Welcome to mirror list, hosted at ThFree Co, Russian Federation.

VoronoiVisualUtils.hpp « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: fa6a34241818c53c16e5a7257ad622e8854f1583 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#include <stack>

#include <libslic3r/Geometry.hpp>
#include <libslic3r/Line.hpp>
#include <libslic3r/Polygon.hpp>
#include <libslic3r/SVG.hpp>

namespace boost { namespace polygon {

// The following code for the visualization of the boost Voronoi diagram is based on:
//
// Boost.Polygon library voronoi_graphic_utils.hpp header file
//          Copyright Andrii Sydorchuk 2010-2012.
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)
template <typename CT>
class voronoi_visual_utils {
 public:
  // Discretize parabolic Voronoi edge.
  // Parabolic Voronoi edges are always formed by one point and one segment
  // from the initial input set.
  //
  // Args:
  //   point: input point.
  //   segment: input segment.
  //   max_dist: maximum discretization distance.
  //   discretization: point discretization of the given Voronoi edge.
  //
  // Template arguments:
  //   InCT: coordinate type of the input geometries (usually integer).
  //   Point: point type, should model point concept.
  //   Segment: segment type, should model segment concept.
  //
  // Important:
  //   discretization should contain both edge endpoints initially.
  template <class InCT1, class InCT2,
            template<class> class Point,
            template<class> class Segment>
  static
  typename enable_if<
    typename gtl_and<
      typename gtl_if<
        typename is_point_concept<
          typename geometry_concept< Point<InCT1> >::type
        >::type
      >::type,
      typename gtl_if<
        typename is_segment_concept<
          typename geometry_concept< Segment<InCT2> >::type
        >::type
      >::type
    >::type,
    void
  >::type discretize(
      const Point<InCT1>& point,
      const Segment<InCT2>& segment,
      const CT max_dist,
      std::vector< Point<CT> >* discretization) {
    // Apply the linear transformation to move start point of the segment to
    // the point with coordinates (0, 0) and the direction of the segment to
    // coincide the positive direction of the x-axis.
    CT segm_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
    CT segm_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
    CT sqr_segment_length = segm_vec_x * segm_vec_x + segm_vec_y * segm_vec_y;

    // Compute x-coordinates of the endpoints of the edge
    // in the transformed space.
    CT projection_start = sqr_segment_length *
        get_point_projection((*discretization)[0], segment);
    CT projection_end = sqr_segment_length *
        get_point_projection((*discretization)[1], segment);

    // Compute parabola parameters in the transformed space.
    // Parabola has next representation:
    // f(x) = ((x-rot_x)^2 + rot_y^2) / (2.0*rot_y).
    CT point_vec_x = cast(x(point)) - cast(x(low(segment)));
    CT point_vec_y = cast(y(point)) - cast(y(low(segment)));
    CT rot_x = segm_vec_x * point_vec_x + segm_vec_y * point_vec_y;
    CT rot_y = segm_vec_x * point_vec_y - segm_vec_y * point_vec_x;

    // Save the last point.
    Point<CT> last_point = (*discretization)[1];
    discretization->pop_back();

    // Use stack to avoid recursion.
    std::stack<CT> point_stack;
    point_stack.push(projection_end);
    CT cur_x = projection_start;
    CT cur_y = parabola_y(cur_x, rot_x, rot_y);

    // Adjust max_dist parameter in the transformed space.
    const CT max_dist_transformed = max_dist * max_dist * sqr_segment_length;
    while (!point_stack.empty()) {
      CT new_x = point_stack.top();
      CT new_y = parabola_y(new_x, rot_x, rot_y);

      // Compute coordinates of the point of the parabola that is
      // furthest from the current line segment.
      CT mid_x = (new_y - cur_y) / (new_x - cur_x) * rot_y + rot_x;
      CT mid_y = parabola_y(mid_x, rot_x, rot_y);

