;
    }
    else if (! layer.regions().empty())
    {
        // Generate overhang / contact_polygons for non-raft layers.
        const Layer &lower_layer  = *layer.lower_layer;
        const bool   has_enforcer = ! annotations.enforcers_layers.empty() && ! annotations.enforcers_layers[layer_id].empty();

        // Cache support trimming polygons derived from lower layer polygons, possible merged with "on build plate only" trimming polygons.
        auto slices_margin_update = 
            [&slices_margin, &lower_layer, &lower_layer_polygons, buildplate_only, has_enforcer, &annotations, layer_id]
            (float slices_margin_offset, float no_interface_offset) {
            if (slices_margin.offset != slices_margin_offset) {
                slices_margin.offset = slices_margin_offset;
                slices_margin.polygons = (slices_margin_offset == 0.f) ?
                    lower_layer_polygons :
                    // What is the purpose of no_interface_offset? Likely to not trim the contact layer by lower layer regions that are too thin to extrude?
                    offset2(lower_layer.lslices, -no_interface_offset * 0.5f, slices_margin_offset + no_interface_offset * 0.5f, SUPPORT_SURFACES_OFFSET_PARAMETERS);
                if (buildplate_only && !annotations.buildplate_covered[layer_id].empty()) {
                    if (has_enforcer)
                        // Make a backup of trimming polygons before enforcing "on build plate only".
                        slices_margin.all_polygons = slices_margin.polygons;
                    // Trim the inflated contact surfaces by the top surfaces as well.
                    slices_margin.polygons = union_(slices_margin.polygons, annotations.buildplate_covered[layer_id]);
                }
            }
        };

        no_interface_offset = std::accumulate(layer.regions().begin(), layer.regions().end(), FLT_MAX, 
            [](float acc, const LayerRegion *layerm) { return std::min(acc, float(layerm->flow(frExternalPerimeter).scaled_width())); });

        float lower_layer_offset  = 0;
        for (LayerRegion *layerm : layer.regions()) {
            // Extrusion width accounts for the roundings of the extrudates.
            // It is the maximum widh of the extrudate.
            float fw = float(layerm->flow(frExternalPerimeter).scaled_width());
            lower_layer_offset  = 
                (layer_id < (size_t)object_config.support_material_enforce_layers.value) ? 
                    // Enforce a full possible support, ignore the overhang angle.
                    0.f :
                (threshold_rad > 0. ? 
                    // Overhang defined by an angle.
                    float(scale_(lower_layer.height / tan(threshold_rad))) :
                    // Overhang defined by half the extrusion width.
                    0.5f * fw);
            // Overhang polygons for this layer and region.
            Polygons diff_polygons;
            Polygons layerm_polygons = to_polygons(layerm->slices.surfaces);
            if (lower_layer_offset == 0.f) {
                // Support everything.
                diff_polygons = diff(layerm_polygons, lower_layer_polygons);
                if (buildplate_only) {
                    // Don't support overhangs above the top surfaces.
                    // This step is done before the contact surface is calculated by growing the overhang region.
                    diff_polygons = diff(diff_polygons, annotations.buildplate_covered[layer_id]);
                }
            } else if (support_auto) {
                // Get the regions needing a suport, collapse very tiny spots.
                //FIXME cache the lower layer offset if this layer has multiple regions.
#if 0
                //FIXME this solution will trigger stupid supports for sharp corners, see GH #4874
                diff_polygons = opening(
                    diff(layerm_polygons,
                            // Likely filtering out thin regions from the lower layer, that will not be covered by perimeters, thus they
                            // are not supporting this layer.
                            // However this may lead to a situation where regions at the current layer that are narrow thus not extrudable will generate unnecessary supports.
                            // For example, see GH issue #3094
                            opening(lower_layer_polygons, 0.5f * fw, lower_layer_offset + 0.5f * fw, SUPPORT_SURFACES_OFFSET_PARAMETERS)), 
                    //FIXME This opening is targeted to reduce very thin regions to support, but it may lead to
                    // no support at all for not so steep overhangs.
                    0.1f * fw);
#else
                diff_polygons = 
                    diff(layerm_polygons,
                            expand(lower_layer_polygons, lower_layer_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS));
#endif
                if (buildplate_only && ! annotations.buildplate_covered[layer_id].empty()) {
                    // Don't support overhangs above the top surfaces.
                    // This step is done before the contact surface is calculated by growing the overhang region.
                    diff_polygons = diff(diff_polygons, annotations.buildplate_covered[layer_id]);
                }
                if (! diff_polygons.empty()) {
                    // Offset the support regions back to a full overhang, restrict them to the full overhang.
                    // This is done to increase size of the supporting columns below, as they are calculated by 
                    // propagating these contact surfaces downwards.
                    diff_polygons = diff(
                        intersection(expand(diff_polygons, lower_layer_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS), layerm_polygons),
                        lower_layer_polygons);
                }
                //FIXME add user defined filtering here based on minimal area or minimum radius or whatever.
            }

            if (diff_polygons.empty())
                continue;

            // Apply the "support blockers".
            if (! annotations.blockers_layers.empty() && ! annotations.blockers_layers[layer_id].empty()) {
                // Expand the blocker a bit. Custom blockers produce strips
                // spanning just the projection between the two slices.
                // Subtracting them as they are may leave unwanted narrow
                // residues of diff_polygons that would then be supported.
                diff_polygons = diff(diff_polygons,
                    expand(union_(annotations.blockers_layers[layer_id]), float(1000.*SCALED_EPSILON)));
            }

            #ifdef SLIC3R_DEBUG
            {
                ::Slic3r::SVG svg(debug_out_path("support-top-contacts-raw-run%d-layer%d-region%d.svg", 
                    iRun, layer_id, 
                    std::find_if(layer.regions().begin(), layer.regions().end(), [layerm](const LayerRegion* other){return other == layerm;}) - layer.regions().begin()),
                    get_extents(diff_polygons));
                Slic3r::ExPolygons expolys = union_ex(diff_polygons);
                svg.draw(expolys);
            }
            #endif /* SLIC3R_DEBUG */

            if (object_config.dont_support_bridges)
                //FIXME Expensive, potentially not precise enough. Misses gap fill extrusions, which bridge.
                SupportMaterialInternal::remove_bridges_from_contacts(
                    print_config, lower_layer, lower_layer_polygons, *layerm, fw, diff_polygons);

            if (diff_polygons.empty())
                continue;

            #ifdef SLIC3R_DEBUG
            Slic3r::SVG::export_expolygons(
                debug_out_path("support-top-contacts-filtered-run%d-layer%d-region%d-z%f.svg", 
                    iRun, layer_id, 
                    std::find_if(layer.regions().begin(), layer.regions().end(), [layerm](const LayerRegion* other){return other == layerm;}) - layer.regions().begin(),
                    layer.print_z),
                union_ex(diff_polygons));
            #endif /* SLIC3R_DEBUG */

            //FIXME the overhang_polygons are used to construct the support towers as well.
            //if (this->has_contact_loops())
                // Store the exact contour of the overhang for the contact loops.
                polygons_append(overhang_polygons, diff_polygons);

            // Let's define the required contact area by using a max gap of half the upper 
            // extrusion width and extending the area according to the configured margin.
            // We increment the area in steps because we don't want our support to overflow
            // on the other side of the object (if it's very thin).
            {
                //FIMXE 1) Make the offset configurable, 2) Make the Z span configurable.
                //FIXME one should trim with the layer span colliding with the support layer, this layer
                // may be lower than lower_layer, so the support area needed may need to be actually bigger!
                // For the same reason, the non-bridging support area may be smaller than the bridging support area!
                slices_margin_update(std::min(lower_layer_offset, float(scale_(gap_xy))), no_interface_offset);
                // Offset the contact polygons outside.
#if 0
                for (size_t i = 0; i < NUM_MARGIN_STEPS; ++ i) {
                    diff_polygons = diff(
                        offset(
                            diff_polygons,
                            scaled<float>(SUPPORT_MATERIAL_MARGIN / NUM_MARGIN_STEPS),
                            ClipperLib::jtRound,
                            // round mitter limit
                            scale_(0.05)),
                        slices_margin.polygons);
                }
#else
                diff_polygons = diff(diff_polygons, slices_margin.polygons);
#endif
            }
            polygons_append(contact_polygons, diff_polygons);
        } // for each layer.region

        if (has_enforcer)
            if (const Polygons &enforcer_polygons_src = annotations.enforcers_layers[layer_id]; ! enforcer_polygons_src.empty()) {
                // Enforce supports (as if with 90 degrees of slope) for the regions covered by the enforcer meshes.
    #ifdef SLIC3R_DEBUG
                ExPolygons enforcers_united = union_ex(enforcer_polygons_src);
    #endif // SLIC3R_DEBUG
                enforcer_polygons = diff(intersection(layer.lslices, enforcer_polygons_src),
                    // Inflate just a tiny bit to avoid intersection of the overhang areas with the object.
                    expand(lower_layer_polygons, 0.05f * no_interface_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS));
    #ifdef SLIC3R_DEBUG
                SVG::export_expolygons(debug_out_path("support-top-contacts-enforcers-run%d-layer%d-z%f.svg", iRun, layer_id, layer.print_z),
                    { { layer.lslices,                                 { "layer.lslices",              "gray",   0.2f } },
                      { { union_ex(lower_layer_polygons) },            { "lower_layer_polygons",       "green",  0.5f } },
                      { enforcers_united,                              { "enforcers",                  "blue",   0.5f } },
                      { { union_safety_offset_ex(enforcer_polygons) }, { "new_contacts",               "red",    "black", "", scaled<coord_t>(0.1f), 0.5f } } });
    #endif /* SLIC3R_DEBUG */
                if (! enforcer_polygons.empty()) {
                    polygons_append(overhang_polygons, enforcer_polygons);
                    slices_margin_update(std::min(lower_layer_offset, float(scale_(gap_xy))), no_interface_offset);
                    polygons_append(contact_polygons, diff(enforcer_polygons, slices_margin.all_polygons.empty() ? slices_margin.polygons : slices_margin.all_polygons));
                }
            }
        }

    return std::make_tuple(std::move(overhang_polygons), std::move(contact_polygons), std::move(enforcer_polygons), no_interface_offset);
}

// Allocate one, possibly two support contact layers.
// For "thick" overhangs, one support layer will be generated to support normal extrusions, the other to support the "thick" extrusions.
static inline std::pair<PrintObjectSupportMaterial::MyLayer*, PrintObjectSupportMaterial::MyLayer*> new_contact_layer(
    const PrintConfig                                   &print_config, 
    const PrintObjectConfig                             &object_config,
    const SlicingParameters                             &slicing_params,
    const coordf_t                                       support_layer_height_min,
    const Layer                                         &layer, 
    std::deque<PrintObjectSupportMaterial::MyLayer>     &layer_storage,
    tbb::spin_mutex                                     &layer_storage_mutex)
{
    double print_z, bottom_z, height;
    PrintObjectSupportMaterial::MyLayer* bridging_layer = nullptr;
    assert(layer.id() >= slicing_params.raft_layers());
    size_t layer_id = layer.id() - slicing_params.raft_layers();

    if (layer_id == 0) {
        // This is a raft contact layer sitting directly on the print bed.
        assert(slicing_params.has_raft());
        print_z  = slicing_params.raft_contact_top_z;
        bottom_z = slicing_params.raft_interface_top_z;
        height   = slicing_params.contact_raft_layer_height;
    } else if (slicing_params.soluble_interface) {
        // Align the contact surface height with a layer immediately below the supported layer.
        // Interface layer will be synchronized with the object.
        print_z  = layer.bottom_z();
        height   = layer.lower_layer->height;
        bottom_z = (layer_id == 1) ? slicing_params.object_print_z_min : layer.lower_layer->lower_layer->print_z;
    } else {
        print_z  = layer.bottom_z() - slicing_params.gap_support_object;
        bottom_z = print_z;
        height   = 0.;
        // Ignore this contact area if it's too low.
        // Don't want to print a layer below the first layer height as it may not stick well.
        //FIXME there may be a need for a single layer support, then one may decide to print it either as a bottom contact or a top contact
        // and it may actually make sense to do it with a thinner layer than the first layer height.
        if (print_z < slicing_params.first_print_layer_height - EPSILON) {
            // This contact layer is below the first layer height, therefore not printable. Don't support this surface.
            return std::pair<PrintObjectSupportMaterial::MyLayer*, PrintObjectSupportMaterial::MyLayer*>(nullptr, nullptr);
        }
        const bool     has_raft    = slicing_params.raft_layers() > 1;
        const coordf_t min_print_z = has_raft ? slicing_params.raft_contact_top_z : slicing_params.first_print_layer_height;
        if (print_z < min_print_z + support_layer_height_min) {
            // Align the layer with the 1st layer height or the raft contact layer.
            // With raft active, any contact layer below the raft_contact_top_z will be brought to raft_contact_top_z to extend the raft area.
            print_z  = min_print_z;
            bottom_z = has_raft ? slicing_params.raft_interface_top_z : 0;
            height   = has_raft ? slicing_params.contact_raft_layer_height : min_print_z;
        } else {
            // Don't know the height of the top contact layer yet. The top contact layer is printed with a normal flow and 
            // its height will be set adaptively later on.
        }

        // Contact layer will be printed with a normal flow, but
        // it will support layers printed with a bridging flow.
        if (object_config.thick_bridges && SupportMaterialInternal::has_bridging_extrusions(layer)) {
            coordf_t bridging_height = 0.;
            for (const LayerRegion* region : layer.regions())
                bridging_height += region->region().bridging_height_avg(print_config);
            bridging_height /= coordf_t(layer.regions().size());
            coordf_t bridging_print_z = layer.print_z - bridging_height - slicing_params.gap_support_object;
            if (bridging_print_z >= min_print_z) {
                // Not below the first layer height means this layer is printable.
                if (print_z < min_print_z + support_layer_height_min) {
                    // Align the layer with the 1st layer height or the raft contact layer.
                    bridging_print_z = min_print_z;
                }
                if (bridging_print_z < print_z - EPSILON) {
                    // Allocate the new layer.
                    bridging_layer = &layer_allocate(layer_storage, layer_storage_mutex, PrintObjectSupportMaterial::sltTopContact);
                    bridging_layer->idx_object_layer_above = layer_id;
                    bridging_layer->print_z = bridging_print_z;
                    if (bridging_print_z == slicing_params.first_print_layer_height) {
                        bridging_layer->bottom_z = 0;
                        bridging_layer->height = slicing_params.first_print_layer_height;
                    } else {
                        // Don't know the height yet.
                        bridging_layer->bottom_z = bridging_print_z;
                        bridging_layer->height = 0;
                    }
                }
            }
        }
    }

    PrintObjectSupportMaterial::MyLayer &new_layer = layer_allocate(layer_storage, layer_storage_mutex, PrintObjectSupportMaterial::sltTopContact);
    new_layer.idx_object_layer_above = layer_id;
    new_layer.print_z  = print_z;
    new_layer.bottom_z = bottom_z;
    new_layer.height   = height;
    return std::make_pair(&new_layer, bridging_layer);
}

static inline void fill_contact_layer(
    PrintObjectSupportMaterial::MyLayer &new_layer,
    size_t                   layer_id,
    const SlicingParameters &slicing_params,
    const PrintObjectConfig &object_config,
    const SlicesMarginCache &slices_margin, 
    const Polygons          &overhang_polygons, 
    const Polygons          &contact_polygons, 
    const Polygons          &enforcer_polygons, 
    const Polygons          &lower_layer_polygons,
    const Flow              &support_material_flow,
    float                    no_interface_offset
#ifdef SLIC3R_DEBUG
    , size_t                 iRun,
    const Layer             &layer
#endif // SLIC3R_DEBUG
    )
{
    const SupportGridParams grid_params(object_config, support_material_flow);

    Polygons lower_layer_polygons_for_dense_interface_cache;
    auto lower_layer_polygons_for_dense_interface = [&lower_layer_polygons_for_dense_interface_cache, &lower_layer_polygons, no_interface_offset]() -> const Polygons& {
        if (lower_layer_polygons_for_dense_interface_cache.empty())
            lower_layer_polygons_for_dense_interface_cache = 
                //FIXME no_interface_offset * 0.6f offset is not quite correct, one shall derive it based on an angle thus depending on layer height.
            opening(lower_layer_polygons, no_interface_offset * 0.5f, no_interface_offset * (0.6f + 0.5f), SUPPORT_SURFACES_OFFSET_PARAMETERS);
        return lower_layer_polygons_for_dense_interface_cache;
    };

    // Stretch support islands into a grid, trim them. 
    SupportGridPattern support_grid_pattern(&contact_polygons, &slices_margin.polygons, grid_params);
    // 1) Contact polygons will be projected down. To keep the interface and base layers from growing, return a contour a tiny bit smaller than the grid cells.
    new_layer.contact_polygons = std::make_unique<Polygons>(support_grid_pattern.extract_support(grid_params.expansion_to_propagate, true
#ifdef SLIC3R_DEBUG
        , "top_contact_polygons", iRun, layer_id, layer.print_z
#endif // SLIC3R_DEBUG
        ));
    // 2) infill polygons, expand them by half the extrusion width + a tiny bit of extra.
    bool reduce_interfaces = object_config.support_material_style.value != smsSnug && layer_id > 0 && !slicing_params.soluble_interface;
    if (reduce_interfaces) {
        // Reduce the amount of dense interfaces: Do not generate dense interfaces below overhangs with 60% overhang of the extrusions.
        Polygons dense_interface_polygons = diff(overhang_polygons, lower_layer_polygons_for_dense_interface());
        if (! dense_interface_polygons.empty()) {
            dense_interface_polygons =
                diff(
                    // Regularize the contour.
                    expand(dense_interface_polygons, no_interface_offset * 0.1f),
                    slices_margin.polygons);
            // Support islands, to be stretched into a grid.
            //FIXME The regularization of dense_interface_polygons above may stretch dense_interface_polygons outside of the contact polygons,
            // thus some dense interface areas may not get supported. Trim the excess with contact_polygons at the following line.
            // See for example GH #4874.
            Polygons dense_interface_polygons_trimmed = intersection(dense_interface_polygons, *new_layer.contact_polygons);
            // Stretch support islands into a grid, trim them. 
            SupportGridPattern support_grid_pattern(&dense_interface_polygons_trimmed, &slices_margin.polygons, grid_params);
            new_layer.polygons = support_grid_pattern.extract_support(grid_params.expansion_to_slice, false
#ifdef SLIC3R_DEBUG
                , "top_contact_polygons2", iRun, layer_id, layer.print_z
#endif // SLIC3R_DEBUG
                );
    #ifdef SLIC3R_DEBUG
            SVG::export_expolygons(debug_out_path("support-top-contacts-final1-run%d-layer%d-z%f.svg", iRun, layer_id, layer.print_z),
                { { { union_ex(lower_layer_polygons) },               { "lower_layer_polygons",       "gray",   0.2f } },
                    { { union_ex(*new_layer.contact_polygons) },      { "new_layer.contact_polygons", "yellow", 0.5f } },
                    { { union_ex(slices_margin.polygons) },           { "slices_margin_cached",       "blue",   0.5f } },
                    { { union_ex(dense_interface_polygons) },         { "dense_interface_polygons",   "green",  0.5f } },
                    { { union_safety_offset_ex(new_layer.polygons) }, { "new_layer.polygons",         "red",    "black", "", scaled<coord_t>(0.1f), 0.5f } } });
            //support_grid_pattern.serialize(debug_out_path("support-top-contacts-final-run%d-layer%d-z%f.bin", iRun, layer_id, layer.print_z));
            SVG::export_expolygons(debug_out_path("support-top-contacts-final2-run%d-layer%d-z%f.svg", iRun, layer_id, layer.print_z),
                { { { union_ex(lower_layer_polygons) },               { "lower_layer_polygons",       "gray",   0.2f } },
                    { { union_ex(*new_layer.contact_polygons) },      { "new_layer.contact_polygons", "yellow", 0.5f } },
                    { { union_ex(contact_polygons) },                 { "contact_polygons",           "blue",   0.5f } },
                    { { union_ex(dense_interface_polygons) },         { "dense_interface_polygons",   "green",  0.5f } },
                    { { union_safety_offset_ex(new_layer.polygons) }, { "new_layer.polygons",         "red",    "black", "", scaled<coord_t>(0.1f), 0.5f } } });
    #endif /* SLIC3R_DEBUG */
        }
    } else {
        new_layer.polygons = support_grid_pattern.extract_support(grid_params.expansion_to_slice, true
#ifdef SLIC3R_DEBUG
            , "top_contact_polygons3", iRun, layer_id, layer.print_z
#endif // SLIC3R_DEBUG
            );
    }

    if (! enforcer_polygons.empty() && ! slices_margin.all_polygons.empty() && layer_id > 0) {
        // Support enforcers used together with support enforcers. The support enforcers need to be handled separately from the rest of the support.
        