      // Compute maximum distance between the given parabolic arc
      // and line segment that discretize it.
      CT dist = (new_y - cur_y) * (mid_x - cur_x) -
          (new_x - cur_x) * (mid_y - cur_y);
      dist = dist * dist / ((new_y - cur_y) * (new_y - cur_y) +
          (new_x - cur_x) * (new_x - cur_x));
      if (dist <= max_dist_transformed) {
        // Distance between parabola and line segment is less than max_dist.
        point_stack.pop();
        CT inter_x = (segm_vec_x * new_x - segm_vec_y * new_y) /
            sqr_segment_length + cast(x(low(segment)));
        CT inter_y = (segm_vec_x * new_y + segm_vec_y * new_x) /
            sqr_segment_length + cast(y(low(segment)));
        discretization->push_back(Point<CT>(inter_x, inter_y));
        cur_x = new_x;
        cur_y = new_y;
      } else {
        point_stack.push(mid_x);
      }
    }

    // Update last point.
    discretization->back() = last_point;
  }

 private:
  // Compute y(x) = ((x - a) * (x - a) + b * b) / (2 * b).
  static CT parabola_y(CT x, CT a, CT b) {
    return ((x - a) * (x - a) + b * b) / (b + b);
  }

  // Get normalized length of the distance between:
  //   1) point projection onto the segment
  //   2) start point of the segment
  // Return this length divided by the segment length. This is made to avoid
  // sqrt computation during transformation from the initial space to the
  // transformed one and vice versa. The assumption is made that projection of
  // the point lies between the start-point and endpoint of the segment.
  template <class InCT,
            template<class> class Point,
            template<class> class Segment>
  static
  typename enable_if<
    typename gtl_and<
      typename gtl_if<
        typename is_point_concept<
          typename geometry_concept< Point<int> >::type
        >::type
      >::type,
      typename gtl_if<
        typename is_segment_concept<
          typename geometry_concept< Segment<long> >::type
        >::type
      >::type
    >::type,
    CT
  >::type get_point_projection(
      const Point<CT>& point, const Segment<InCT>& segment) {
    CT segment_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
    CT segment_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
    CT point_vec_x = x(point) - cast(x(low(segment)));
    CT point_vec_y = y(point) - cast(y(low(segment)));
    CT sqr_segment_length =
        segment_vec_x * segment_vec_x + segment_vec_y * segment_vec_y;
    CT vec_dot = segment_vec_x * point_vec_x + segment_vec_y * point_vec_y;
    return vec_dot / sqr_segment_length;
  }

  template <typename InCT>
  static CT cast(const InCT& value) {
    return static_cast<CT>(value);
  }
};

} } // namespace boost::polygon


namespace Slic3r
{

// The following code for the visualization of the boost Voronoi diagram is based on:
//
// Boost.Polygon library voronoi_visualizer.cpp file
//          Copyright Andrii Sydorchuk 2010-2012.
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)
namespace Voronoi { namespace Internal {

    using VD = Geometry::VoronoiDiagram;
    typedef double coordinate_type;
    typedef boost::polygon::point_data<coordinate_type> point_type;
    typedef boost::polygon::segment_data<coordinate_type> segment_type;
    typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
    typedef VD::cell_type cell_type;
    typedef VD::cell_type::source_index_type source_index_type;
    typedef VD::cell_type::source_category_type source_category_type;
    typedef VD::edge_type edge_type;
    typedef VD::cell_container_type cell_container_type;
    typedef VD::cell_container_type vertex_container_type;
    typedef VD::edge_container_type edge_container_type;
    typedef VD::const_cell_iterator const_cell_iterator;
    typedef VD::const_vertex_iterator const_vertex_iterator;
    typedef VD::const_edge_iterator const_edge_iterator;

    static const std::size_t EXTERNAL_COLOR = 1;

    inline void color_exterior(const VD::edge_type* edge)
    {
        if (edge->color() == EXTERNAL_COLOR)
            return;
        edge->color(EXTERNAL_COLOR);
        edge->twin()->color(EXTERNAL_COLOR);
        const VD::vertex_type* v = edge->vertex1();
        if (v == NULL || !edge->is_primary())
            return;
        v->color(EXTERNAL_COLOR);
        const VD::edge_type* e = v->incident_edge();
        do {
            color_exterior(e);
            e = e->rot_next();
        } while (e != v->incident_edge());
    }

    inline point_type retrieve_point(const Points &points, const std::vector<segment_type> &segments, const cell_type& cell)
    {
        assert(cell.source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT || cell.source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_END_POINT ||
               cell.source_category() == boost::polygon::SOURCE_CATEGORY_SINGLE_POINT);
        return cell.source_category() == boost::polygon::SOURCE_CATEGORY_SINGLE_POINT ?
                    Voronoi::Internal::point_type(double(points[cell.source_index()].x()), double(points[cell.source_index()].y())) :
                    (cell.source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ?
                        low(segments[cell.source_index()]) : high(segments[cell.source_index()]);
    }

    inline void clip_infinite_edge(const Points &points, const std::vector<segment_type> &segments, const edge_type& edge, coordinate_type bbox_max_size, std::vector<point_type>* clipped_edge)
    {
        const cell_type& cell1 = *edge.cell();
        const cell_type& cell2 = *edge.twin()->cell();
        point_type origin, direction;
        // Infinite edges could not be created by two segment sites.
        if (! cell1.contains_point() && ! cell2.contains_point()) {
            printf("Error! clip_infinite_edge - infinite edge separates two segment cells\n");
            return;
        }
        if (cell1.contains_point() && cell2.contains_point()) {
            point_type p1 = retrieve_point(points, segments, cell1);
            point_type p2 = retrieve_point(points, segments, cell2);
            origin.x((p1.x() + p2.x()) * 0.5);
            origin.y((p1.y() + p2.y()) * 0.5);
            direction.x(p1.y() - p2.y());
            direction.y(p2.x() - p1.x());
        } else {
            origin = cell1.contains_segment() ? retrieve_point(points, segments, cell2) : retrieve_point(points, segments, cell1);
            segment_type segment = cell1.contains_segment() ? segments[cell1.source_index()] : segments[cell2.source_index()];
            coordinate_type dx = high(segment).x() - low(segment).x();
            coordinate_type dy = high(segment).y() - low(segment).y();
            if ((low(segment) == origin) ^ cell1.contains_point()) {
                direction.x(dy);
                direction.y(-dx);
            } else {
                direction.x(-dy);
                direction.y(dx);
            }
        }
        coordinate_type koef = bbox_max_size / (std::max)(fabs(direction.x()), fabs(direction.y()));
        if (edge.vertex0() == NULL) {
            clipped_edge->push_back(point_type(
                origin.x() - direction.x() * koef,
                origin.y() - direction.y() * koef));
        } else {
            clipped_edge->push_back(
                point_type(edge.vertex0()->x(), edge.vertex0()->y()));
        }
        if (edge.vertex1() == NULL) {
            clipped_edge->push_back(point_type(
                origin.x() + direction.x() * koef,
                origin.y() + direction.y() * koef));
        } else {
            clipped_edge->push_back(
                point_type(edge.vertex1()->x(), edge.vertex1()->y()));
        }
    }

    inline void sample_curved_edge(const Points &points, const std::vector<segment_type> &segments, const edge_type& edge, std::vector<point_type> &sampled_edge, coordinate_type max_dist)
    {
        point_type point = edge.cell()->contains_point() ?
            retrieve_point(points, segments, *edge.cell()) :
            retrieve_point(points, segments, *edge.twin()->cell());
        segment_type segment = edge.cell()->contains_point() ?
            segments[edge.twin()->cell()->source_index()] :
            segments[edge.cell()->source_index()];
        ::boost::polygon::voronoi_visual_utils<coordinate_type>::discretize(point, segment, max_dist, &sampled_edge);
    }

} /* namespace Internal */ } // namespace Voronoi

BoundingBox get_extents(const Lines &lines);

static inline void dump_voronoi_to_svg(
    const char          *path,
    const Geometry::VoronoiDiagram &vd,
    const Points        &points,
    const Lines         &lines,
    const Polygons      &offset_curves = Polygons(),
    const Lines         &helper_lines = Lines(),
    double               scale = 0)
{
    BoundingBox bbox;
    bbox.merge(get_extents(points));
    bbox.merge(get_extents(lines));
    bbox.merge(get_extents(offset_curves));
    bbox.merge(get_extents(helper_lines));
    bbox.min -= (0.01 * bbox.size().cast<double>()).cast<coord_t>();
    bbox.max += (0.01 * bbox.size().cast<double>()).cast<coord_t>();

    if (scale == 0)
        scale =
//                0.1
                0.01
                * std::min(bbox.size().x(), bbox.size().y());
    else
        scale /= SCALING_FACTOR;

    const std::string   inputSegmentPointColor      = "lightseagreen";
    const coord_t       inputSegmentPointRadius     = coord_t(0.09 * scale);
    const std::string   inputSegmentColor           = "lightseagreen";
    const coord_t       inputSegmentLineWidth       = coord_t(0.03 * scale);