        SupportGridPattern support_grid_pattern(&enforcer_polygons, &slices_margin.all_polygons, grid_params);
        // 1) Contact polygons will be projected down. To keep the interface and base layers from growing, return a contour a tiny bit smaller than the grid cells.
        new_layer.enforcer_polygons = std::make_unique<Polygons>(support_grid_pattern.extract_support(grid_params.expansion_to_propagate, true
#ifdef SLIC3R_DEBUG
            , "top_contact_polygons4", iRun, layer_id, layer.print_z
#endif // SLIC3R_DEBUG
            ));
        Polygons new_polygons;
        bool needs_union = ! new_layer.polygons.empty();
        if (reduce_interfaces) {
            // 2) infill polygons, expand them by half the extrusion width + a tiny bit of extra.
            // Reduce the amount of dense interfaces: Do not generate dense interfaces below overhangs with 60% overhang of the extrusions.
            Polygons dense_interface_polygons = diff(enforcer_polygons, lower_layer_polygons_for_dense_interface());
            if (! dense_interface_polygons.empty()) {
                dense_interface_polygons =
                    diff(
                        // Regularize the contour.
                        expand(dense_interface_polygons, no_interface_offset * 0.1f),
                        slices_margin.all_polygons);
                // Support islands, to be stretched into a grid.
                //FIXME The regularization of dense_interface_polygons above may stretch dense_interface_polygons outside of the contact polygons,
                // thus some dense interface areas may not get supported. Trim the excess with contact_polygons at the following line.
                // See for example GH #4874.
                Polygons dense_interface_polygons_trimmed = intersection(dense_interface_polygons, *new_layer.enforcer_polygons);
                SupportGridPattern support_grid_pattern(&dense_interface_polygons_trimmed, &slices_margin.all_polygons, grid_params);
                // Extend the polygons to extrude with the contact polygons of support enforcers.
                new_polygons = support_grid_pattern.extract_support(grid_params.expansion_to_slice, false
    #ifdef SLIC3R_DEBUG
                    , "top_contact_polygons5", iRun, layer_id, layer.print_z
    #endif // SLIC3R_DEBUG
                    );
            }
        } else {
            new_polygons = support_grid_pattern.extract_support(grid_params.expansion_to_slice, true
    #ifdef SLIC3R_DEBUG
                , "top_contact_polygons6", iRun, layer_id, layer.print_z
    #endif // SLIC3R_DEBUG
                );
        }
        append(new_layer.polygons, std::move(new_polygons));
        if (needs_union)
            new_layer.polygons = union_(new_layer.polygons);
    }

#ifdef SLIC3R_DEBUG
    SVG::export_expolygons(debug_out_path("support-top-contacts-final0-run%d-layer%d-z%f.svg", iRun, layer_id, layer.print_z),
        { { { union_ex(lower_layer_polygons) },               { "lower_layer_polygons",       "gray",   0.2f } },
            { { union_ex(*new_layer.contact_polygons) },      { "new_layer.contact_polygons", "yellow", 0.5f } },
            { { union_ex(contact_polygons) },                 { "contact_polygons",           "blue",   0.5f } },
            { { union_ex(overhang_polygons) },                { "overhang_polygons",          "green",  0.5f } },
            { { union_safety_offset_ex(new_layer.polygons) }, { "new_layer.polygons",         "red",    "black", "", scaled<coord_t>(0.1f), 0.5f } } });
#endif /* SLIC3R_DEBUG */

    // Even after the contact layer was expanded into a grid, some of the contact islands may be too tiny to be extruded.
    // Remove those tiny islands from new_layer.polygons and new_layer.contact_polygons.
                    
    // Store the overhang polygons.
    // The overhang polygons are used in the path generator for planning of the contact loops.
    // if (this->has_contact_loops()). Compared to "polygons", "overhang_polygons" are snug.
    new_layer.overhang_polygons = std::make_unique<Polygons>(std::move(overhang_polygons));
    if (! enforcer_polygons.empty())
        new_layer.enforcer_polygons = std::make_unique<Polygons>(std::move(enforcer_polygons));
}

// Merge close contact layers conservatively: If two layers are closer than the minimum allowed print layer height (the min_layer_height parameter),
// the top contact layer is merged into the bottom contact layer.
static void merge_contact_layers(const SlicingParameters &slicing_params, double support_layer_height_min, PrintObjectSupportMaterial::MyLayersPtr &layers)
{
    // Sort the layers, as one layer may produce bridging and non-bridging contact layers with different print_z.
    std::sort(layers.begin(), layers.end(), [](const PrintObjectSupportMaterial::MyLayer *l1, const PrintObjectSupportMaterial::MyLayer *l2) { return l1->print_z < l2->print_z; });

    int i = 0;
    int k = 0;
    {
        // Find the span of layers, which are to be printed at the first layer height.
        int j = 0;
        for (; j < (int)layers.size() && layers[j]->print_z < slicing_params.first_print_layer_height + support_layer_height_min - EPSILON; ++ j);
        if (j > 0) {
            // Merge the layers layers (0) to (j - 1) into the layers[0].
            PrintObjectSupportMaterial::MyLayer &dst = *layers.front();
            for (int u = 1; u < j; ++ u)
                dst.merge(std::move(*layers[u]));
            // Snap the first layer to the 1st layer height.
            dst.print_z  = slicing_params.first_print_layer_height;
            dst.height   = slicing_params.first_print_layer_height;
            dst.bottom_z = 0;
            ++ k;
        }
        i = j;
    }
    for (; i < int(layers.size()); ++ k) {
        // Find the span of layers closer than m_support_layer_height_min.
        int j = i + 1;
        coordf_t zmax = layers[i]->print_z + support_layer_height_min + EPSILON;
        for (; j < (int)layers.size() && layers[j]->print_z < zmax; ++ j) ;
        if (i + 1 < j) {
            // Merge the layers layers (i + 1) to (j - 1) into the layers[i].
            PrintObjectSupportMaterial::MyLayer &dst = *layers[i];
            for (int u = i + 1; u < j; ++ u)
                dst.merge(std::move(*layers[u]));
        }
        if (k < i)
            layers[k] = layers[i];
        i = j;
    }
    if (k < (int)layers.size())
        layers.erase(layers.begin() + k, layers.end());
}

// Generate top contact layers supporting overhangs.
// For a soluble interface material synchronize the layer heights with the object, otherwise leave the layer height undefined.
// If supports over bed surface only are requested, don't generate contact layers over an object.
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_layers(
    const PrintObject &object, const std::vector<Polygons> &buildplate_covered, MyLayerStorage &layer_storage) const
{
#ifdef SLIC3R_DEBUG
    static int iRun = 0;
    ++ iRun; 
    #define SLIC3R_IRUN , iRun
#endif /* SLIC3R_DEBUG */

    // Slice support enforcers / support blockers.
    SupportAnnotations annotations(object, buildplate_covered);

    // Output layers, sorted by top Z.
    MyLayersPtr contact_out;

    BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::top_contact_layers() in parallel - start";
    // Determine top contact areas.
    // If generating raft only (no support), only calculate top contact areas for the 0th layer.
    // If having a raft, start with 0th layer, otherwise with 1st layer.
    // Note that layer_id < layer->id when raft_layers > 0 as the layer->id incorporates the raft layers.
    // So layer_id == 0 means first object layer and layer->id == 0 means first print layer if there are no explicit raft layers.
    size_t num_layers = this->has_support() ? object.layer_count() : 1;
    // For each overhang layer, two supporting layers may be generated: One for the overhangs extruded with a bridging flow, 
    // and the other for the overhangs extruded with a normal flow.
    contact_out.assign(num_layers * 2, nullptr);
    tbb::spin_mutex layer_storage_mutex;
    tbb::parallel_for(tbb::blocked_range<size_t>(this->has_raft() ? 0 : 1, num_layers),
        [this, &object, &annotations, &layer_storage, &layer_storage_mutex, &contact_out]
        (const tbb::blocked_range<size_t>& range) {
            for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) 
            {
                const Layer        &layer                = *object.layers()[layer_id];
                Polygons            lower_layer_polygons = (layer_id == 0) ? Polygons() : to_polygons(object.layers()[layer_id - 1]->lslices);
                SlicesMarginCache   slices_margin;

                auto [overhang_polygons, contact_polygons, enforcer_polygons, no_interface_offset] =
                    detect_overhangs(layer, layer_id, lower_layer_polygons, *m_print_config, *m_object_config, annotations, slices_margin, m_support_params.gap_xy
                #ifdef SLIC3R_DEBUG
                                    , iRun
                #endif // SLIC3R_DEBUG
                        );

                // Now apply the contact areas to the layer where they need to be made.
                if (! contact_polygons.empty() || ! overhang_polygons.empty()) {
                    // Allocate the two empty layers.
                    auto [new_layer, bridging_layer] = new_contact_layer(*m_print_config, *m_object_config, m_slicing_params, m_support_params.support_layer_height_min, layer, layer_storage, layer_storage_mutex);
                    if (new_layer) {
                        // Fill the non-bridging layer with polygons.
                        fill_contact_layer(*new_layer, layer_id, m_slicing_params,
                            *m_object_config, slices_margin, overhang_polygons, contact_polygons, enforcer_polygons, lower_layer_polygons,
                            m_support_params.support_material_flow, no_interface_offset
                    #ifdef SLIC3R_DEBUG
                            , iRun, layer
                    #endif // SLIC3R_DEBUG
                            );
                        // Insert new layer even if there is no interface generated: Likely the support angle is not steep enough to require dense interface,
                        // however generating a sparse support will be useful for the object stability.
                        // if (! new_layer->polygons.empty())
                        contact_out[layer_id * 2] = new_layer;
                        if (bridging_layer != nullptr) {
                            bridging_layer->polygons          = new_layer->polygons;
                            bridging_layer->contact_polygons  = std::make_unique<Polygons>(*new_layer->contact_polygons);
                            bridging_layer->overhang_polygons = std::make_unique<Polygons>(*new_layer->overhang_polygons);
                            if (new_layer->enforcer_polygons)
                                bridging_layer->enforcer_polygons = std::make_unique<Polygons>(*new_layer->enforcer_polygons);
                            contact_out[layer_id * 2 + 1] = bridging_layer;
                        }
                    }
                }
            }
        });

    // Compress contact_out, remove the nullptr items.
    remove_nulls(contact_out);

    // Merge close contact layers conservatively: If two layers are closer than the minimum allowed print layer height (the min_layer_height parameter),
    // the top contact layer is merged into the bottom contact layer.
    merge_contact_layers(m_slicing_params, m_support_params.support_layer_height_min, contact_out);

    BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::top_contact_layers() in parallel - end";

    return contact_out;
}

// Find the bottom contact layers above the top surfaces of this layer.
static inline PrintObjectSupportMaterial::MyLayer* detect_bottom_contacts(
    const SlicingParameters                          &slicing_params,
    const PrintObjectSupportMaterial::SupportParams  &support_params,
    const PrintObject                                &object,
    const Layer                                      &layer,
    // Existing top contact layers, to which this newly created bottom contact layer will be snapped to guarantee a minimum layer height.
    const PrintObjectSupportMaterial::MyLayersPtr    &top_contacts,
    // First top contact layer index overlapping with this new bottom interface layer.
    size_t                                            contact_idx,
    // To allocate a new layer from.
    std::deque<PrintObjectSupportMaterial::MyLayer>  &layer_storage,
    // To trim the support areas above this bottom interface layer with this newly created bottom interface layer.
    std::vector<Polygons>                            &layer_support_areas,
    // Support areas projected from top to bottom, starting with top support interfaces.
    const Polygons                                   &supports_projected
#ifdef SLIC3R_DEBUG
    , size_t                                          iRun
    , const Polygons                                 &polygons_new
#endif // SLIC3R_DEBUG
    )
{
    Polygons top = collect_region_slices_by_type(layer, stTop);
#ifdef SLIC3R_DEBUG
    SVG::export_expolygons(debug_out_path("support-bottom-layers-raw-%d-%lf.svg", iRun, layer.print_z),
        { { { union_ex(top) },                                { "top",            "blue",    0.5f } },
            { { union_safety_offset_ex(supports_projected) }, { "overhangs",      "magenta", 0.5f } },
            { layer.lslices,                                  { "layer.lslices",  "green",   0.5f } },
            { { union_safety_offset_ex(polygons_new) },       { "polygons_new",   "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
#endif /* SLIC3R_DEBUG */

    // Now find whether any projection of the contact surfaces above layer.print_z not yet supported by any 
    // top surfaces above layer.print_z falls onto this top surface. 
    // Touching are the contact surfaces supported exclusively by this top surfaces.
    // Don't use a safety offset as it has been applied during insertion of polygons.
    if (top.empty())
        return nullptr;

    Polygons touching = intersection(top, supports_projected);
    if (touching.empty())
        return nullptr;

    assert(layer.id() >= slicing_params.raft_layers());
    size_t layer_id  = layer.id() - slicing_params.raft_layers();

    // Allocate a new bottom contact layer.
    PrintObjectSupportMaterial::MyLayer &layer_new = layer_allocate(layer_storage, PrintObjectSupportMaterial::sltBottomContact);
    // Grow top surfaces so that interface and support generation are generated
    // with some spacing from object - it looks we don't need the actual
    // top shapes so this can be done here
    //FIXME calculate layer height based on the actual thickness of the layer:
    // If the layer is extruded with no bridging flow, support just the normal extrusions.
    layer_new.height = slicing_params.soluble_interface ?
        // Align the interface layer with the object's layer height.
        layer.upper_layer->height :
        // Place a bridge flow interface layer or the normal flow interface layer over the top surface.
        support_params.support_material_bottom_interface_flow.height();
    layer_new.print_z = slicing_params.soluble_interface ? layer.upper_layer->print_z :
        layer.print_z + layer_new.height + slicing_params.gap_object_support;
    layer_new.bottom_z = layer.print_z;
    layer_new.idx_object_layer_below = layer_id;
    layer_new.bridging = !slicing_params.soluble_interface && object.config().thick_bridges;
    //FIXME how much to inflate the bottom surface, as it is being extruded with a bridging flow? The following line uses a normal flow.
    layer_new.polygons = expand(touching, float(support_params.support_material_flow.scaled_width()), SUPPORT_SURFACES_OFFSET_PARAMETERS);

    if (! slicing_params.soluble_interface) {
        // Walk the top surfaces, snap the top of the new bottom surface to the closest top of the top surface,
        // so there will be no support surfaces generated with thickness lower than m_support_layer_height_min.
        for (size_t top_idx = size_t(std::max<int>(0, contact_idx));
            top_idx < top_contacts.size() && top_contacts[top_idx]->print_z < layer_new.print_z + support_params.support_layer_height_min + EPSILON;
            ++ top_idx) {
            if (top_contacts[top_idx]->print_z > layer_new.print_z - support_params.support_layer_height_min - EPSILON) {
                // A top layer has been found, which is close to the new bottom layer.
                coordf_t diff = layer_new.print_z - top_contacts[top_idx]->print_z;
                assert(std::abs(diff) <= support_params.support_layer_height_min + EPSILON);
                if (diff > 0.) {
                    // The top contact layer is below this layer. Make the bridging layer thinner to align with the existing top layer.
                    assert(diff < layer_new.height + EPSILON);
                    assert(layer_new.height - diff >= support_params.support_layer_height_min - EPSILON);
                    layer_new.print_z = top_contacts[top_idx]->print_z;
                    layer_new.height -= diff;
                }
                else {
                    // The top contact layer is above this layer. One may either make this layer thicker or thinner.
                    // By making the layer thicker, one will decrease the number of discrete layers with the price of extruding a bit too thick bridges.
                    // By making the layer thinner, one adds one more discrete layer.
                    layer_new.print_z = top_contacts[top_idx]->print_z;
                    layer_new.height -= diff;
                }
                break;
            }
        }
    }

#ifdef SLIC3R_DEBUG
    Slic3r::SVG::export_expolygons(
        debug_out_path("support-bottom-contacts-%d-%lf.svg", iRun, layer_new.print_z),
        union_ex(layer_new.polygons));
#endif /* SLIC3R_DEBUG */

    // Trim the already created base layers above the current layer intersecting with the new bottom contacts layer.
    //FIXME Maybe this is no more needed, as the overlapping base layers are trimmed by the bottom layers at the final stage?
    touching = expand(touching, float(SCALED_EPSILON));
    for (int layer_id_above = layer_id + 1; layer_id_above < int(object.total_layer_count()); ++ layer_id_above) {
        const Layer &layer_above = *object.layers()[layer_id_above];
        if (layer_above.print_z > layer_new.print_z - EPSILON)
            break;
        if (Polygons &above = layer_support_areas[layer_id_above]; ! above.empty()) {
#ifdef SLIC3R_DEBUG
            SVG::export_expolygons(debug_out_path("support-support-areas-raw-before-trimming-%d-with-%f-%lf.svg", iRun, layer.print_z, layer_above.print_z),
                { { { union_ex(touching) },              { "touching", "blue", 0.5f } },
                    { { union_safety_offset_ex(above) }, { "above",    "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
#endif /* SLIC3R_DEBUG */
            above = diff(above, touching);
#ifdef SLIC3R_DEBUG
            Slic3r::SVG::export_expolygons(
                debug_out_path("support-support-areas-raw-after-trimming-%d-with-%f-%lf.svg", iRun, layer.print_z, layer_above.print_z),
                union_ex(above));
#endif /* SLIC3R_DEBUG */
        }
    }

    return &layer_new;
}

// Returns polygons to print + polygons to propagate downwards.
// Called twice: First for normal supports, possibly trimmed by "on build plate only", second for support enforcers not trimmed by "on build plate only".
static inline std::pair<Polygons, Polygons> project_support_to_grid(const Layer &layer, const SupportGridParams &grid_params, const Polygons &overhangs, Polygons *layer_buildplate_covered
#ifdef SLIC3R_DEBUG 
    , size_t iRun, size_t layer_id, const char *debug_name
#endif /* SLIC3R_DEBUG */
)
{
    // Remove the areas that touched from the projection that will continue on next, lower, top surfaces.
//            Polygons trimming = union_(to_polygons(layer.slices), touching, true);
    Polygons trimming = layer_buildplate_covered ? std::move(*layer_buildplate_covered) : offset(layer.lslices, float(SCALED_EPSILON));
    Polygons overhangs_projection = diff(overhangs, trimming);

#ifdef SLIC3R_DEBUG
    SVG::export_expolygons(debug_out_path("support-support-areas-%s-raw-%d-%lf.svg", debug_name, iRun, layer.print_z),
        { { { union_ex(trimming) },                           { "trimming",               "blue", 0.5f } },
          { { union_safety_offset_ex(overhangs_projection) }, { "overhangs_projection",   "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
#endif /* SLIC3R_DEBUG */

    remove_sticks(overhangs_projection);
    remove_degenerate(overhangs_projection);

#ifdef SLIC3R_DEBUG
    SVG::export_expolygons(debug_out_path("support-support-areas-%s-raw-cleaned-%d-%lf.svg", debug_name, iRun, layer.print_z),
        { { { union_ex(trimming) },              { "trimming",             "blue", 0.5f } },
          { { union_ex(overhangs_projection) },  { "overhangs_projection", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
#endif /* SLIC3R_DEBUG */

    SupportGridPattern support_grid_pattern(&overhangs_projection, &trimming, grid_params);
    tbb::task_group task_group_inner;

    std::pair<Polygons, Polygons> out;

    // 1) Cache the slice of a support volume. The support volume is expanded by 1/2 of support material flow spacing
    // to allow a placement of suppot zig-zag snake along the grid lines.
    task_group_inner.run([&grid_params, &support_grid_pattern, &out
#ifdef SLIC3R_DEBUG 
        , &layer, layer_id, iRun, debug_name
#endif /* SLIC3R_DEBUG */
    ] {
            out.first = support_grid_pattern.extract_support(grid_params.expansion_to_slice, true
#ifdef SLIC3R_DEBUG
                , (std::string(debug_name) + "_support_area").c_str(), iRun, layer_id, layer.print_z
#endif // SLIC3R_DEBUG
            );
#ifdef SLIC3R_DEBUG
            Slic3r::SVG::export_expolygons(
                debug_out_path("support-layer_support_area-gridded-%s-%d-%lf.svg", debug_name, iRun, layer.print_z),
                union_ex(out.first));
#endif /* SLIC3R_DEBUG */
        });

    // 2) Support polygons will be projected down. To keep the interface and base layers from growing, return a contour a tiny bit smaller than the grid cells.
    task_group_inner.run([&grid_params, &support_grid_pattern, &out
#ifdef SLIC3R_DEBUG 
        , &layer, layer_id, &overhangs_projection, &trimming, iRun, debug_name
#endif /* SLIC3R_DEBUG */
    ] {
            out.second = support_grid_pattern.extract_support(grid_params.expansion_to_propagate, true
#ifdef SLIC3R_DEBUG
                , "support_projection", iRun, layer_id, layer.print_z
#endif // SLIC3R_DEBUG
            );
#ifdef SLIC3R_DEBUG
            Slic3r::SVG::export_expolygons(
                debug_out_path("support-projection_new-gridded-%d-%lf.svg", iRun, layer.print_z),
                union_ex(out.second));
#endif /* SLIC3R_DEBUG */
#ifdef SLIC3R_DEBUG
            SVG::export_expolygons(debug_out_path("support-projection_new-gridded-%d-%lf.svg", iRun, layer.print_z),
                { { { union_ex(trimming) },                             { "trimming",               "gray", 0.5f } },
                    { { union_safety_offset_ex(overhangs_projection) }, { "overhangs_projection",   "blue", 0.5f } },
                    { { union_safety_offset_ex(out.second) },           { "projection_new", "red",  "black", "", scaled<coord_t>(0.1f), 0.5f } } });
#endif /* SLIC3R_DEBUG */
        });

    task_group_inner.wait();
    return out;
}

// Generate bottom contact layers supporting the top contact layers.
// For a soluble interface material synchronize the layer heights with the object, 
// otherwise set the layer height to a bridging flow of a support interface nozzle.
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::bottom_contact_layers_and_layer_support_areas(
    const PrintObject &object, const MyLayersPtr &top_contacts, std::vector<Polygons> &buildplate_covered, 
    MyLayerStorage &layer_storage, std::vector<Polygons> &layer_support_areas) const
{
    if (top_contacts.empty())
        return MyLayersPtr();

#ifdef SLIC3R_DEBUG
    static size_t s_iRun = 0;
    size_t iRun = s_iRun ++;
#endif /* SLIC3R_DEBUG */

    //FIXME higher expansion_to_slice here? why?
    //const auto   expansion_to_slice = m_support_material_flow.scaled_spacing() / 2 + 25;
    const SupportGridParams grid_params(*m_object_config, m_support_params.support_material_flow);
    const bool buildplate_only = ! buildplate_covered.empty();

    // Allocate empty surface areas, one per object layer.
    layer_support_areas.assign(object.total_layer_count(), Polygons());

    // find object top surfaces
    // we'll use them to clip our support and detect where does it stick
    MyLayersPtr bottom_contacts;

    // There is some support to be built, if there are non-empty top surfaces detected.
    // Sum of unsupported contact areas above the current layer.print_z.
    Polygons  overhangs_projection;
    // Sum of unsupported enforcer contact areas above the current layer.print_z.
    // Only used if "supports on build plate only" is enabled and both automatic and support enforcers are enabled.
    Polygons  enforcers_projection;
    // Last top contact layer visited when collecting the projection of contact areas.
    int       contact_idx = int(top_contacts.size()) - 1;
    for (int layer_id = int(object.total_layer_count()) - 2; layer_id >= 0; -- layer_id) {
        BOOST_LOG_TRIVIAL(trace) << "Support generator - bottom_contact_layers - layer " << layer_id;
        const Layer &layer = *object.get_layer(layer_id);
        // Collect projections of all contact areas above or at the same level as this top surface.
#ifdef SLIC3R_DEBUG
        Polygons polygons_new;
        Polygons enforcers_new;
#endif // SLIC3R_DEBUG
        for (; contact_idx >= 0 && top_contacts[contact_idx]->print_z > layer.print_z - EPSILON; -- contact_idx) {
            MyLayer &top_contact = *top_contacts[contact_idx];
#ifndef SLIC3R_DEBUG
            Polygons polygons_new;
            Polygons enforcers_new;
#endif // SLIC3R_DEBUG
            // Contact surfaces are expanded away from the object, trimmed by the object.
            // Use a slight positive offset to overlap the touching regions.
#if 0
            // Merge and collect the contact polygons. The contact polygons are inflated, but not extended into a grid form.
            polygons_append(polygons_new,  offset(*top_contact.contact_polygons,  SCALED_EPSILON));
            if (top_contact.enforcer_polygons)
                polygons_append(enforcers_new, offset(*top_contact.enforcer_polygons, SCALED_EPSILON));
#else
            // Consume the contact_polygons. The contact polygons are already expanded into a grid form, and they are a tiny bit smaller
            // than the grid cells.
            polygons_append(polygons_new,  std::move(*top_contact.contact_polygons));
            if (top_contact.enforcer_polygons)
                polygons_append(enforcers_new, std::move(*top_contact.enforcer_polygons));
#endif
            // These are the overhang surfaces. They are touching the object and they are not expanded away from the object.
            // Use a slight positive offset to overlap the touching regions.
            polygons_append(polygons_new, expand(*top_contact.overhang_polygons, float(SCALED_EPSILON)));
            polygons_append(overhangs_projection, union_(polygons_new));
            polygons_append(enforcers_projection, enforcers_new);
        }
        if (overhangs_projection.empty() && enforcers_projection.empty())
            continue;

        // Overhangs_projection will be filled in asynchronously, move it away.
        Polygons overhangs_projection_raw = union_(std::move(overhangs_projection));
        Polygons enforcers_projection_raw = union_(std::move(enforcers_projection));

        tbb::task_group task_group;
        const Polygons &overhangs_for_bottom_contacts = buildplate_only ? enforcers_projection_raw : overhangs_projection_raw;
        if (! overhangs_for_bottom_contacts.empty())
            // Find the bottom contact layers above the top surfaces of this layer.
            task_group.run([this, &object, &layer, &top_contacts, contact_idx, &layer_storage, &layer_support_areas, &bottom_contacts, &overhangs_for_bottom_contacts
    #ifdef SLIC3R_DEBUG
                , iRun, &polygons_new
    #endif // SLIC3R_DEBUG
                ] {
                    // Find the bottom contact layers above the top surfaces of this layer.
                    MyLayer *layer_new = detect_bottom_contacts(
                        m_slicing_params, m_support_params, object, layer, top_contacts, contact_idx, layer_storage, layer_support_areas, overhangs_for_bottom_contacts
#ifdef SLIC3R_DEBUG
                        , iRun, polygons_new
#endif // SLIC3R_DEBUG
                    );
                    if (layer_new)
                        bottom_contacts.push_back(layer_new);
                });

        Polygons &layer_support_area = layer_support_areas[layer_id];
        Polygons *layer_buildplate_covered = buildplate_covered.empty() ? nullptr : &buildplate_covered[layer_id];
        // Filtering the propagated support columns to two extrusions, overlapping by maximum 20%.
//        float column_propagation_filtering_radius = scaled<float>(0.8 * 0.5 * (m_support_params.support_material_flow.spacing() + m_support_params.support_material_flow.width()));
        task_group.run([&grid_params, &overhangs_projection, &overhangs_projection_raw, &layer, &layer_support_area, layer_buildplate_covered /* , column_propagation_filtering_radius */
#ifdef SLIC3R_DEBUG 
            , iRun, layer_id
#endif /* SLIC3R_DEBUG */
            ] {
                // buildplate_covered[layer_id] will be consumed here.
                std::tie(layer_support_area, overhangs_projection) = project_support_to_grid(layer, grid_params, overhangs_projection_raw, layer_buildplate_covered
#ifdef SLIC3R_DEBUG 
                    , iRun, layer_id, "general"
#endif /* SLIC3R_DEBUG */
                );
                // When propagating support areas downwards, stop propagating the support column if it becomes too thin to be printable.
                //overhangs_projection = opening(overhangs_projection, column_propagation_filtering_radius);
            });

        Polygons layer_support_area_enforcers;
        if (! enforcers_projection.empty())
            // Project the enforcers polygons downwards, don't trim them with the "buildplate only" polygons.
            task_group.run([&grid_params, &enforcers_projection, &enforcers_projection_raw, &layer, &layer_support_area_enforcers
#ifdef SLIC3R_DEBUG 
                , iRun, layer_id
#endif /* SLIC3R_DEBUG */
            ]{
                std::tie(layer_support_area_enforcers, enforcers_projection) = project_support_to_grid(layer, grid_params, enforcers_projection_raw, nullptr
#ifdef SLIC3R_DEBUG 
                    , iRun, layer_id, "enforcers"
#endif /* SLIC3R_DEBUG */
                );
            });

        task_group.wait();

        if (! layer_support_area_enforcers.empty()) {
            if (layer_support_area.empty())
                layer_support_area = std::move(layer_support_area_enforcers);
            else
                layer_support_area = union_(layer_support_area, layer_support_area_enforcers);
        }
    } // over all layers downwards

    std::reverse(bottom_contacts.begin(), bottom_contacts.end());
    trim_support_layers_by_object(object, bottom_contacts, m_slicing_params.gap_support_object, m_slicing_params.gap_object_support, m_support_params.gap_xy);
    return bottom_contacts;
}

// FN_HIGHER_EQUAL: the provided object pointer has a Z value >= of an internal threshold.
// Find the first item with Z value >= of an internal threshold of fn_higher_equal.
// If no vec item with Z value >= of an internal threshold of fn_higher_equal is found, return vec.size()
// If the initial idx is size_t(-1), then use binary search.
// Otherwise search linearly upwards.
template<typename IteratorType, typename IndexType, typename FN_HIGHER_EQUAL>
IndexType idx_higher_or_equal(IteratorType begin, IteratorType end, IndexType idx, FN_HIGHER_EQUAL fn_higher_equal)
{
    auto size = int(end - begin);
    if (size == 0) {
        idx = 0;
    } else if (idx == IndexType(-1)) {
        // First of the batch of layers per thread pool invocation. Use binary search.
        int idx_low  = 0;
        int idx_high = std::max(0, size - 1);
        while (idx_low + 1 < idx_high) {
            int idx_mid  = (idx_low + idx_high) / 2;
            if (fn_higher_equal(begin[idx_mid]))
                idx_high = idx_mid;
            else
                idx_low  = idx_mid;
        }
        idx =  fn_higher_equal(begin[idx_low])  ? idx_low  :
              (fn_higher_equal(begin[idx_high]) ? idx_high : size);
    } else {
        // For the other layers of this batch of layers, search incrementally, which is cheaper than the binary search.
        while (int(idx) < size && ! fn_higher_equal(begin[idx]))
            ++ idx;
    }
    return idx;
}
template<typename T, typename IndexType, typename FN_HIGHER_EQUAL>
IndexType idx_higher_or_equal(const std::vector<T>& vec, IndexType idx, FN_HIGHER_EQUAL fn_higher_equal)
{
    return idx_higher_or_equal(vec.begin(), vec.end(), idx, fn_higher_equal);
}

// FN_LOWER_EQUAL: the provided object pointer has a Z value <= of an internal threshold.
// Find the first item with Z value <= of an internal threshold of fn_lower_equal.
// If no vec item with Z value <= of an internal threshold of fn_lower_equal is found, return -1.
// If the initial idx is < -1, then use binary search.
// Otherwise search linearly downwards.
template<typename IT, typename FN_LOWER_EQUAL>
int idx_lower_or_equal(IT begin, IT end, int idx, FN_LOWER_EQUAL fn_lower_equal)
{
    auto size = int(end - begin);
    if (size == 0) {
        idx = -1;
    } else if (idx < -1) {
        // First of the batch of layers per thread pool invocation. Use binary search.
        int idx_low  = 0;
        int idx_high = std::max(0, size - 1);
        while (idx_low + 1 < idx_high) {
            int idx_mid  = (idx_low + idx_high) / 2;
            if (fn_lower_equal(begin[idx_mid]))
                idx_low  = idx_mid;
            else
                idx_high = idx_mid;
        }
        idx =  fn_lower_equal(begin[idx_high]) ? idx_high :
              (fn_lower_equal(begin[idx_low ]) ? idx_low  : -1);
    } else {
        // For the other layers of this batch of layers, search incrementally, which is cheaper than the binary search.
        while (idx >= 0 && ! fn_lower_equal(begin[idx]))
            -- idx;
    }
    return idx;
}
template<typename T, typename FN_LOWER_EQUAL>
int idx_lower_or_equal(const std::vector<T*> &vec, int idx, FN_LOWER_EQUAL fn_lower_equal)
{
    return idx_lower_or_equal(vec.begin(), vec.end(), idx, fn_lower_equal);
}

// Trim the top_contacts layers with the bottom_contacts layers if they overlap, so there would not be enough vertical space for both of them.
void PrintObjectSupportMaterial::trim_top_contacts_by_bottom_contacts(
    const PrintObject &object, const MyLayersPtr &bottom_contacts, MyLayersPtr &top_contacts) const
{
    tbb::parallel_for(tbb::blocked_range<int>(0, int(top_contacts.size())),
        [&bottom_contacts, &top_contacts](const tbb::blocked_range<int>& range) {
            int idx_bottom_overlapping_first = -2;
            // For all top contact layers, counting downwards due to the way idx_higher_or_equal caches the last index to avoid repeated binary search.
            for (int idx_top = range.end() - 1; idx_top >= range.begin(); -- idx_top) {
                MyLayer &layer_top = *top_contacts[idx_top];
                // Find the first bottom layer overlapping with layer_top.
                idx_bottom_overlapping_first = idx_lower_or_equal(bottom_contacts, idx_bottom_overlapping_first, [&layer_top](const MyLayer *layer_bottom){ return layer_bottom->bottom_print_z() - EPSILON <= layer_top.bottom_z; });
                // For all top contact layers overlapping with the thick bottom contact layer:
                for (int idx_bottom_overlapping = idx_bottom_overlapping_first; idx_bottom_overlapping >= 0; -- idx_bottom_overlapping) {
                    const MyLayer &layer_bottom = *bottom_contacts[idx_bottom_overlapping];
                    assert(layer_bottom.bottom_print_z() - EPSILON <= layer_top.bottom_z);
                    if (layer_top.print_z < layer_bottom.print_z + EPSILON) {
                        // Layers overlap. Trim layer_top with layer_bottom.
                        layer_top.polygons = diff(layer_top.polygons, layer_bottom.polygons);
                    } else
                        break;
                }
            }
        });
}

PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::raft_and_intermediate_support_layers(
    const PrintObject   &object,
    const MyLayersPtr   &bottom_contacts,
    const MyLayersPtr   &top_contacts,
    MyLayerStorage      &layer_storage) const
{
    MyLayersPtr intermediate_layers;

    // Collect and sort the extremes (bottoms of the top contacts and tops of the bottom contacts).
    MyLayersPtr extremes;
    extremes.reserve(top_contacts.size() + bottom_contacts.size());
    for (size_t i = 0; i < top_contacts.size(); ++ i)
        // Bottoms of the top contact layers. In case of non-soluble supports,
        // the top contact layer thickness is not known yet.
        extremes.push_back(top_contacts[i]);
    for (size_t i = 0; i < bottom_contacts.size(); ++ i)
        // Tops of the bottom contact layers.
        extremes.push_back(bottom_contacts[i]);
    if (extremes.empty())
        return intermediate_layers;

    auto layer_extreme_lower = [](const MyLayer *l1, const MyLayer *l2) {
        coordf_t z1 = l1->extreme_z();
        coordf_t z2 = l2->extreme_z();
        // If the layers are aligned, return the top contact surface first.
        return z1 < z2 || (z1 == z2 && l1->layer_type == PrintObjectSupportMaterial::sltTopContact && l2->layer_type == PrintObjectSupportMaterial::sltBottomContact);
    };
    std::sort(extremes.begin(), extremes.end(), layer_extreme_lower);

    assert(extremes.empty() || 
        (extremes.front()->extreme_z() > m_slicing_params.raft_interface_top_z - EPSILON && 
          (m_slicing_params.raft_layers() == 1 || // only raft contact layer
           extremes.front()->layer_type == sltTopContact || // first extreme is a top contact layer
           extremes.front()->extreme_z() > m_slicing_params.first_print_layer_height - EPSILON)));

    bool synchronize = this->synchronize_layers();

#ifdef _DEBUG
    // Verify that the extremes are separated by m_support_layer_height_min.
    for (size_t i = 1; i < extremes.size(); ++ i) {
        assert(extremes[i]->extreme_z() - extremes[i-1]->extreme_z() == 0. ||
               extremes[i]->extreme_z() - extremes[i-1]->extreme_z() > m_support_params.support_layer_height_min - EPSILON);
        assert(extremes[i]->extreme_z() - extremes[i-1]->extreme_z() > 0. ||
               extremes[i]->layer_type == extremes[i-1]->layer_type ||
               (extremes[i]->layer_type == sltBottomContact && extremes[i - 1]->layer_type == sltTopContact));
    }
#endif