    const std::string   voronoiPointColor           = "black";
    const coord_t       voronoiPointRadius          = coord_t(0.06 * scale);
    const std::string   voronoiLineColorPrimary     = "black";
    const std::string   voronoiLineColorSecondary   = "green";
    const std::string   voronoiArcColor             = "red";
    const coord_t       voronoiLineWidth            = coord_t(0.02 * scale);

    const std::string   offsetCurveColor            = "magenta";
    const coord_t       offsetCurveLineWidth        = coord_t(0.02 * scale);

    const std::string   helperLineColor             = "orange";
    const coord_t       helperLineWidth             = coord_t(0.04 * scale);

    const bool          internalEdgesOnly           = false;
    const bool          primaryEdgesOnly            = false;

    ::Slic3r::SVG svg(path, bbox);

    // For clipping of half-lines to some reasonable value.
    // The line will then be clipped by the SVG viewer anyway.
    const double bbox_dim_max = double(std::max(bbox.size().x(), bbox.size().y()));
    // For the discretization of the Voronoi parabolic segments.
    const double discretization_step = 0.0002 * bbox_dim_max;

    // Make a copy of the input segments with the double type.
    std::vector<Voronoi::Internal::segment_type> segments;
    for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++ it)
        segments.push_back(Voronoi::Internal::segment_type(
            Voronoi::Internal::point_type(double(it->a(0)), double(it->a(1))),
            Voronoi::Internal::point_type(double(it->b(0)), double(it->b(1)))));

    // Color exterior edges.
    for (boost::polygon::voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it)
        if (!it->is_finite())
            Voronoi::Internal::color_exterior(&(*it));

    // Draw the end points of the input polygon.
    for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) {
        svg.draw(it->a, inputSegmentPointColor, inputSegmentPointRadius);
        svg.draw(it->b, inputSegmentPointColor, inputSegmentPointRadius);
    }
    // Draw the input polygon.
    for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it)
        svg.draw(Line(Point(coord_t(it->a(0)), coord_t(it->a(1))), Point(coord_t(it->b(0)), coord_t(it->b(1)))), inputSegmentColor, inputSegmentLineWidth);

#if 1
    // Draw voronoi vertices.
    for (boost::polygon::voronoi_diagram<double>::const_vertex_iterator it = vd.vertices().begin(); it != vd.vertices().end(); ++it)
        if (! internalEdgesOnly || it->color() != Voronoi::Internal::EXTERNAL_COLOR)
            svg.draw(Point(coord_t(it->x()), coord_t(it->y())), voronoiPointColor, voronoiPointRadius);

    for (boost::polygon::voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it) {
        if (primaryEdgesOnly && !it->is_primary())
            continue;
        if (internalEdgesOnly && (it->color() == Voronoi::Internal::EXTERNAL_COLOR))
            continue;
        std::vector<Voronoi::Internal::point_type> samples;
        std::string color = voronoiLineColorPrimary;
        if (!it->is_finite()) {
            Voronoi::Internal::clip_infinite_edge(points, segments, *it, bbox_dim_max, &samples);
            if (! it->is_primary())
                color = voronoiLineColorSecondary;
        } else {
            // Store both points of the segment into samples. sample_curved_edge will split the initial line
            // until the discretization_step is reached.
            samples.push_back(Voronoi::Internal::point_type(it->vertex0()->x(), it->vertex0()->y()));
            samples.push_back(Voronoi::Internal::point_type(it->vertex1()->x(), it->vertex1()->y()));
            if (it->is_curved()) {
                Voronoi::Internal::sample_curved_edge(points, segments, *it, samples, discretization_step);
                color = voronoiArcColor;
            } else if (! it->is_primary())
                color = voronoiLineColorSecondary;
        }
        for (std::size_t i = 0; i + 1 < samples.size(); ++i)
            svg.draw(Line(Point(coord_t(samples[i].x()), coord_t(samples[i].y())), Point(coord_t(samples[i+1].x()), coord_t(samples[i+1].y()))), color, voronoiLineWidth);
    }
#endif

    svg.draw_outline(offset_curves, offsetCurveColor, offsetCurveLineWidth);
    svg.draw(helper_lines, helperLineColor, helperLineWidth);

    svg.Close();
}

} // namespace Slic3r