    // Generate intermediate layers.
    // The first intermediate layer is the same as the 1st layer if there is no raft,
    // or the bottom of the first intermediate layer is aligned with the bottom of the raft contact layer.
    // Intermediate layers are always printed with a normal etrusion flow (non-bridging).
    size_t idx_layer_object = 0;
    size_t idx_extreme_first = 0;
    if (! extremes.empty() && std::abs(extremes.front()->extreme_z() - m_slicing_params.raft_interface_top_z) < EPSILON) {
        // This is a raft contact layer, its height has been decided in this->top_contact_layers().
        // Ignore this layer when calculating the intermediate support layers.
        assert(extremes.front()->layer_type == sltTopContact);
        ++ idx_extreme_first;
    }
    for (size_t idx_extreme = idx_extreme_first; idx_extreme < extremes.size(); ++ idx_extreme) {
        MyLayer      *extr2  = extremes[idx_extreme];
        coordf_t      extr2z = extr2->extreme_z();
        if (std::abs(extr2z - m_slicing_params.first_print_layer_height) < EPSILON) {
            // This is a bottom of a synchronized (or soluble) top contact layer, its height has been decided in this->top_contact_layers().
            assert(extr2->layer_type == sltTopContact);
            assert(extr2->bottom_z == m_slicing_params.first_print_layer_height);
            assert(extr2->print_z >= m_slicing_params.first_print_layer_height + m_support_params.support_layer_height_min - EPSILON);
            if (intermediate_layers.empty() || intermediate_layers.back()->print_z < m_slicing_params.first_print_layer_height) {
                MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
                layer_new.bottom_z = 0.;
                layer_new.print_z  = m_slicing_params.first_print_layer_height;
                layer_new.height   = m_slicing_params.first_print_layer_height;
                intermediate_layers.push_back(&layer_new);
            }
            continue;
        }
        assert(extr2z >= m_slicing_params.raft_interface_top_z + EPSILON);
        assert(extr2z >= m_slicing_params.first_print_layer_height + EPSILON);
        MyLayer      *extr1  = (idx_extreme == idx_extreme_first) ? nullptr : extremes[idx_extreme - 1];
        // Fuse a support layer firmly to the raft top interface (not to the raft contacts).
        coordf_t      extr1z = (extr1 == nullptr) ? m_slicing_params.raft_interface_top_z : extr1->extreme_z();
        assert(extr2z >= extr1z);
        assert(extr2z > extr1z || (extr1 != nullptr && extr2->layer_type == sltBottomContact));
        if (std::abs(extr1z) < EPSILON) {
            // This layer interval starts with the 1st layer. Print the 1st layer using the prescribed 1st layer thickness.
            // assert(! m_slicing_params.has_raft()); RaftingEdition: unclear where the issue is: assert fails with 1-layer raft & base supports
            assert(intermediate_layers.empty() || intermediate_layers.back()->print_z <= m_slicing_params.first_print_layer_height);
            // At this point only layers above first_print_layer_heigth + EPSILON are expected as the other cases were captured earlier.
            assert(extr2z >= m_slicing_params.first_print_layer_height + EPSILON);
            // Generate a new intermediate layer.
            MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
            layer_new.bottom_z = 0.;
            layer_new.print_z  = extr1z = m_slicing_params.first_print_layer_height;
            layer_new.height   = extr1z;
            intermediate_layers.push_back(&layer_new);
            // Continue printing the other layers up to extr2z.
        }
        coordf_t      dist   = extr2z - extr1z;
        assert(dist >= 0.);
        if (dist == 0.)
            continue;
        // The new layers shall be at least m_support_layer_height_min thick.
        assert(dist >= m_support_params.support_layer_height_min - EPSILON);
        if (synchronize) {
            // Emit support layers synchronized with the object layers.
            // Find the first object layer, which has its print_z in this support Z range.
            while (idx_layer_object < object.layers().size() && object.layers()[idx_layer_object]->print_z < extr1z + EPSILON)
                ++ idx_layer_object;
            if (idx_layer_object == 0 && extr1z == m_slicing_params.raft_interface_top_z) {
                // Insert one base support layer below the object.
                MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
                layer_new.print_z  = m_slicing_params.object_print_z_min;
                layer_new.bottom_z = m_slicing_params.raft_interface_top_z;
                layer_new.height   = layer_new.print_z - layer_new.bottom_z;
                intermediate_layers.push_back(&layer_new);
            }
            // Emit all intermediate support layers synchronized with object layers up to extr2z.
            for (; idx_layer_object < object.layers().size() && object.layers()[idx_layer_object]->print_z < extr2z + EPSILON; ++ idx_layer_object) {
                MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
                layer_new.print_z  = object.layers()[idx_layer_object]->print_z;
                layer_new.height   = object.layers()[idx_layer_object]->height;
                layer_new.bottom_z = (idx_layer_object > 0) ? object.layers()[idx_layer_object - 1]->print_z : (layer_new.print_z - layer_new.height);
                assert(intermediate_layers.empty() || intermediate_layers.back()->print_z < layer_new.print_z + EPSILON);
                intermediate_layers.push_back(&layer_new);
            }
        } else {
            // Insert intermediate layers.
            size_t        n_layers_extra = size_t(ceil(dist / m_slicing_params.max_suport_layer_height)); 
            assert(n_layers_extra > 0);
            coordf_t      step   = dist / coordf_t(n_layers_extra);
            if (extr1 != nullptr && extr1->layer_type == sltTopContact &&
                extr1->print_z + m_support_params.support_layer_height_min > extr1->bottom_z + step) {
                // The bottom extreme is a bottom of a top surface. Ensure that the gap 
                // between the 1st intermediate layer print_z and extr1->print_z is not too small.
                assert(extr1->bottom_z + m_support_params.support_layer_height_min < extr1->print_z + EPSILON);
                // Generate the first intermediate layer.
                MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
                layer_new.bottom_z = extr1->bottom_z;
                layer_new.print_z  = extr1z = extr1->print_z;
                layer_new.height   = extr1->height;
                intermediate_layers.push_back(&layer_new);
                dist = extr2z - extr1z;
                n_layers_extra = size_t(ceil(dist / m_slicing_params.max_suport_layer_height));
                if (n_layers_extra == 0)
                    continue;
                // Continue printing the other layers up to extr2z.
                step = dist / coordf_t(n_layers_extra);
            }
            if (! m_slicing_params.soluble_interface && extr2->layer_type == sltTopContact) {
                // This is a top interface layer, which does not have a height assigned yet. Do it now.
                assert(extr2->height == 0.);
                assert(extr1z > m_slicing_params.first_print_layer_height - EPSILON);
                extr2->height = step;
                extr2->bottom_z = extr2z = extr2->print_z - step;
                if (-- n_layers_extra == 0)
                    continue;
            }
            coordf_t extr2z_large_steps = extr2z;
            // Take the largest allowed step in the Z axis until extr2z_large_steps is reached.
            for (size_t i = 0; i < n_layers_extra; ++ i) {
                MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
                if (i + 1 == n_layers_extra) {
                    // Last intermediate layer added. Align the last entered layer with extr2z_large_steps exactly.
                    layer_new.bottom_z = (i == 0) ? extr1z : intermediate_layers.back()->print_z;
                    layer_new.print_z = extr2z_large_steps;
                    layer_new.height = layer_new.print_z - layer_new.bottom_z;
                }
                else {
                    // Intermediate layer, not the last added.
                    layer_new.height = step;
                    layer_new.bottom_z = extr1z + i * step;
                    layer_new.print_z = layer_new.bottom_z + step;
                }
                assert(intermediate_layers.empty() || intermediate_layers.back()->print_z <= layer_new.print_z);
                intermediate_layers.push_back(&layer_new);
            }
        }
    }

#ifdef _DEBUG
    for (size_t i = 0; i < top_contacts.size(); ++i)
        assert(top_contacts[i]->height > 0.);
#endif /* _DEBUG */

    return intermediate_layers;
}

// At this stage there shall be intermediate_layers allocated between bottom_contacts and top_contacts, but they have no polygons assigned.
// Also the bottom/top_contacts shall have a layer thickness assigned already.
void PrintObjectSupportMaterial::generate_base_layers(
    const PrintObject   &object,
    const MyLayersPtr   &bottom_contacts,
    const MyLayersPtr   &top_contacts,
    MyLayersPtr         &intermediate_layers,
    const std::vector<Polygons> &layer_support_areas) const
{
#ifdef SLIC3R_DEBUG
    static int iRun = 0;
#endif /* SLIC3R_DEBUG */

    if (top_contacts.empty())
        // No top contacts -> no intermediate layers will be produced.
        return;

    BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_base_layers() in parallel - start";
    tbb::parallel_for(
        tbb::blocked_range<size_t>(0, intermediate_layers.size()),
        [&object, &bottom_contacts, &top_contacts, &intermediate_layers, &layer_support_areas](const tbb::blocked_range<size_t>& range) {
            // index -2 means not initialized yet, -1 means intialized and decremented to 0 and then -1.
            int idx_top_contact_above           = -2;
            int idx_bottom_contact_overlapping  = -2;
            int idx_object_layer_above          = -2;
            // Counting down due to the way idx_lower_or_equal caches indices to avoid repeated binary search over the complete sequence.
            for (int idx_intermediate = int(range.end()) - 1; idx_intermediate >= int(range.begin()); -- idx_intermediate)
            {
                BOOST_LOG_TRIVIAL(trace) << "Support generator - generate_base_layers - creating layer " << 
                    idx_intermediate << " of " << intermediate_layers.size();
                MyLayer &layer_intermediate = *intermediate_layers[idx_intermediate];
                // Layers must be sorted by print_z. 
                assert(idx_intermediate == 0 || layer_intermediate.print_z >= intermediate_layers[idx_intermediate - 1]->print_z);

                // Find a top_contact layer touching the layer_intermediate from above, if any, and collect its polygons into polygons_new.
                // New polygons for layer_intermediate.
                Polygons polygons_new;

                // Use the precomputed layer_support_areas. "idx_object_layer_above": above means above since the last iteration, not above after this call.
                idx_object_layer_above = idx_lower_or_equal(object.layers().begin(), object.layers().end(), idx_object_layer_above,
                    [&layer_intermediate](const Layer* layer) { return layer->print_z <= layer_intermediate.print_z + EPSILON; });

                // Polygons to trim polygons_new.
                Polygons polygons_trimming; 

                // Trimming the base layer with any overlapping top layer.
                // Following cases are recognized:
                // 1) top.bottom_z >= base.top_z -> No overlap, no trimming needed.
                // 2) base.bottom_z >= top.print_z -> No overlap, no trimming needed.
                // 3) base.print_z > top.print_z  && base.bottom_z >= top.bottom_z -> Overlap, which will be solved inside generate_toolpaths() by reducing the base layer height where it overlaps the top layer. No trimming needed here.
                // 4) base.print_z > top.bottom_z && base.bottom_z < top.bottom_z -> Base overlaps with top.bottom_z. This must not happen.
                // 5) base.print_z <= top.print_z  && base.bottom_z >= top.bottom_z -> Base is fully inside top. Trim base by top.
                idx_top_contact_above = idx_lower_or_equal(top_contacts, idx_top_contact_above, 
                    [&layer_intermediate](const MyLayer *layer){ return layer->bottom_z <= layer_intermediate.print_z - EPSILON; });
                // Collect all the top_contact layer intersecting with this layer.
                for (int idx_top_contact_overlapping = idx_top_contact_above; idx_top_contact_overlapping >= 0; -- idx_top_contact_overlapping) {
                    MyLayer &layer_top_overlapping = *top_contacts[idx_top_contact_overlapping];
                    if (layer_top_overlapping.print_z < layer_intermediate.bottom_z + EPSILON)
                        break;
                    // Base must not overlap with top.bottom_z.
                    assert(! (layer_intermediate.print_z > layer_top_overlapping.bottom_z + EPSILON && layer_intermediate.bottom_z < layer_top_overlapping.bottom_z - EPSILON));
                    if (layer_intermediate.print_z <= layer_top_overlapping.print_z + EPSILON && layer_intermediate.bottom_z >= layer_top_overlapping.bottom_z - EPSILON)
                        // Base is fully inside top. Trim base by top.
                        polygons_append(polygons_trimming, layer_top_overlapping.polygons);
                }

                if (idx_object_layer_above < 0) {
                    // layer_support_areas are synchronized with object layers and they contain projections of the contact layers above them.
                    // This intermediate layer is not above any object layer, thus there is no information in layer_support_areas about
                    // towers supporting contact layers intersecting the first object layer. Project these contact layers now.
                    polygons_new = layer_support_areas.front();
                    double first_layer_z = object.layers().front()->print_z;
                    for (int i = idx_top_contact_above + 1; i < int(top_contacts.size()); ++ i) {
                        MyLayer &contacts = *top_contacts[i];
                        if (contacts.print_z > first_layer_z + EPSILON)
                            break;
                        assert(contacts.bottom_z > layer_intermediate.print_z - EPSILON);
                        polygons_append(polygons_new, contacts.polygons);
                    }
                } else
                    polygons_new = layer_support_areas[idx_object_layer_above];

                // Trimming the base layer with any overlapping bottom layer.
                // Following cases are recognized:
                // 1) bottom.bottom_z >= base.top_z -> No overlap, no trimming needed.
                // 2) base.bottom_z >= bottom.print_z -> No overlap, no trimming needed.
                // 3) base.print_z > bottom.bottom_z && base.bottom_z < bottom.bottom_z -> Overlap, which will be solved inside generate_toolpaths() by reducing the bottom layer height where it overlaps the base layer. No trimming needed here.
                // 4) base.print_z > bottom.print_z  && base.bottom_z >= bottom.print_z -> Base overlaps with bottom.print_z. This must not happen.
                // 5) base.print_z <= bottom.print_z && base.bottom_z >= bottom.bottom_z -> Base is fully inside top. Trim base by top.
                idx_bottom_contact_overlapping = idx_lower_or_equal(bottom_contacts, idx_bottom_contact_overlapping, 
                    [&layer_intermediate](const MyLayer *layer){ return layer->bottom_print_z() <= layer_intermediate.print_z - EPSILON; });
                // Collect all the bottom_contacts layer intersecting with this layer.
                for (int i = idx_bottom_contact_overlapping; i >= 0; -- i) {
                    MyLayer &layer_bottom_overlapping = *bottom_contacts[i];
                    if (layer_bottom_overlapping.print_z < layer_intermediate.bottom_print_z() + EPSILON)
                        break; 
                    // Base must not overlap with bottom.top_z.
                    assert(! (layer_intermediate.print_z > layer_bottom_overlapping.print_z + EPSILON && layer_intermediate.bottom_z < layer_bottom_overlapping.print_z - EPSILON));
                    if (layer_intermediate.print_z <= layer_bottom_overlapping.print_z + EPSILON && layer_intermediate.bottom_z >= layer_bottom_overlapping.bottom_print_z() - EPSILON)
                        // Base is fully inside bottom. Trim base by bottom.
                        polygons_append(polygons_trimming, layer_bottom_overlapping.polygons);
                }

        #ifdef SLIC3R_DEBUG
                {
                    BoundingBox bbox = get_extents(polygons_new);
                    bbox.merge(get_extents(polygons_trimming));
                    ::Slic3r::SVG svg(debug_out_path("support-intermediate-layers-raw-%d-%lf.svg", iRun, layer_intermediate.print_z), bbox);
                    svg.draw(union_ex(polygons_new),                    "blue", 0.5f);
                    svg.draw(to_polylines(polygons_new),                "blue");
                    svg.draw(union_safety_offset_ex(polygons_trimming), "red", 0.5f);
                    svg.draw(to_polylines(polygons_trimming),           "red");
                }
        #endif /* SLIC3R_DEBUG */

                // Trim the polygons, store them.
                if (polygons_trimming.empty())
                    layer_intermediate.polygons = std::move(polygons_new);
                else
                    layer_intermediate.polygons = diff(
                        polygons_new,
                        polygons_trimming,
                        ApplySafetyOffset::Yes); // safety offset to merge the touching source polygons
                layer_intermediate.layer_type = sltBase;

        #if 0
                    // coordf_t fillet_radius_scaled = scale_(m_object_config->support_material_spacing);
                    // Fillet the base polygons and trim them again with the top, interface and contact layers.
                    $base->{$i} = diff(
                        offset2(
                            $base->{$i}, 
                            $fillet_radius_scaled, 
                            -$fillet_radius_scaled,
                            # Use a geometric offsetting for filleting.
                            JT_ROUND,
                            0.2*$fillet_radius_scaled),
                        $trim_polygons,
                        false); // don't apply the safety offset.
                }
        #endif
            }
        });
    BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_base_layers() in parallel - end";

#ifdef SLIC3R_DEBUG
    for (MyLayersPtr::const_iterator it = intermediate_layers.begin(); it != intermediate_layers.end(); ++it)
        ::Slic3r::SVG::export_expolygons(
            debug_out_path("support-intermediate-layers-untrimmed-%d-%lf.svg", iRun, (*it)->print_z),
            union_ex((*it)->polygons));
    ++ iRun;
#endif /* SLIC3R_DEBUG */

    this->trim_support_layers_by_object(object, intermediate_layers, m_slicing_params.gap_support_object, m_slicing_params.gap_object_support, m_support_params.gap_xy);
}

void PrintObjectSupportMaterial::trim_support_layers_by_object(
    const PrintObject   &object,
    MyLayersPtr         &support_layers,
    const coordf_t       gap_extra_above,
    const coordf_t       gap_extra_below,
    const coordf_t       gap_xy) const
{
    const float gap_xy_scaled = float(scale_(gap_xy));

    // Collect non-empty layers to be processed in parallel.
    // This is a good idea as pulling a thread from a thread pool for an empty task is expensive.
    MyLayersPtr nonempty_layers;
    nonempty_layers.reserve(support_layers.size());
    for (size_t idx_layer = 0; idx_layer < support_layers.size(); ++ idx_layer) {
        MyLayer *support_layer = support_layers[idx_layer];
        if (! support_layer->polygons.empty() && support_layer->print_z >= m_slicing_params.raft_contact_top_z + EPSILON)
            // Non-empty support layer and not a raft layer.
            nonempty_layers.push_back(support_layer);
    }

    // For all intermediate support layers:
    BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::trim_support_layers_by_object() in parallel - start";
    tbb::parallel_for(
        tbb::blocked_range<size_t>(0, nonempty_layers.size()),
        [this, &object, &nonempty_layers, gap_extra_above, gap_extra_below, gap_xy_scaled](const tbb::blocked_range<size_t>& range) {
            size_t idx_object_layer_overlapping = size_t(-1);
            for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
                MyLayer &support_layer = *nonempty_layers[idx_layer];
                // BOOST_LOG_TRIVIAL(trace) << "Support generator - trim_support_layers_by_object - trimmming non-empty layer " << idx_layer << " of " << nonempty_layers.size();
                assert(! support_layer.polygons.empty() && support_layer.print_z >= m_slicing_params.raft_contact_top_z + EPSILON);
                // Find the overlapping object layers including the extra above / below gap.
                coordf_t z_threshold = support_layer.bottom_print_z() - gap_extra_below + EPSILON;
                idx_object_layer_overlapping = idx_higher_or_equal(
                    object.layers().begin(), object.layers().end(), idx_object_layer_overlapping,
                    [z_threshold](const Layer *layer){ return layer->print_z >= z_threshold; });
                // Collect all the object layers intersecting with this layer.
                Polygons polygons_trimming;
                size_t i = idx_object_layer_overlapping;
                for (; i < object.layers().size(); ++ i) {
                    const Layer &object_layer = *object.layers()[i];
                    if (object_layer.bottom_z() > support_layer.print_z + gap_extra_above - EPSILON)
                        break;
                    polygons_append(polygons_trimming, offset(object_layer.lslices, gap_xy_scaled, SUPPORT_SURFACES_OFFSET_PARAMETERS));
                }
                if (! m_slicing_params.soluble_interface && m_object_config->thick_bridges) {
                    // Collect all bottom surfaces, which will be extruded with a bridging flow.
                    for (; i < object.layers().size(); ++ i) {
                        const Layer &object_layer = *object.layers()[i];
                        bool some_region_overlaps = false;
                        for (LayerRegion *region : object_layer.regions()) {
                            coordf_t bridging_height = region->region().bridging_height_avg(*m_print_config);
                            if (object_layer.print_z - bridging_height > support_layer.print_z + gap_extra_above - EPSILON)
                                break;
                            some_region_overlaps = true;
                            polygons_append(polygons_trimming, 
                                offset(region->fill_surfaces.filter_by_type(stBottomBridge), gap_xy_scaled, SUPPORT_SURFACES_OFFSET_PARAMETERS));
                            if (region->region().config().overhangs.value)
                                // Add bridging perimeters.
                                SupportMaterialInternal::collect_bridging_perimeter_areas(region->perimeters, gap_xy_scaled, polygons_trimming);
                        }
                        if (! some_region_overlaps)
                            break;
                    }
                }
                // $layer->slices contains the full shape of layer, thus including
                // perimeter's width. $support contains the full shape of support
                // material, thus including the width of its foremost extrusion.
                // We leave a gap equal to a full extrusion width.
                support_layer.polygons = diff(support_layer.polygons, polygons_trimming);
            }
        });
    BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::trim_support_layers_by_object() in parallel - end";
}

PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_raft_base(
    const PrintObject   &object,
    const MyLayersPtr   &top_contacts,
    const MyLayersPtr   &interface_layers,
    const MyLayersPtr   &base_interface_layers,
    const MyLayersPtr   &base_layers,
    MyLayerStorage      &layer_storage) const
{
    // If there is brim to be generated, calculate the trimming regions.
    Polygons brim;
    if (object.has_brim()) {
        // Calculate the area covered by the brim.
        const BrimType brim_type       = object.config().brim_type;
        const bool     brim_outer      = brim_type == btOuterOnly || brim_type == btOuterAndInner;
        const bool     brim_inner      = brim_type == btInnerOnly || brim_type == btOuterAndInner;
        const auto     brim_separation = scaled<float>(object.config().brim_separation.value + object.config().brim_width.value);
        for (const ExPolygon &ex : object.layers().front()->lslices) {
            if (brim_outer && brim_inner)
                polygons_append(brim, offset(ex, brim_separation));
            else {
                if (brim_outer)
                    polygons_append(brim, offset(ex.contour, brim_separation, ClipperLib::jtRound, float(scale_(0.1))));
                else
                    brim.emplace_back(ex.contour);
                if (brim_inner) {
                    Polygons holes = ex.holes;
                    polygons_reverse(holes);
                    holes = shrink(holes, brim_separation, ClipperLib::jtRound, float(scale_(0.1)));
                    polygons_reverse(holes);
                    polygons_append(brim, std::move(holes));
                } else
                    polygons_append(brim, ex.holes);
            }
        }
        brim = union_(brim);
    }

    // How much to inflate the support columns to be stable. This also applies to the 1st layer, if no raft layers are to be printed.
    const float inflate_factor_fine      = float(scale_((m_slicing_params.raft_layers() > 1) ? 0.5 : EPSILON));
    const float inflate_factor_1st_layer = std::max(0.f, float(scale_(object.config().raft_first_layer_expansion)) - inflate_factor_fine);
    MyLayer       *contacts         = top_contacts         .empty() ? nullptr : top_contacts         .front();
    MyLayer       *interfaces       = interface_layers     .empty() ? nullptr : interface_layers     .front();
    MyLayer       *base_interfaces  = base_interface_layers.empty() ? nullptr : base_interface_layers.front();
    MyLayer       *columns_base     = base_layers          .empty() ? nullptr : base_layers          .front();
    if (contacts != nullptr && contacts->print_z > std::max(m_slicing_params.first_print_layer_height, m_slicing_params.raft_contact_top_z) + EPSILON)
        // This is not the raft contact layer.
        contacts = nullptr;
    if (interfaces != nullptr && interfaces->bottom_print_z() > m_slicing_params.raft_interface_top_z + EPSILON)
        // This is not the raft column base layer.
        interfaces = nullptr;
    if (base_interfaces != nullptr && base_interfaces->bottom_print_z() > m_slicing_params.raft_interface_top_z + EPSILON)
        // This is not the raft column base layer.
        base_interfaces = nullptr;
    if (columns_base != nullptr && columns_base->bottom_print_z() > m_slicing_params.raft_interface_top_z + EPSILON)
        // This is not the raft interface layer.
        columns_base = nullptr;

    Polygons interface_polygons;
    if (contacts != nullptr && ! contacts->polygons.empty())
        polygons_append(interface_polygons, expand(contacts->polygons, inflate_factor_fine, SUPPORT_SURFACES_OFFSET_PARAMETERS));
    if (interfaces != nullptr && ! interfaces->polygons.empty())
        polygons_append(interface_polygons, expand(interfaces->polygons, inflate_factor_fine, SUPPORT_SURFACES_OFFSET_PARAMETERS));
    if (base_interfaces != nullptr && ! base_interfaces->polygons.empty())
        polygons_append(interface_polygons, expand(base_interfaces->polygons, inflate_factor_fine, SUPPORT_SURFACES_OFFSET_PARAMETERS));
 
    // Output vector.
    MyLayersPtr raft_layers;

    if (m_slicing_params.raft_layers() > 1) {
        Polygons base;
        Polygons columns;
        if (columns_base != nullptr) {
            base = columns_base->polygons;
            columns = base;
            if (! interface_polygons.empty())
                // Trim the 1st layer columns with the inflated interface polygons.
                columns = diff(columns, interface_polygons);
        }
        if (! interface_polygons.empty()) {
            // Merge the untrimmed columns base with the expanded raft interface, to be used for the support base and interface.
            base = union_(base, interface_polygons); 
        }
        // Do not add the raft contact layer, only add the raft layers below the contact layer.
        // Insert the 1st layer.
        {
            MyLayer &new_layer = layer_allocate(layer_storage, (m_slicing_params.base_raft_layers > 0) ? sltRaftBase : sltRaftInterface);
            raft_layers.push_back(&new_layer);
            new_layer.print_z = m_slicing_params.first_print_layer_height;
            new_layer.height  = m_slicing_params.first_print_layer_height;
            new_layer.bottom_z = 0.;
            new_layer.polygons = inflate_factor_1st_layer > 0 ? expand(base, inflate_factor_1st_layer) : base;
        }
        // Insert the base layers.
        for (size_t i = 1; i < m_slicing_params.base_raft_layers; ++ i) {
            coordf_t print_z = raft_layers.back()->print_z;
            MyLayer &new_layer  = layer_allocate(layer_storage, sltRaftBase);
            raft_layers.push_back(&new_layer);
            new_layer.print_z  = print_z + m_slicing_params.base_raft_layer_height;
            new_layer.height   = m_slicing_params.base_raft_layer_height;
            new_layer.bottom_z = print_z;
            new_layer.polygons = base;
        }
        // Insert the interface layers.
        for (size_t i = 1; i < m_slicing_params.interface_raft_layers; ++ i) {
            coordf_t print_z = raft_layers.back()->print_z;
            MyLayer &new_layer = layer_allocate(layer_storage, sltRaftInterface);
            raft_layers.push_back(&new_layer);
            new_layer.print_z = print_z + m_slicing_params.interface_raft_layer_height;
            new_layer.height  = m_slicing_params.interface_raft_layer_height;
            new_layer.bottom_z = print_z;
            new_layer.polygons = interface_polygons;
            //FIXME misusing contact_polygons for support columns.
            new_layer.contact_polygons = std::make_unique<Polygons>(columns);
        }
    } else {
        if (columns_base != nullptr) {
        // Expand the bases of the support columns in the 1st layer.
            Polygons &raft     = columns_base->polygons;
            Polygons  trimming = offset(m_object->layers().front()->lslices, (float)scale_(m_support_params.gap_xy), SUPPORT_SURFACES_OFFSET_PARAMETERS);
            if (inflate_factor_1st_layer > SCALED_EPSILON) {
                // Inflate in multiple steps to avoid leaking of the support 1st layer through object walls.
                auto  nsteps = std::max(5, int(ceil(inflate_factor_1st_layer / m_support_params.first_layer_flow.scaled_width())));
                float step   = inflate_factor_1st_layer / nsteps;
                for (int i = 0; i < nsteps; ++ i)
                    raft = diff(expand(raft, step), trimming);
            } else
                raft = diff(raft, trimming);
            if (! interface_polygons.empty())
                columns_base->polygons = diff(columns_base->polygons, interface_polygons);
        }
        if (! brim.empty()) {
            if (columns_base)
                columns_base->polygons = diff(columns_base->polygons, brim);
            if (contacts)
                contacts->polygons = diff(contacts->polygons, brim);
            if (interfaces)
                interfaces->polygons = diff(interfaces->polygons, brim);
            if (base_interfaces)
                base_interfaces->polygons = diff(base_interfaces->polygons, brim);
        }
    }

    return raft_layers;
}

// Convert some of the intermediate layers into top/bottom interface layers as well as base interface layers.
std::pair<PrintObjectSupportMaterial::MyLayersPtr, PrintObjectSupportMaterial::MyLayersPtr> PrintObjectSupportMaterial::generate_interface_layers(
    const MyLayersPtr   &bottom_contacts,
    const MyLayersPtr   &top_contacts,
    MyLayersPtr         &intermediate_layers,
    MyLayerStorage      &layer_storage) const
{
//    my $area_threshold = $self->interface_flow->scaled_spacing ** 2;

    std::pair<MyLayersPtr, MyLayersPtr> base_and_interface_layers;
    MyLayersPtr &interface_layers       = base_and_interface_layers.first;
    MyLayersPtr &base_interface_layers  = base_and_interface_layers.second;

    // distinguish between interface and base interface layers
    // Contact layer is considered an interface layer, therefore run the following block only if support_material_interface_layers > 1.
    // Contact layer needs a base_interface layer, therefore run the following block if support_material_interface_layers > 0, has soluble support and extruders are different.
    bool   soluble_interface_non_soluble_base =
        // Zero z-gap between the overhangs and the support interface.
        m_slicing_params.soluble_interface && 
        // Interface extruder soluble.
        m_object_config->support_material_interface_extruder.value > 0 && m_print_config->filament_soluble.get_at(m_object_config->support_material_interface_extruder.value - 1) && 
        // Base extruder: Either "print with active extruder" not soluble.
        (m_object_config->support_material_extruder.value == 0 || ! m_print_config->filament_soluble.get_at(m_object_config->support_material_extruder.value - 1));
    bool   snug_supports                 = m_object_config->support_material_style.value == smsSnug;
    int num_interface_layers_top         = m_object_config->support_material_interface_layers;
    int num_interface_layers_bottom      = m_object_config->support_material_bottom_interface_layers;
    if (num_interface_layers_bottom < 0)
        num_interface_layers_bottom = num_interface_layers_top;
    int num_base_interface_layers_top    = soluble_interface_non_soluble_base ? std::min(num_interface_layers_top / 2, 2) : 0;
    int num_base_interface_layers_bottom = soluble_interface_non_soluble_base ? std::min(num_interface_layers_bottom / 2, 2) : 0;

    if (! intermediate_layers.empty() && (num_interface_layers_top > 1 || num_interface_layers_bottom > 1)) {
        // For all intermediate layers, collect top contact surfaces, which are not further than support_material_interface_layers.
        BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_interface_layers() in parallel - start";
        // Since the intermediate layer index starts at zero the number of interface layer needs to be reduced by 1.
        -- num_interface_layers_top;
        -- num_interface_layers_bottom;
        int num_interface_layers_only_top    = num_interface_layers_top    - num_base_interface_layers_top;
        int num_interface_layers_only_bottom = num_interface_layers_bottom - num_base_interface_layers_bottom;
        interface_layers.assign(intermediate_layers.size(), nullptr);
        if (num_base_interface_layers_top || num_base_interface_layers_bottom)
            base_interface_layers.assign(intermediate_layers.size(), nullptr);
        auto smoothing_distance              = m_support_params.support_material_interface_flow.scaled_spacing() * 1.5;
        auto minimum_island_radius           = m_support_params.support_material_interface_flow.scaled_spacing() / m_support_params.interface_density;
        auto closing_distance                = smoothing_distance; // scaled<float>(m_object_config->support_material_closing_radius.value);
        tbb::spin_mutex layer_storage_mutex;
        // Insert a new layer into base_interface_layers, if intersection with base exists.
        auto insert_layer = [&layer_storage, &layer_storage_mutex, snug_supports, closing_distance, smoothing_distance, minimum_island_radius](
                MyLayer &intermediate_layer, Polygons &bottom, Polygons &&top, const Polygons *subtract, SupporLayerType type) -> MyLayer* {
            assert(! bottom.empty() || ! top.empty());
            // Merge top into bottom, unite them with a safety offset.
            append(bottom, std::move(top));
            // Merge top / bottom interfaces. For snug supports, merge using closing distance and regularize (close concave corners).
            bottom = intersection(
                snug_supports ?
                    smooth_outward(closing(std::move(bottom), closing_distance + minimum_island_radius, closing_distance, SUPPORT_SURFACES_OFFSET_PARAMETERS), smoothing_distance) :
                    union_safety_offset(std::move(bottom)),
                intermediate_layer.polygons);
            if (! bottom.empty()) {
                //FIXME Remove non-printable tiny islands, let them be printed using the base support.
                //bottom = opening(std::move(bottom), minimum_island_radius);
                if (! bottom.empty()) {
                    MyLayer &layer_new = layer_allocate(layer_storage, layer_storage_mutex, type);
                    layer_new.polygons   = std::move(bottom);
                    layer_new.print_z    = intermediate_layer.print_z;
                    layer_new.bottom_z   = intermediate_layer.bottom_z;
                    layer_new.height     = intermediate_layer.height;
                    layer_new.bridging   = intermediate_layer.bridging;
                    // Subtract the interface from the base regions.
                    intermediate_layer.polygons = diff(intermediate_layer.polygons, layer_new.polygons);
                    if (subtract)
                        // Trim the base interface layer with the interface layer.
                        layer_new.polygons = diff(std::move(layer_new.polygons), *subtract);
                    //FIXME filter layer_new.polygons islands by a minimum area?
        //                  $interface_area = [ grep abs($_->area) >= $area_threshold, @$interface_area ];
                    return &layer_new;
                }
            }
            return nullptr;
        };
        tbb::parallel_for(tbb::blocked_range<int>(0, int(intermediate_layers.size())),
            [&bottom_contacts, &top_contacts, &intermediate_layers, &insert_layer, 
             num_interface_layers_top, num_interface_layers_bottom, num_base_interface_layers_top, num_base_interface_layers_bottom, num_interface_layers_only_top, num_interface_layers_only_bottom,
             snug_supports, &interface_layers, &base_interface_layers](const tbb::blocked_range<int>& range) {                
                // Gather the top / bottom contact layers intersecting with num_interface_layers resp. num_interface_layers_only intermediate layers above / below
                // this intermediate layer.
                // Index of the first top contact layer intersecting the current intermediate layer.
                auto idx_top_contact_first      = -1;
                // Index of the first bottom contact layer intersecting the current intermediate layer.
                auto idx_bottom_contact_first   = -1;
                auto num_intermediate = int(intermediate_layers.size());
                for (int idx_intermediate_layer = range.begin(); idx_intermediate_layer < range.end(); ++ idx_intermediate_layer) {
                    MyLayer &intermediate_layer = *intermediate_layers[idx_intermediate_layer];
                    Polygons polygons_top_contact_projected_interface;
                    Polygons polygons_top_contact_projected_base;
                    Polygons polygons_bottom_contact_projected_interface;
                    Polygons polygons_bottom_contact_projected_base;
                    if (num_interface_layers_top > 0) {
                        // Top Z coordinate of a slab, over which we are collecting the top / bottom contact surfaces
                        coordf_t top_z              = intermediate_layers[std::min(num_intermediate - 1, idx_intermediate_layer + num_interface_layers_top - 1)]->print_z;
                        coordf_t top_inteface_z     = std::numeric_limits<coordf_t>::max();
                        if (num_base_interface_layers_top > 0)
                            // Some top base interface layers will be generated.
                            top_inteface_z = num_interface_layers_only_top == 0 ?
                                // Only base interface layers to generate.
                                - std::numeric_limits<coordf_t>::max() :
                                intermediate_layers[std::min(num_intermediate - 1, idx_intermediate_layer + num_interface_layers_only_top - 1)]->print_z;
                        // Move idx_top_contact_first up until above the current print_z.
                        idx_top_contact_first = idx_higher_or_equal(top_contacts, idx_top_contact_first, [&intermediate_layer](const MyLayer *layer){ return layer->print_z >= intermediate_layer.print_z; }); //  - EPSILON
                        // Collect the top contact areas above this intermediate layer, below top_z.
                        for (int idx_top_contact = idx_top_contact_first; idx_top_contact < int(top_contacts.size()); ++ idx_top_contact) {
                            const MyLayer &top_contact_layer = *top_contacts[idx_top_contact];
                            //FIXME maybe this adds one interface layer in excess?
                            if (top_contact_layer.bottom_z - EPSILON > top_z)
                                break;
                            polygons_append(top_contact_layer.bottom_z - EPSILON > top_inteface_z ? polygons_top_contact_projected_base : polygons_top_contact_projected_interface, 
                                // For snug supports, project the overhang polygons covering the whole overhang, so that they will merge without a gap with support polygons of the other layers.
                                // For grid supports, merging of support regions will be performed by the projection into grid.
                                snug_supports ? *top_contact_layer.overhang_polygons : top_contact_layer.polygons);
                        }
                    }
                    if (num_interface_layers_bottom > 0) {
                        // Bottom Z coordinate of a slab, over which we are collecting the top / bottom contact surfaces
                        coordf_t bottom_z           = intermediate_layers[std::max(0, idx_intermediate_layer - num_interface_layers_bottom + 1)]->bottom_z;
                        coordf_t bottom_interface_z = - std::numeric_limits<coordf_t>::max();
                        if (num_base_interface_layers_bottom > 0)
                            // Some bottom base interface layers will be generated.
                            bottom_interface_z = num_interface_layers_only_bottom == 0 ? 
                                // Only base interface layers to generate.
                                std::numeric_limits<coordf_t>::max() :
                                intermediate_layers[std::max(0, idx_intermediate_layer - num_interface_layers_only_bottom)]->bottom_z;
                        // Move idx_bottom_contact_first up until touching bottom_z.
                        idx_bottom_contact_first = idx_higher_or_equal(bottom_contacts, idx_bottom_contact_first, [bottom_z](const MyLayer *layer){ return layer->print_z >= bottom_z - EPSILON; });
                        // Collect the top contact areas above this intermediate layer, below top_z.
                        for (int idx_bottom_contact = idx_bottom_contact_first; idx_bottom_contact < int(bottom_contacts.size()); ++ idx_bottom_contact) {
                            const MyLayer &bottom_contact_layer = *bottom_contacts[idx_bottom_contact];
                            if (bottom_contact_layer.print_z - EPSILON > intermediate_layer.bottom_z)
                                break;
                            polygons_append(bottom_contact_layer.print_z - EPSILON > bottom_interface_z ? polygons_bottom_contact_projected_interface : polygons_bottom_contact_projected_base, bottom_contact_layer.polygons);
                        }
                    }
                    MyLayer *interface_layer = nullptr;
                    if (! polygons_bottom_contact_projected_interface.empty() || ! polygons_top_contact_projected_interface.empty()) {
                        interface_layer = insert_layer(
                            intermediate_layer, polygons_bottom_contact_projected_interface, std::move(polygons_top_contact_projected_interface), nullptr,
                            polygons_top_contact_projected_interface.empty() ? sltBottomInterface : sltTopInterface);
                        interface_layers[idx_intermediate_layer] = interface_layer;
                    }
                    if (! polygons_bottom_contact_projected_base.empty() || ! polygons_top_contact_projected_base.empty())
                        base_interface_layers[idx_intermediate_layer] = insert_layer(
                            intermediate_layer, polygons_bottom_contact_projected_base, std::move(polygons_top_contact_projected_base), 
                            interface_layer ? &interface_layer->polygons : nullptr, sltBase);
                }
            });

        // Compress contact_out, remove the nullptr items.
        remove_nulls(interface_layers);
        remove_nulls(base_interface_layers);
        BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_interface_layers() in parallel - end";
    }
    
    return base_and_interface_layers;
}

static inline void fill_expolygon_generate_paths(
    ExtrusionEntitiesPtr    &dst,
    ExPolygon              &&expolygon,
    Fill                    *filler,
    const FillParams        &fill_params,
    float                    density,
    ExtrusionRole            role,
    const Flow              &flow)
{
    Surface surface(stInternal, std::move(expolygon));
    Polylines polylines;
    try {
        polylines = filler->fill_surface(&surface, fill_params);
    } catch (InfillFailedException &) {
    }
    extrusion_entities_append_paths(
        dst,
        std::move(polylines),
        role,
        flow.mm3_per_mm(), flow.width(), flow.height());
}

static inline void fill_expolygons_generate_paths(
    ExtrusionEntitiesPtr    &dst,
    ExPolygons             &&expolygons,
    Fill                    *filler,
    const FillParams        &fill_params,
    float                    density,
    ExtrusionRole            role,
    const Flow              &flow)
{
    for (ExPolygon &expoly : expolygons)
        fill_expolygon_generate_paths(dst, std::move(expoly), filler, fill_params, density, role, flow);
}

static inline void fill_expolygons_generate_paths(
    ExtrusionEntitiesPtr    &dst,
    ExPolygons             &&expolygons,
    Fill                    *filler,
    float                    density,
    ExtrusionRole            role,
    const Flow              &flow)
{
    FillParams fill_params;
    fill_params.density     = density;
    fill_params.dont_adjust = true;
    fill_expolygons_generate_paths(dst, std::move(expolygons), filler, fill_params, density, role, flow);
}

static inline void fill_expolygons_with_sheath_generate_paths(
    ExtrusionEntitiesPtr    &dst,
    const Polygons          &polygons,
    Fill                    *filler,
    float                    density,
    ExtrusionRole            role,
    const Flow              &flow,
    bool                     with_sheath,
    bool                     no_sort)
{
    if (polygons.empty())
        return;

    if (! with_sheath) {
        fill_expolygons_generate_paths(dst, closing_ex(polygons, float(SCALED_EPSILON)), filler, density, role, flow);
        return;
    }

    FillParams fill_params;
    fill_params.density     = density;
    fill_params.dont_adjust = true;

    double spacing = flow.scaled_spacing();
    // Clip the sheath path to avoid the extruder to get exactly on the first point of the loop.
    double clip_length = spacing * 0.15;

    for (ExPolygon &expoly : closing_ex(polygons, float(SCALED_EPSILON), float(SCALED_EPSILON + 0.5*flow.scaled_width()))) {
        // Don't reorder the skirt and its infills.
        std::unique_ptr<ExtrusionEntityCollection> eec;
        if (no_sort) {
            eec = std::make_unique<ExtrusionEntityCollection>();
            eec->no_sort = true;
        }
        ExtrusionEntitiesPtr &out = no_sort ? eec->entities : dst;
        // Draw the perimeters.
        Polylines polylines;
        polylines.reserve(expoly.holes.size() + 1);
        for (size_t i = 0; i <= expoly.holes.size();  ++ i) {
            Polyline pl(i == 0 ? expoly.contour.points : expoly.holes[i - 1].points);
            pl.points.emplace_back(pl.points.front());
            pl.clip_end(clip_length);
            polylines.emplace_back(std::move(pl));
        }
        extrusion_entities_append_paths(out, polylines, erSupportMaterial, flow.mm3_per_mm(), flow.width(), flow.height());
        // Fill in the rest.
        fill_expolygons_generate_paths(out, offset_ex(expoly, float(-0.4 * spacing)), filler, fill_params, density, role, flow);
        if (no_sort && ! eec->empty())
            dst.emplace_back(eec.release());
    }
}

// Support layers, partially processed.
struct MyLayerExtruded
{
    MyLayerExtruded& operator=(MyLayerExtruded &&rhs) {
        this->layer = rhs.layer;
        this->extrusions = std::move(rhs.extrusions);
        m_polygons_to_extrude = std::move(rhs.m_polygons_to_extrude);
        rhs.layer = nullptr;
        return *this;
    }

    bool empty() const {
        return layer == nullptr || layer->polygons.empty();
    }

    void set_polygons_to_extrude(Polygons &&polygons) { 
        if (m_polygons_to_extrude == nullptr) 
            m_polygons_to_extrude = std::make_unique<Polygons>(std::move(polygons));
        else
            *m_polygons_to_extrude = std::move(polygons);
    }
    Polygons& polygons_to_extrude() { return (m_polygons_to_extrude == nullptr) ? layer->polygons : *m_polygons_to_extrude; }
    const Polygons& polygons_to_extrude() const { return (m_polygons_to_extrude == nullptr) ? layer->polygons : *m_polygons_to_extrude; }

    bool could_merge(const MyLayerExtruded &other) const {
        return ! this->empty() && ! other.empty() && 
            std::abs(this->layer->height - other.layer->height) < EPSILON &&
            this->layer->bridging == other.layer->bridging; 
    }

    // Merge regions, perform boolean union over the merged polygons.
    void merge(MyLayerExtruded &&other) {
        assert(this->could_merge(other));
        // 1) Merge the rest polygons to extrude, if there are any.
        if (other.m_polygons_to_extrude != nullptr) {
            if (m_polygons_to_extrude == nullptr) {
                // This layer has no extrusions generated yet, if it has no m_polygons_to_extrude (its area to extrude was not reduced yet).
                assert(this->extrusions.empty());
                m_polygons_to_extrude = std::make_unique<Polygons>(this->layer->polygons);
            }
            Slic3r::polygons_append(*m_polygons_to_extrude, std::move(*other.m_polygons_to_extrude));
            *m_polygons_to_extrude = union_safety_offset(*m_polygons_to_extrude);
            other.m_polygons_to_extrude.reset();
        } else if (m_polygons_to_extrude != nullptr) {
            assert(other.m_polygons_to_extrude == nullptr);
            // The other layer has no extrusions generated yet, if it has no m_polygons_to_extrude (its area to extrude was not reduced yet).
            assert(other.extrusions.empty());
            Slic3r::polygons_append(*m_polygons_to_extrude, other.layer->polygons);
            *m_polygons_to_extrude = union_safety_offset(*m_polygons_to_extrude);
        }
        // 2) Merge the extrusions.
        this->extrusions.insert(this->extrusions.end(), other.extrusions.begin(), other.extrusions.end());
        other.extrusions.clear();
        // 3) Merge the infill polygons.
        Slic3r::polygons_append(this->layer->polygons, std::move(other.layer->polygons));
        this->layer->polygons = union_safety_offset(this->layer->polygons);
        other.layer->polygons.clear();
    }

    void polygons_append(Polygons &dst) const {
        if (layer != NULL && ! layer->polygons.empty())
            Slic3r::polygons_append(dst, layer->polygons);
    }

    // The source layer. It carries the height and extrusion type (bridging / non bridging, extrusion height).
    PrintObjectSupportMaterial::MyLayer  *layer { nullptr };
    // Collect extrusions. They will be exported sorted by the bottom height.
    ExtrusionEntitiesPtr                  extrusions;

private:
    // In case the extrusions are non-empty, m_polygons_to_extrude may contain the rest areas yet to be filled by additional support.
    // This is useful mainly for the loop interfaces, which are generated before the zig-zag infills.
    std::unique_ptr<Polygons>             m_polygons_to_extrude;
};

typedef std::vector<MyLayerExtruded*> MyLayerExtrudedPtrs;

struct LoopInterfaceProcessor
{
    LoopInterfaceProcessor(coordf_t circle_r) :
        n_contact_loops(0),
        circle_radius(circle_r),
        circle_distance(circle_r * 3.)
    {
        // Shape of the top contact area.
        circle.points.reserve(6);
        for (size_t i = 0; i < 6; ++ i) {
            double angle = double(i) * M_PI / 3.;
            circle.points.push_back(Point(circle_radius * cos(angle), circle_radius * sin(angle)));
        }
    }

    // Generate loop contacts at the top_contact_layer,
    // trim the top_contact_layer->polygons with the areas covered by the loops.
    void generate(MyLayerExtruded &top_contact_layer, const Flow &interface_flow_src) const;

    int         n_contact_loops;
    coordf_t    circle_radius;
    coordf_t    circle_distance;
    Polygon     circle;
};

void LoopInterfaceProcessor::generate(MyLayerExtruded &top_contact_layer, const Flow &interface_flow_src) const
{
    if (n_contact_loops == 0 || top_contact_layer.empty())
        return;

    Flow flow = interface_flow_src.with_height(top_contact_layer.layer->height);

    Polygons overhang_polygons;
    if (top_contact_layer.layer->overhang_polygons != nullptr)
        overhang_polygons = std::move(*top_contact_layer.layer->overhang_polygons);

    // Generate the outermost loop.
    // Find centerline of the external loop (or any other kind of extrusions should the loop be skipped)
    ExPolygons top_contact_expolygons = offset_ex(union_ex(top_contact_layer.layer->polygons), - 0.5f * flow.scaled_width());

    // Grid size and bit shifts for quick and exact to/from grid coordinates manipulation.
    coord_t circle_grid_resolution = 1;
    coord_t circle_grid_powerof2 = 0;
    {
        // epsilon to account for rounding errors
        coord_t circle_grid_resolution_non_powerof2 = coord_t(2. * circle_distance + 3.);
        while (circle_grid_resolution < circle_grid_resolution_non_powerof2) {
            circle_grid_resolution <<= 1;
            ++ circle_grid_powerof2;
        }
    }

    struct PointAccessor {
        const Point* operator()(const Point &pt) const { return &pt; }
    };
    typedef ClosestPointInRadiusLookup<Point, PointAccessor> ClosestPointLookupType;
    
    Polygons loops0;
    {
        // find centerline of the external loop of the contours
        // Only consider the loops facing the overhang.
        Polygons external_loops;
        // Holes in the external loops.
        Polygons circles;
        Polygons overhang_with_margin = offset(union_ex(overhang_polygons), 0.5f * flow.scaled_width());
        for (ExPolygons::iterator it_contact_expoly = top_contact_expolygons.begin(); it_contact_expoly != top_contact_expolygons.end(); ++ it_contact_expoly) {
            // Store the circle centers placed for an expolygon into a regular grid, hashed by the circle centers.
            ClosestPointLookupType circle_centers_lookup(coord_t(circle_distance - SCALED_EPSILON));
            Points circle_centers;
            Point  center_last;
            // For each contour of the expolygon, start with the outer contour, continue with the holes.
            for (size_t i_contour = 0; i_contour <= it_contact_expoly->holes.size(); ++ i_contour) {
                Polygon     &contour = (i_contour == 0) ? it_contact_expoly->contour : it_contact_expoly->holes[i_contour - 1];
                const Point *seg_current_pt = nullptr;
                coordf_t     seg_current_t  = 0.;
                if (! intersection_pl(contour.split_at_first_point(), overhang_with_margin).empty()) {
                    // The contour is below the overhang at least to some extent.
                    //FIXME ideally one would place the circles below the overhang only.
                    // Walk around the contour and place circles so their centers are not closer than circle_distance from each other.
                    if (circle_centers.empty()) {
                        // Place the first circle.
                        seg_current_pt = &contour.points.front();
                        seg_current_t  = 0.;
                        center_last    = *seg_current_pt;
                        circle_centers_lookup.insert(center_last);
                        circle_centers.push_back(center_last);
                    }
                    for (Points::const_iterator it = contour.points.begin() + 1; it != contour.points.end(); ++it) {
                        // Is it possible to place a circle on this segment? Is it not too close to any of the circles already placed on this contour?
                        const Point &p1 = *(it-1);
                        const Point &p2 = *it;
                        // Intersection of a ray (p1, p2) with a circle placed at center_last, with radius of circle_distance.
                        const Vec2d v_seg(coordf_t(p2(0)) - coordf_t(p1(0)), coordf_t(p2(1)) - coordf_t(p1(1)));
                        const Vec2d v_cntr(coordf_t(p1(0) - center_last(0)), coordf_t(p1(1) - center_last(1)));
                        coordf_t a = v_seg.squaredNorm();
                        coordf_t b = 2. * v_seg.dot(v_cntr);
                        coordf_t c = v_cntr.squaredNorm() - circle_distance * circle_distance;
                        coordf_t disc = b * b - 4. * a * c;
                        if (disc > 0.) {
                            // The circle intersects a ray. Avoid the parts of the segment inside the circle.
                            coordf_t t1 = (-b - sqrt(disc)) / (2. * a);
                            coordf_t t2 = (-b + sqrt(disc)) / (2. * a);
                            coordf_t t0 = (seg_current_pt == &p1) ? seg_current_t : 0.;
                            // Take the lowest t in <t0, 1.>, excluding <t1, t2>.
                            coordf_t t;
                            if (t0 <= t1)
                                t = t0;
                            else if (t2 <= 1.)
                                t = t2;
                            else {
                                // Try the following segment.
                                seg_current_pt = nullptr;
                                continue;
                            }
                            seg_current_pt = &p1;
                            seg_current_t  = t;
                            center_last    = Point(p1(0) + coord_t(v_seg(0) * t), p1(1) + coord_t(v_seg(1) * t));
                            // It has been verified that the new point is far enough from center_last.
                            // Ensure, that it is far enough from all the centers.
                            std::pair<const Point*, coordf_t> circle_closest = circle_centers_lookup.find(center_last);
                            if (circle_closest.first != nullptr) {
                                -- it;
                                continue;
                            }
                        } else {
                            // All of the segment is outside the circle. Take the first point.
                            seg_current_pt = &p1;
                            seg_current_t  = 0.;
                            center_last    = p1;
                        }
                        // Place the first circle.
                        circle_centers_lookup.insert(center_last);
                        circle_centers.push_back(center_last);
                    }
                    external_loops.push_back(std::move(contour));
                    for (const Point &center : circle_centers) {
                        circles.push_back(circle);
                        circles.back().translate(center);
                    }
                }
            }
        }
        // Apply a pattern to the external loops.
        loops0 = diff(external_loops, circles);
    }

    Polylines loop_lines;
    {
        // make more loops
        Polygons loop_polygons = loops0;
        for (int i = 1; i < n_contact_loops; ++ i)
            polygons_append(loop_polygons,
                opening(
                    loops0, 
                    i * flow.scaled_spacing() + 0.5f * flow.scaled_spacing(),
                    0.5f * flow.scaled_spacing()));
        // Clip such loops to the side oriented towards the object.
        // Collect split points, so they will be recognized after the clipping.
        // At the split points the clipped pieces will be stitched back together.
        loop_lines.reserve(loop_polygons.size());
        std::unordered_map<Point, int, PointHash> map_split_points;
        for (Polygons::const_iterator it = loop_polygons.begin(); it != loop_polygons.end(); ++ it) {
            assert(map_split_points.find(it->first_point()) == map_split_points.end());
            map_split_points[it->first_point()] = -1;
            loop_lines.push_back(it->split_at_first_point());
        }
        loop_lines = intersection_pl(loop_lines, expand(overhang_polygons, scale_(SUPPORT_MATERIAL_MARGIN)));
        // Because a closed loop has been split to a line, loop_lines may contain continuous segments split to 2 pieces.
        // Try to connect them.
        for (int i_line = 0; i_line < int(loop_lines.size()); ++ i_line) {
            Polyline &polyline = loop_lines[i_line];
            auto it = map_split_points.find(polyline.first_point());
            if (it != map_split_points.end()) {
                // This is a stitching point.
                // If this assert triggers, multiple source polygons likely intersected at this point.
                assert(it->second != -2);
                if (it->second < 0) {
                    // First occurence.
                    it->second = i_line;
                } else {
                    // Second occurence. Join the lines.
                    Polyline &polyline_1st = loop_lines[it->second];
                    assert(polyline_1st.first_point() == it->first || polyline_1st.last_point() == it->first);
                    if (polyline_1st.first_point() == it->first)
                        polyline_1st.reverse();
                    polyline_1st.append(std::move(polyline));
                    it->second = -2;
                }
                continue;
            }
            it = map_split_points.find(polyline.last_point());
            if (it != map_split_points.end()) {
                // This is a stitching point.
                // If this assert triggers, multiple source polygons likely intersected at this point.
                assert(it->second != -2);
                if (it->second < 0) {
                    // First occurence.
                    it->second = i_line;
                } else {
                    // Second occurence. Join the lines.
                    Polyline &polyline_1st = loop_lines[it->second];
                    assert(polyline_1st.first_point() == it->first || polyline_1st.last_point() == it->first);
                    if (polyline_1st.first_point() == it->first)
                        polyline_1st.reverse();
                    polyline.reverse();
                    polyline_1st.append(std::move(polyline));
                    it->second = -2;
                }
            }
        }
        // Remove empty lines.
        remove_degenerate(loop_lines);
    }
    
    // add the contact infill area to the interface area
    // note that growing loops by $circle_radius ensures no tiny
    // extrusions are left inside the circles; however it creates
    // a very large gap between loops and contact_infill_polygons, so maybe another
    // solution should be found to achieve both goals
    // Store the trimmed polygons into a separate polygon set, so the original infill area remains intact for
    // "modulate by layer thickness".
    top_contact_layer.set_polygons_to_extrude(diff(top_contact_layer.layer->polygons, offset(loop_lines, float(circle_radius * 1.1))));

    // Transform loops into ExtrusionPath objects.
    extrusion_entities_append_paths(
        top_contact_layer.extrusions,
        std::move(loop_lines),
        erSupportMaterialInterface, flow.mm3_per_mm(), flow.width(), flow.height());
}

#ifdef SLIC3R_DEBUG
static std::string dbg_index_to_color(int idx)
{
    if (idx < 0)
        return "yellow";
    idx = idx % 3;
    switch (idx) {
        case 0: return "red";
        case 1: return "green";
        default: return "blue";
    }
}
#endif /* SLIC3R_DEBUG */

// When extruding a bottom interface layer over an object, the bottom interface layer is extruded in a thin air, therefore
// it is being extruded with a bridging flow to not shrink excessively (the die swell effect).
// Tiny extrusions are better avoided and it is always better to anchor the thread to an existing support structure if possible.
// Therefore the bottom interface spots are expanded a bit. The expanded regions may overlap with another bottom interface layers,
// leading to over extrusion, where they overlap. The over extrusion is better avoided as it often makes the interface layers
// to stick too firmly to the object.
//
// Modulate thickness (increase bottom_z) of extrusions_in_out generated for this_layer
// if they overlap with overlapping_layers, whose print_z is above this_layer.bottom_z() and below this_layer.print_z.
void modulate_extrusion_by_overlapping_layers(
    // Extrusions generated for this_layer.
    ExtrusionEntitiesPtr                               &extrusions_in_out,
    const PrintObjectSupportMaterial::MyLayer          &this_layer,
    // Multiple layers overlapping with this_layer, sorted bottom up.
    const PrintObjectSupportMaterial::MyLayersPtr      &overlapping_layers)
{
    size_t n_overlapping_layers = overlapping_layers.size();
    if (n_overlapping_layers == 0 || extrusions_in_out.empty())
        // The extrusions do not overlap with any other extrusion.
        return;

    // Get the initial extrusion parameters.
    ExtrusionPath *extrusion_path_template = dynamic_cast<ExtrusionPath*>(extrusions_in_out.front());
    assert(extrusion_path_template != nullptr);
    ExtrusionRole extrusion_role  = extrusion_path_template->role();
    float         extrusion_width = extrusion_path_template->width;

    struct ExtrusionPathFragment
    {
        ExtrusionPathFragment() : mm3_per_mm(-1), width(-1), height(-1) {};
        ExtrusionPathFragment(double mm3_per_mm, float width, float height) : mm3_per_mm(mm3_per_mm), width(width), height(height) {};

        Polylines       polylines;
        double          mm3_per_mm;
        float           width;
        float           height;
    };

    // Split the extrusions by the overlapping layers, reduce their extrusion rate.
    // The last path_fragment is from this_layer.
    std::vector<ExtrusionPathFragment> path_fragments(
        n_overlapping_layers + 1, 
        ExtrusionPathFragment(extrusion_path_template->mm3_per_mm, extrusion_path_template->width, extrusion_path_template->height));
    // Don't use it, it will be released.
    extrusion_path_template = nullptr;

#ifdef SLIC3R_DEBUG
    static int iRun = 0;
    ++ iRun;
    BoundingBox bbox;
    for (size_t i_overlapping_layer = 0; i_overlapping_layer < n_overlapping_layers; ++ i_overlapping_layer) {
        const PrintObjectSupportMaterial::MyLayer &overlapping_layer = *overlapping_layers[i_overlapping_layer];
        bbox.merge(get_extents(overlapping_layer.polygons));
    }
    for (ExtrusionEntitiesPtr::const_iterator it = extrusions_in_out.begin(); it != extrusions_in_out.end(); ++ it) {
        ExtrusionPath *path = dynamic_cast<ExtrusionPath*>(*it);
        assert(path != nullptr);
        bbox.merge(get_extents(path->polyline));
    }
    SVG svg(debug_out_path("support-fragments-%d-%lf.svg", iRun, this_layer.print_z).c_str(), bbox);
    const float transparency = 0.5f;
    // Filled polygons for the overlapping regions.
    svg.draw(union_ex(this_layer.polygons), dbg_index_to_color(-1), transparency);
    for (size_t i_overlapping_layer = 0; i_overlapping_layer < n_overlapping_layers; ++ i_overlapping_layer) {
        const PrintObjectSupportMaterial::MyLayer &overlapping_layer = *overlapping_layers[i_overlapping_layer];
        svg.draw(union_ex(overlapping_layer.polygons), dbg_index_to_color(int(i_overlapping_layer)), transparency);
    }
    // Contours of the overlapping regions.
    svg.draw(to_polylines(this_layer.polygons), dbg_index_to_color(-1), scale_(0.2));
    for (size_t i_overlapping_layer = 0; i_overlapping_layer < n_overlapping_layers; ++ i_overlapping_layer) {
        const PrintObjectSupportMaterial::MyLayer &overlapping_layer = *overlapping_layers[i_overlapping_layer];
        svg.draw(to_polylines(overlapping_layer.polygons), dbg_index_to_color(int(i_overlapping_layer)), scale_(0.1));
    }
    // Fill extrusion, the source.
    for (ExtrusionEntitiesPtr::const_iterator it = extrusions_in_out.begin(); it != extrusions_in_out.end(); ++ it) {
        ExtrusionPath *path = dynamic_cast<ExtrusionPath*>(*it);
        std::string color_name;
        switch ((it - extrusions_in_out.begin()) % 9) {
            case 0: color_name = "magenta"; break;
            case 1: color_name = "deepskyblue"; break;
            case 2: color_name = "coral"; break;
            case 3: color_name = "goldenrod"; break;
            case 4: color_name = "orange"; break;
            case 5: color_name = "olivedrab"; break;
            case 6: color_name = "blueviolet"; break;
            case 7: color_name = "brown"; break;
            default: color_name = "orchid"; break;
        }
        svg.draw(path->polyline, color_name, scale_(0.2));
    }
#endif /* SLIC3R_DEBUG */

    // End points of the original paths.
    std::vector<std::pair<Point, Point>> path_ends; 
    // Collect the paths of this_layer.
    {
        Polylines &polylines = path_fragments.back().polylines;
        for (ExtrusionEntity *ee : extrusions_in_out) {
            ExtrusionPath *path = dynamic_cast<ExtrusionPath*>(ee);
            assert(path != nullptr);
            polylines.emplace_back(Polyline(std::move(path->polyline)));
            path_ends.emplace_back(std::pair<Point, Point>(polylines.back().points.front(), polylines.back().points.back()));
        }
    }
    // Destroy the original extrusion paths, their polylines were moved to path_fragments already.
    // This will be the destination for the new paths.
    extrusions_in_out.clear();

    // Fragment the path segments by overlapping layers. The overlapping layers are sorted by an increasing print_z.
    // Trim by the highest overlapping layer first.
    for (int i_overlapping_layer = int(n_overlapping_layers) - 1; i_overlapping_layer >= 0; -- i_overlapping_layer) {
        const PrintObjectSupportMaterial::MyLayer &overlapping_layer = *overlapping_layers[i_overlapping_layer];
        ExtrusionPathFragment &frag = path_fragments[i_overlapping_layer];
        Polygons polygons_trimming = offset(union_ex(overlapping_layer.polygons), float(scale_(0.5*extrusion_width)));
        frag.polylines = intersection_pl(path_fragments.back().polylines, polygons_trimming);
        path_fragments.back().polylines = diff_pl(path_fragments.back().polylines, polygons_trimming);
        // Adjust the extrusion parameters for a reduced layer height and a non-bridging flow (nozzle_dmr = -1, does not matter).
        assert(this_layer.print_z > overlapping_layer.print_z);
        frag.height = float(this_layer.print_z - overlapping_layer.print_z);
        frag.mm3_per_mm = Flow(frag.width, frag.height, -1.f).mm3_per_mm();
#ifdef SLIC3R_DEBUG
        svg.draw(frag.polylines, dbg_index_to_color(i_overlapping_layer), scale_(0.1));
#endif /* SLIC3R_DEBUG */
    }

#ifdef SLIC3R_DEBUG
    svg.draw(path_fragments.back().polylines, dbg_index_to_color(-1), scale_(0.1));
    svg.Close();
#endif /* SLIC3R_DEBUG */

    // Now chain the split segments using hashing and a nearly exact match, maintaining the order of segments.
    // Create a single ExtrusionPath or ExtrusionEntityCollection per source ExtrusionPath.
    // Map of fragment start/end points to a pair of <i_overlapping_layer, i_polyline_in_layer>
    // Because a non-exact matching is used for the end points, a multi-map is used.
    // As the clipper library may reverse the order of some clipped paths, store both ends into the map.
    struct ExtrusionPathFragmentEnd
    {
        ExtrusionPathFragmentEnd(size_t alayer_idx, size_t apolyline_idx, bool ais_start) :
            layer_idx(alayer_idx), polyline_idx(apolyline_idx), is_start(ais_start) {}
        size_t layer_idx;
        size_t polyline_idx;
        bool   is_start;
    };
    class ExtrusionPathFragmentEndPointAccessor {
    public:
        ExtrusionPathFragmentEndPointAccessor(const std::vector<ExtrusionPathFragment> &path_fragments) : m_path_fragments(path_fragments) {}
        // Return an end point of a fragment, or nullptr if the fragment has been consumed already.
        const Point* operator()(const ExtrusionPathFragmentEnd &fragment_end) const {
            const Polyline &polyline = m_path_fragments[fragment_end.layer_idx].polylines[fragment_end.polyline_idx];
            return polyline.points.empty() ? nullptr :
                (fragment_end.is_start ? &polyline.points.front() : &polyline.points.back());
        }
    private:
        ExtrusionPathFragmentEndPointAccessor& operator=(const ExtrusionPathFragmentEndPointAccessor&) {
            return *this;
        }

        const std::vector<ExtrusionPathFragment> &m_path_fragments;
    };
    const coord_t search_radius = 7;
    ClosestPointInRadiusLookup<ExtrusionPathFragmentEnd, ExtrusionPathFragmentEndPointAccessor> map_fragment_starts(
        search_radius, ExtrusionPathFragmentEndPointAccessor(path_fragments));
    for (size_t i_overlapping_layer = 0; i_overlapping_layer <= n_overlapping_layers; ++ i_overlapping_layer) {
        const Polylines &polylines = path_fragments[i_overlapping_layer].polylines;
        for (size_t i_polyline = 0; i_polyline < polylines.size(); ++ i_polyline) {
            // Map a starting point of a polyline to a pair of <layer, polyline>
            if (polylines[i_polyline].points.size() >= 2) {
                map_fragment_starts.insert(ExtrusionPathFragmentEnd(i_overlapping_layer, i_polyline, true));
                map_fragment_starts.insert(ExtrusionPathFragmentEnd(i_overlapping_layer, i_polyline, false));
            }
        }
    }

    // For each source path:
    for (size_t i_path = 0; i_path < path_ends.size(); ++ i_path) {
        const Point &pt_start = path_ends[i_path].first;
        const Point &pt_end   = path_ends[i_path].second;
        Point pt_current = pt_start;
        // Find a chain of fragments with the original / reduced print height.
        ExtrusionMultiPath multipath;
        for (;;) {
            // Find a closest end point to pt_current.
            std::pair<const ExtrusionPathFragmentEnd*, coordf_t> end_and_dist2 = map_fragment_starts.find(pt_current);
            // There may be a bug in Clipper flipping the order of two last points in a fragment?
            // assert(end_and_dist2.first != nullptr);
            assert(end_and_dist2.first == nullptr || end_and_dist2.second < search_radius * search_radius);
            if (end_and_dist2.first == nullptr) {
                // New fragment connecting to pt_current was not found.
                // Verify that the last point found is close to the original end point of the unfragmented path.
                //const double d2 = (pt_end - pt_current).cast<double>.squaredNorm();
                //assert(d2 < coordf_t(search_radius * search_radius));
                // End of the path.
                break;
            }
            const ExtrusionPathFragmentEnd &fragment_end_min = *end_and_dist2.first;
            // Fragment to consume.
            ExtrusionPathFragment &frag = path_fragments[fragment_end_min.layer_idx];
            Polyline              &frag_polyline = frag.polylines[fragment_end_min.polyline_idx];
            // Path to append the fragment to.
            ExtrusionPath         *path = multipath.paths.empty() ? nullptr : &multipath.paths.back();
            if (path != nullptr) {
                // Verify whether the path is compatible with the current fragment.
                assert(this_layer.layer_type == PrintObjectSupportMaterial::sltBottomContact || path->height != frag.height || path->mm3_per_mm != frag.mm3_per_mm);
                if (path->height != frag.height || path->mm3_per_mm != frag.mm3_per_mm) {
                    path = nullptr;
                }
                // Merging with the previous path. This can only happen if the current layer was reduced by a base layer, which was split into a base and interface layer.
            }
            if (path == nullptr) {
                // Allocate a new path.
                multipath.paths.push_back(ExtrusionPath(extrusion_role, frag.mm3_per_mm, frag.width, frag.height));
                path = &multipath.paths.back();
            }
            // The Clipper library may flip the order of the clipped polylines arbitrarily.
            // Reverse the source polyline, if connecting to the end.
            if (! fragment_end_min.is_start)
                frag_polyline.reverse();
            // Enforce exact overlap of the end points of successive fragments.
            assert(frag_polyline.points.front() == pt_current);
            frag_polyline.points.front() = pt_current;
            // Don't repeat the first point.
            if (! path->polyline.points.empty())
                path->polyline.points.pop_back();
            // Consume the fragment's polyline, remove it from the input fragments, so it will be ignored the next time.
            path->polyline.append(std::move(frag_polyline));
            frag_polyline.points.clear();
            pt_current = path->polyline.points.back();
            if (pt_current == pt_end) {
                // End of the path.
                break;
            }
        }
        if (!multipath.paths.empty()) {
            if (multipath.paths.size() == 1) {
                // This path was not fragmented.
                extrusions_in_out.push_back(new ExtrusionPath(std::move(multipath.paths.front())));
            } else {
                // This path was fragmented. Copy the collection as a whole object, so the order inside the collection will not be changed
                // during the chaining of extrusions_in_out.
                extrusions_in_out.push_back(new ExtrusionMultiPath(std::move(multipath)));
            }
        }
    }
    // If there are any non-consumed fragments, add them separately.
    //FIXME this shall not happen, if the Clipper works as expected and all paths split to fragments could be re-connected.
    for (auto it_fragment = path_fragments.begin(); it_fragment != path_fragments.end(); ++ it_fragment)
        extrusion_entities_append_paths(extrusions_in_out, std::move(it_fragment->polylines), extrusion_role, it_fragment->mm3_per_mm, it_fragment->width, it_fragment->height);
}

void PrintObjectSupportMaterial::generate_toolpaths(
    SupportLayerPtrs    &support_layers,
    const MyLayersPtr   &raft_layers,
    const MyLayersPtr   &bottom_contacts,
    const MyLayersPtr   &top_contacts,
    const MyLayersPtr   &intermediate_layers,
    const MyLayersPtr   &interface_layers,
    const MyLayersPtr   &base_interface_layers) const
{
    // loop_interface_processor with a given circle radius.
    LoopInterfaceProcessor loop_interface_processor(1.5 * m_support_params.support_material_interface_flow.scaled_width());
    loop_interface_processor.n_contact_loops = this->has_contact_loops() ? 1 : 0;

    std::vector<float>      angles { m_support_params.base_angle };
    if (m_object_config->support_material_pattern == smpRectilinearGrid)
        angles.push_back(m_support_params.interface_angle);

    BoundingBox bbox_object(Point(-scale_(1.), -scale_(1.0)), Point(scale_(1.), scale_(1.)));

//    const coordf_t link_max_length_factor = 3.;
    const coordf_t link_max_length_factor = 0.;

    float raft_angle_1st_layer  = 0.f;
    float raft_angle_base       = 0.f;
    float raft_angle_interface  = 0.f;
    if (m_slicing_params.base_raft_layers > 1) {
        // There are all raft layer types (1st layer, base, interface & contact layers) available.
        raft_angle_1st_layer  = m_support_params.interface_angle;
        raft_angle_base       = m_support_params.base_angle;
        raft_angle_interface  = m_support_params.interface_angle;
    } else if (m_slicing_params.base_raft_layers == 1 || m_slicing_params.interface_raft_layers > 1) {
        // 1st layer, interface & contact layers available.
        raft_angle_1st_layer  = m_support_params.base_angle;
        if (this->has_support())
            // Print 1st layer at 45 degrees from both the interface and base angles as both can land on the 1st layer.
            raft_angle_1st_layer += 0.7854f;
        raft_angle_interface  = m_support_params.interface_angle;
    } else if (m_slicing_params.interface_raft_layers == 1) {
        // Only the contact raft layer is non-empty, which will be printed as the 1st layer.
        assert(m_slicing_params.base_raft_layers == 0);
        assert(m_slicing_params.interface_raft_layers == 1);
        assert(m_slicing_params.raft_layers() == 1 && raft_layers.size() == 0);
    } else {
        // No raft.
        assert(m_slicing_params.base_raft_layers == 0);
        assert(m_slicing_params.interface_raft_layers == 0);
        assert(m_slicing_params.raft_layers() == 0 && raft_layers.size() == 0);
    }

    // Insert the raft base layers.
    size_t n_raft_layers = size_t(std::max(0, int(m_slicing_params.raft_layers()) - 1));
    tbb::parallel_for(tbb::blocked_range<size_t>(0, n_raft_layers),
        [this, &support_layers, &raft_layers, 
            &bbox_object, raft_angle_1st_layer, raft_angle_base, raft_angle_interface, link_max_length_factor]
            (const tbb::blocked_range<size_t>& range) {
        for (size_t support_layer_id = range.begin(); support_layer_id < range.end(); ++ support_layer_id)
        {
            assert(support_layer_id < raft_layers.size());
            SupportLayer &support_layer = *support_layers[support_layer_id];
            assert(support_layer.support_fills.entities.empty());
            MyLayer      &raft_layer    = *raft_layers[support_layer_id];

            std::unique_ptr<Fill> filler_interface = std::unique_ptr<Fill>(Fill::new_from_type(m_support_params.interface_fill_pattern));
            std::unique_ptr<Fill> filler_support   = std::unique_ptr<Fill>(Fill::new_from_type(m_support_params.base_fill_pattern));
            filler_interface->set_bounding_box(bbox_object);
            filler_support->set_bounding_box(bbox_object);

            // Print the support base below the support columns, or the support base for the support columns plus the contacts.
            if (support_layer_id > 0) {
                const Polygons &to_infill_polygons = (support_layer_id < m_slicing_params.base_raft_layers) ? 
                    raft_layer.polygons :
                    //FIXME misusing contact_polygons for support columns.
                    ((raft_layer.contact_polygons == nullptr) ? Polygons() : *raft_layer.contact_polygons);
                if (! to_infill_polygons.empty()) {
                    assert(! raft_layer.bridging);
                    Flow flow(float(m_support_params.support_material_flow.width()), float(raft_layer.height), m_support_params.support_material_flow.nozzle_diameter());
                    Fill * filler = filler_support.get();
                    filler->angle = raft_angle_base;
                    filler->spacing = m_support_params.support_material_flow.spacing();
                    filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / m_support_params.support_density));
                    fill_expolygons_with_sheath_generate_paths(
                        // Destination
                        support_layer.support_fills.entities,
                        // Regions to fill
                        to_infill_polygons,
                        // Filler and its parameters
                        filler, float(m_support_params.support_density),
                        // Extrusion parameters
                        erSupportMaterial, flow,
                        m_support_params.with_sheath, false);
                }
            }

            Fill *filler = filler_interface.get();
            Flow  flow = m_support_params.first_layer_flow;
            float density = 0.f;
            if (support_layer_id == 0) {
                // Base flange.
                filler->angle = raft_angle_1st_layer;
                filler->spacing = m_support_params.first_layer_flow.spacing();
                density       = float(m_object_config->raft_first_layer_density.value * 0.01);
            } else if (support_layer_id >= m_slicing_params.base_raft_layers) {
                filler->angle = raft_angle_interface;
                // We don't use $base_flow->spacing because we need a constant spacing
                // value that guarantees that all layers are correctly aligned.
                filler->spacing = m_support_params.support_material_flow.spacing();
                assert(! raft_layer.bridging);
                flow          = Flow(float(m_support_params.support_material_interface_flow.width()), float(raft_layer.height), m_support_params.support_material_flow.nozzle_diameter());
                density       = float(m_support_params.interface_density);
            } else
                continue;
            filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / density));
            fill_expolygons_with_sheath_generate_paths(
                // Destination
                support_layer.support_fills.entities, 
                // Regions to fill
                raft_layer.polygons,
                // Filler and its parameters
                filler, density,
                // Extrusion parameters
                (support_layer_id < m_slicing_params.base_raft_layers) ? erSupportMaterial : erSupportMaterialInterface, flow, 
                // sheath at first layer
                support_layer_id == 0, support_layer_id == 0);
        }
    });

    struct LayerCacheItem {
        LayerCacheItem(MyLayerExtruded *layer_extruded = nullptr) : layer_extruded(layer_extruded) {}
        MyLayerExtruded         *layer_extruded;
        std::vector<MyLayer*>    overlapping;
    };
    struct LayerCache {
        MyLayerExtruded                                     bottom_contact_layer;
        MyLayerExtruded                                     top_contact_layer;
        MyLayerExtruded                                     base_layer;
        MyLayerExtruded                                     interface_layer;
        MyLayerExtruded                                     base_interface_layer;
        boost::container::static_vector<LayerCacheItem, 5>  nonempty;

        void add_nonempty_and_sort() {
            for (MyLayerExtruded *item : { &bottom_contact_layer, &top_contact_layer, &interface_layer, &base_interface_layer, &base_layer })
                if (! item->empty())
                    this->nonempty.emplace_back(item);
            // Sort the layers with the same print_z coordinate by their heights, thickest first.
            std::stable_sort(this->nonempty.begin(), this->nonempty.end(), [](const LayerCacheItem &lc1, const LayerCacheItem &lc2) { return lc1.layer_extruded->layer->height > lc2.layer_extruded->layer->height; });
        }
    };
    std::vector<LayerCache>             layer_caches(support_layers.size());

    tbb::parallel_for(tbb::blocked_range<size_t>(n_raft_layers, support_layers.size()),
        [this, &support_layers, &bottom_contacts, &top_contacts, &intermediate_layers, &interface_layers, &base_interface_layers, &layer_caches, &loop_interface_processor, 
            &bbox_object, &angles, link_max_length_factor]
            (const tbb::blocked_range<size_t>& range) {
        // Indices of the 1st layer in their respective container at the support layer height.
        size_t idx_layer_bottom_contact   = size_t(-1);
        size_t idx_layer_top_contact      = size_t(-1);
        size_t idx_layer_intermediate     = size_t(-1);
        size_t idx_layer_interface        = size_t(-1);
        size_t idx_layer_base_interface   = size_t(-1);
        const auto fill_type_first_layer  = ipRectilinear;
        auto filler_interface       = std::unique_ptr<Fill>(Fill::new_from_type(m_support_params.contact_fill_pattern));
        // Filler for the 1st layer interface, if different from filler_interface.
        auto filler_first_layer_ptr = std::unique_ptr<Fill>(range.begin() == 0 && m_support_params.contact_fill_pattern != fill_type_first_layer ? Fill::new_from_type(fill_type_first_layer) : nullptr);
        // Pointer to the 1st layer interface filler.
        auto filler_first_layer     = filler_first_layer_ptr ? filler_first_layer_ptr.get() : filler_interface.get();
        // Filler for the base interface (to be used for soluble interface / non soluble base, to produce non soluble interface layer below soluble interface layer).
        auto filler_base_interface  = std::unique_ptr<Fill>(base_interface_layers.empty() ? nullptr : 
            Fill::new_from_type(m_support_params.interface_density > 0.95 || m_support_params.with_sheath ? ipRectilinear : ipSupportBase));
        auto filler_support         = std::unique_ptr<Fill>(Fill::new_from_type(m_support_params.base_fill_pattern));
        filler_interface->set_bounding_box(bbox_object);
        if (filler_first_layer_ptr)
            filler_first_layer_ptr->set_bounding_box(bbox_object);
        if (filler_base_interface)
            filler_base_interface->set_bounding_box(bbox_object);
        filler_support->set_bounding_box(bbox_object);
        for (size_t support_layer_id = range.begin(); support_layer_id < range.end(); ++ support_layer_id)
        {
            SupportLayer &support_layer = *support_layers[support_layer_id];
            LayerCache   &layer_cache   = layer_caches[support_layer_id];
            float         interface_angle_delta = m_object_config->support_material_style.value == smsSnug ? 
                (support_layer.interface_id() & 1) ? float(- M_PI / 4.) : float(+ M_PI / 4.) :
                0;

            // Find polygons with the same print_z.
            MyLayerExtruded &bottom_contact_layer = layer_cache.bottom_contact_layer;
            MyLayerExtruded &top_contact_layer    = layer_cache.top_contact_layer;
            MyLayerExtruded &base_layer           = layer_cache.base_layer;
            MyLayerExtruded &interface_layer      = layer_cache.interface_layer;
            MyLayerExtruded &base_interface_layer = layer_cache.base_interface_layer;
            // Increment the layer indices to find a layer at support_layer.print_z.
            {
                auto fun = [&support_layer](const MyLayer *l){ return l->print_z >= support_layer.print_z - EPSILON; };
                idx_layer_bottom_contact  = idx_higher_or_equal(bottom_contacts,     idx_layer_bottom_contact,  fun);
                idx_layer_top_contact     = idx_higher_or_equal(top_contacts,        idx_layer_top_contact,     fun);
                idx_layer_intermediate    = idx_higher_or_equal(intermediate_layers, idx_layer_intermediate,    fun);
                idx_layer_interface       = idx_higher_or_equal(interface_layers,    idx_layer_interface,       fun);
                idx_layer_base_interface  = idx_higher_or_equal(base_interface_layers, idx_layer_base_interface,fun);
            }
            // Copy polygons from the layers.
            if (idx_layer_bottom_contact < bottom_contacts.size() && bottom_contacts[idx_layer_bottom_contact]->print_z < support_layer.print_z + EPSILON)
                bottom_contact_layer.layer = bottom_contacts[idx_layer_bottom_contact];
            if (idx_layer_top_contact < top_contacts.size() && top_contacts[idx_layer_top_contact]->print_z < support_layer.print_z + EPSILON)
                top_contact_layer.layer = top_contacts[idx_layer_top_contact];
            if (idx_layer_interface < interface_layers.size() && interface_layers[idx_layer_interface]->print_z < support_layer.print_z + EPSILON)
                interface_layer.layer = interface_layers[idx_layer_interface];
            if (idx_layer_base_interface < base_interface_layers.size() && base_interface_layers[idx_layer_base_interface]->print_z < support_layer.print_z + EPSILON)
                base_interface_layer.layer = base_interface_layers[idx_layer_base_interface];
            if (idx_layer_intermediate < intermediate_layers.size() && intermediate_layers[idx_layer_intermediate]->print_z < support_layer.print_z + EPSILON)
                base_layer.layer = intermediate_layers[idx_layer_intermediate];

            if (m_object_config->support_material_interface_layers == 0) {
                // If no top interface layers were requested, we treat the contact layer exactly as a generic base layer.
                if (m_support_params.can_merge_support_regions) {
                    if (base_layer.could_merge(top_contact_layer)) 
                        base_layer.merge(std::move(top_contact_layer));
                    else if (base_layer.empty())
                        base_layer = std::move(top_contact_layer);
                }
            } else {
                loop_interface_processor.generate(top_contact_layer, m_support_params.support_material_interface_flow);
                // If no loops are allowed, we treat the contact layer exactly as a generic interface layer.
                // Merge interface_layer into top_contact_layer, as the top_contact_layer is not synchronized and therefore it will be used
                // to trim other layers.
                if (top_contact_layer.could_merge(interface_layer))
                    top_contact_layer.merge(std::move(interface_layer));
            } 
            if ((m_object_config->support_material_interface_layers == 0 || m_object_config->support_material_bottom_interface_layers == 0) && m_support_params.can_merge_support_regions) {
                if (base_layer.could_merge(bottom_contact_layer))
                    base_layer.merge(std::move(bottom_contact_layer));
                else if (base_layer.empty() && ! bottom_contact_layer.empty() && ! bottom_contact_layer.layer->bridging)
                    base_layer = std::move(bottom_contact_layer);
            } else if (bottom_contact_layer.could_merge(top_contact_layer))
                top_contact_layer.merge(std::move(bottom_contact_layer));
            else if (bottom_contact_layer.could_merge(interface_layer))
                bottom_contact_layer.merge(std::move(interface_layer));

#if 0
            if ( ! interface_layer.empty() && ! base_layer.empty()) {
                // turn base support into interface when it's contained in our holes
                // (this way we get wider interface anchoring)
                //FIXME The intention of the code below is unclear. One likely wanted to just merge small islands of base layers filling in the holes
                // inside interface layers, but the code below fills just too much, see GH #4570
                Polygons islands = top_level_islands(interface_layer.layer->polygons);
                polygons_append(interface_layer.layer->polygons, intersection(base_layer.layer->polygons, islands));
                base_layer.layer->polygons = diff(base_layer.layer->polygons, islands);
            }
#endif

            // Top and bottom contacts, interface layers.
            for (size_t i = 0; i < 3; ++ i) {
                MyLayerExtruded &layer_ex = (i == 0) ? top_contact_layer : (i == 1 ? bottom_contact_layer : interface_layer);
                if (layer_ex.empty() || layer_ex.polygons_to_extrude().empty())
                    continue;
                bool interface_as_base = m_object_config->support_material_interface_layers.value == 0 || 
                    (m_object_config->support_material_bottom_interface_layers == 0 && &layer_ex == &bottom_contact_layer);
                //FIXME Bottom interfaces are extruded with the briding flow. Some bridging layers have its height slightly reduced, therefore
                // the bridging flow does not quite apply. Reduce the flow to area of an ellipse? (A = pi * a * b)
                auto interface_flow = layer_ex.layer->bridging ?
                    Flow::bridging_flow(layer_ex.layer->height, m_support_params.support_material_bottom_interface_flow.nozzle_diameter()) :
                    (interface_as_base ? &m_support_params.support_material_flow : &m_support_params.support_material_interface_flow)->with_height(float(layer_ex.layer->height));
                filler_interface->angle = interface_as_base ?
                        // If zero interface layers are configured, use the same angle as for the base layers.
                        angles[support_layer_id % angles.size()] :
                        // Use interface angle for the interface layers.
                        m_support_params.interface_angle + interface_angle_delta;
                double density = interface_as_base ? m_support_params.support_density : m_support_params.interface_density;
                filler_interface->spacing = interface_as_base ? m_support_params.support_material_flow.spacing() : m_support_params.support_material_interface_flow.spacing();
                filler_interface->link_max_length = coord_t(scale_(filler_interface->spacing * link_max_length_factor / density));
                fill_expolygons_generate_paths(
                    // Destination
                    layer_ex.extrusions, 
                    // Regions to fill
                    union_safety_offset_ex(layer_ex.polygons_to_extrude()),
                    // Filler and its parameters
                    filler_interface.get(), float(density),
                    // Extrusion parameters
                    erSupportMaterialInterface, interface_flow);
            }

            // Base interface layers under soluble interfaces
            if ( ! base_interface_layer.empty() && ! base_interface_layer.polygons_to_extrude().empty()) {
                Fill *filler = filler_base_interface.get();
                //FIXME Bottom interfaces are extruded with the briding flow. Some bridging layers have its height slightly reduced, therefore
                // the bridging flow does not quite apply. Reduce the flow to area of an ellipse? (A = pi * a * b)
                assert(! base_interface_layer.layer->bridging);
                Flow interface_flow = m_support_params.support_material_flow.with_height(float(base_interface_layer.layer->height));
                filler->angle   = m_support_params.interface_angle + interface_angle_delta;
                filler->spacing = m_support_params.support_material_interface_flow.spacing();
                filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / m_support_params.interface_density));
                fill_expolygons_generate_paths(
                    // Destination
                    base_interface_layer.extrusions, 
                    //base_layer_interface.extrusions,
                    // Regions to fill
                    union_safety_offset_ex(base_interface_layer.polygons_to_extrude()),
                    // Filler and its parameters
                    filler, float(m_support_params.interface_density),
                    // Extrusion parameters
                    erSupportMaterial, interface_flow);
            }

            // Base support or flange.
            if (! base_layer.empty() && ! base_layer.polygons_to_extrude().empty()) {
                Fill *filler = filler_support.get();
                filler->angle = angles[support_layer_id % angles.size()];
                // We don't use $base_flow->spacing because we need a constant spacing
                // value that guarantees that all layers are correctly aligned.
                assert(! base_layer.layer->bridging);
                auto flow = m_support_params.support_material_flow.with_height(float(base_layer.layer->height));
                filler->spacing = m_support_params.support_material_flow.spacing();
                filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / m_support_params.support_density));
                float density = float(m_support_params.support_density);
                bool  sheath  = m_support_params.with_sheath;
                bool  no_sort = false;
                if (base_layer.layer->bottom_z < EPSILON) {
                    // Base flange (the 1st layer).
                    filler = filler_first_layer;
                    filler->angle = Geometry::deg2rad(float(m_object_config->support_material_angle.value + 90.));
                    density = float(m_object_config->raft_first_layer_density.value * 0.01);
                    flow = m_support_params.first_layer_flow;
                    // use the proper spacing for first layer as we don't need to align
                    // its pattern to the other layers
                    //FIXME When paralellizing, each thread shall have its own copy of the fillers.
                    filler->spacing = flow.spacing();
                    filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / density));
                    sheath  = true;
                    no_sort = true;
                }
                fill_expolygons_with_sheath_generate_paths(
                    // Destination
                    base_layer.extrusions,
                    // Regions to fill
                    base_layer.polygons_to_extrude(),
                    // Filler and its parameters
                    filler, density,
                    // Extrusion parameters
                    erSupportMaterial, flow,
                    sheath, no_sort);

            }

            // Merge base_interface_layers to base_layers to avoid unneccessary retractions
            if (! base_layer.empty() && ! base_interface_layer.empty() && ! base_layer.polygons_to_extrude().empty() && ! base_interface_layer.polygons_to_extrude().empty() &&
                base_layer.could_merge(base_interface_layer))
                base_layer.merge(std::move(base_interface_layer));

            layer_cache.add_nonempty_and_sort();

            // Collect the support areas with this print_z into islands, as there is no need
            // for retraction over these islands.
            Polygons polys;
            // Collect the extrusions, sorted by the bottom extrusion height.
            for (LayerCacheItem &layer_cache_item : layer_cache.nonempty) {
                // Collect islands to polys.
                layer_cache_item.layer_extruded->polygons_append(polys);
                // The print_z of the top contact surfaces and bottom_z of the bottom contact surfaces are "free"
                // in a sense that they are not synchronized with other support layers. As the top and bottom contact surfaces
                // are inflated to achieve a better anchoring, it may happen, that these surfaces will at least partially
                // overlap in Z with another support layers, leading to over-extrusion.
                // Mitigate the over-extrusion by modulating the extrusion rate over these regions.
                // The print head will follow the same print_z, but the layer thickness will be reduced
                // where it overlaps with another support layer.
                //FIXME When printing a briging path, what is an equivalent height of the squished extrudate of the same width?
                // Collect overlapping top/bottom surfaces.
                layer_cache_item.overlapping.reserve(20);
                coordf_t bottom_z = layer_cache_item.layer_extruded->layer->bottom_print_z() + EPSILON;
                auto add_overlapping = [&layer_cache_item, bottom_z](const MyLayersPtr &layers, size_t idx_top) {
                    for (int i = int(idx_top) - 1; i >= 0 && layers[i]->print_z > bottom_z; -- i)
                        layer_cache_item.overlapping.push_back(layers[i]);
                };
                add_overlapping(top_contacts, idx_layer_top_contact);
                if (layer_cache_item.layer_extruded->layer->layer_type == sltBottomContact) {
                    // Bottom contact layer may overlap with a base layer, which may be changed to interface layer.
                    add_overlapping(intermediate_layers,   idx_layer_intermediate);
                    add_overlapping(interface_layers,      idx_layer_interface);
                    add_overlapping(base_interface_layers, idx_layer_base_interface);
                }
                // Order the layers by lexicographically by an increasing print_z and a decreasing layer height.
                std::stable_sort(layer_cache_item.overlapping.begin(), layer_cache_item.overlapping.end(), [](auto *l1, auto *l2) { return *l1 < *l2; });
            }
            if (! polys.empty())
                expolygons_append(support_layer.support_islands.expolygons, union_ex(polys));
        } // for each support_layer_id
    });

    // Now modulate the support layer height in parallel.
    tbb::parallel_for(tbb::blocked_range<size_t>(n_raft_layers, support_layers.size()),
        [&support_layers, &layer_caches]
            (const tbb::blocked_range<size_t>& range) {
        for (size_t support_layer_id = range.begin(); support_layer_id < range.end(); ++ support_layer_id) {
            SupportLayer &support_layer = *support_layers[support_layer_id];
            LayerCache   &layer_cache   = layer_caches[support_layer_id];
            // For all extrusion types at this print_z, ordered by decreasing layer height:
            for (LayerCacheItem &layer_cache_item : layer_cache.nonempty) {
                // Trim the extrusion height from the bottom by the overlapping layers.
                modulate_extrusion_by_overlapping_layers(layer_cache_item.layer_extruded->extrusions, *layer_cache_item.layer_extruded->layer, layer_cache_item.overlapping);
                support_layer.support_fills.append(std::move(layer_cache_item.layer_extruded->extrusions));
            }
        }
    });

#ifndef NDEBUG
    struct Test {
        static bool verify_nonempty(const ExtrusionEntityCollection *collection) {
            for (const ExtrusionEntity *ee : collection->entities) {
                if (const ExtrusionPath *path = dynamic_cast<const ExtrusionPath*>(ee))
                    assert(! path->empty());
                else if (const ExtrusionMultiPath *multipath = dynamic_cast<const ExtrusionMultiPath*>(ee))
                    assert(! multipath->empty());
                else if (const ExtrusionEntityCollection *eecol = dynamic_cast<const ExtrusionEntityCollection*>(ee)) {
                    assert(! eecol->empty());
                    return verify_nonempty(eecol);
                } else
                    assert(false);
            }
            return true;
        }
    };
    for (const SupportLayer *support_layer : support_layers)
    assert(Test::verify_nonempty(&support_layer->support_fills));
#endif // NDEBUG
}

/*
void PrintObjectSupportMaterial::clip_by_pillars(
    const PrintObject   &object,
    LayersPtr           &bottom_contacts,
    LayersPtr           &top_contacts,
    LayersPtr           &intermediate_contacts);

{
    // this prevents supplying an empty point set to BoundingBox constructor
    if (top_contacts.empty())
        return;

    coord_t pillar_size    = scale_(PILLAR_SIZE);
    coord_t pillar_spacing = scale_(PILLAR_SPACING);
    
    // A regular grid of pillars, filling the 2D bounding box.
    Polygons grid;
    {
        // Rectangle with a side of 2.5x2.5mm.
        Polygon pillar;
        pillar.points.push_back(Point(0, 0));
        pillar.points.push_back(Point(pillar_size, 0));
        pillar.points.push_back(Point(pillar_size, pillar_size));
        pillar.points.push_back(Point(0, pillar_size));
        
        // 2D bounding box of the projection of all contact polygons.
        BoundingBox bbox;
        for (LayersPtr::const_iterator it = top_contacts.begin(); it != top_contacts.end(); ++ it)
            bbox.merge(get_extents((*it)->polygons));
        grid.reserve(size_t(ceil(bb.size()(0) / pillar_spacing)) * size_t(ceil(bb.size()(1) / pillar_spacing)));
        for (coord_t x = bb.min(0); x <= bb.max(0) - pillar_size; x += pillar_spacing) {
            for (coord_t y = bb.min(1); y <= bb.max(1) - pillar_size; y += pillar_spacing) {
                grid.push_back(pillar);
                for (size_t i = 0; i < pillar.points.size(); ++ i)
                    grid.back().points[i].translate(Point(x, y));
            }
        }
    }
    
    // add pillars to every layer
    for my $i (0..n_support_z) {
        $shape->[$i] = [ @$grid ];
    }
    
    // build capitals
    for my $i (0..n_support_z) {
        my $z = $support_z->[$i];
        
        my $capitals = intersection(
            $grid,
            $contact->{$z} // [],
        );
        
        // work on one pillar at time (if any) to prevent the capitals from being merged
        // but store the contact area supported by the capital because we need to make 
        // sure nothing is left
        my $contact_supported_by_capitals = [];
        foreach my $capital (@$capitals) {
            // enlarge capital tops
            $capital = offset([$capital], +($pillar_spacing - $pillar_size)/2);
            push @$contact_supported_by_capitals, @$capital;
            
            for (my $j = $i-1; $j >= 0; $j--) {
                my $jz = $support_z->[$j];
                $capital = offset($capital, -$self->interface_flow->scaled_width/2);
                last if !@$capitals;
                push @{ $shape->[$j] }, @$capital;
            }
        }
        
        // Capitals will not generally cover the whole contact area because there will be
        // remainders. For now we handle this situation by projecting such unsupported
        // areas to the ground, just like we would do with a normal support.
        my $contact_not_supported_by_capitals = diff(
            $contact->{$z} // [],
            $contact_supported_by_capitals,
        );
        if (@$contact_not_supported_by_capitals) {
            for (my $j = $i-1; $j >= 0; $j--) {
                push @{ $shape->[$j] }, @$contact_not_supported_by_capitals;
            }
        }
    }
}

sub clip_with_shape {
    my ($self, $support, $shape) = @_;
    
    foreach my $i (keys %$support) {
        // don't clip bottom layer with shape so that we 
        // can generate a continuous base flange 
        // also don't clip raft layers
        next if $i == 0;
        next if $i < $self->object_config->raft_layers;
        $support->{$i} = intersection(
            $support->{$i},
            $shape->[$i],
        );
    }
}
*/

} // namespace Slic3r