Welcome to mirror list, hosted at ThFree Co, Russian Federation.

GCodeViewer.cpp « GUI « slic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 396a5a185fc1e5d2a0f6ce38e869b747cec1d9b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
#include "libslic3r/libslic3r.h"
#include "GCodeViewer.hpp"

#include "libslic3r/Print.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Model.hpp"
#include "libslic3r/Utils.hpp"
#include "GUI_App.hpp"
#include "MainFrame.hpp"
#include "Plater.hpp"
#include "libslic3r/PresetBundle.hpp"
#include "Camera.hpp"
#include "I18N.hpp"
#include "GUI_Utils.hpp"
#include "GUI.hpp"
#include "DoubleSlider.hpp"
#include "GLCanvas3D.hpp"
#include "GLToolbar.hpp"
#include "GUI_Preview.hpp"
#include <imgui/imgui_internal.h>

#include <GL/glew.h>
#include <boost/log/trivial.hpp>
#include <boost/nowide/cstdio.hpp>
#include <wx/progdlg.h>
#include <wx/numformatter.h>

#include <array>
#include <algorithm>
#include <chrono>

namespace Slic3r {
namespace GUI {

static unsigned char buffer_id(EMoveType type) {
    return static_cast<unsigned char>(type) - static_cast<unsigned char>(EMoveType::Retract);
}

static EMoveType buffer_type(unsigned char id) {
    return static_cast<EMoveType>(static_cast<unsigned char>(EMoveType::Retract) + id);
}

static std::array<float, 3> decode_color(const std::string& color) {
    static const float INV_255 = 1.0f / 255.0f;

    std::array<float, 3> ret = { 0.0f, 0.0f, 0.0f };
    const char* c = color.data() + 1;
    if (color.size() == 7 && color.front() == '#') {
        for (size_t j = 0; j < 3; ++j) {
            int digit1 = hex_digit_to_int(*c++);
            int digit2 = hex_digit_to_int(*c++);
            if (digit1 == -1 || digit2 == -1)
                break;

            ret[j] = float(digit1 * 16 + digit2) * INV_255;
        }
    }
    return ret;
}

static std::vector<std::array<float, 3>> decode_colors(const std::vector<std::string>& colors) {
    std::vector<std::array<float, 3>> output(colors.size(), { 0.0f, 0.0f, 0.0f });
    for (size_t i = 0; i < colors.size(); ++i) {
        output[i] = decode_color(colors[i]);
    }
    return output;
}

static float round_to_nearest(float value, unsigned int decimals)
{
    float res = 0.0f;
    if (decimals == 0)
        res = std::round(value);
    else {
        char buf[64];
        sprintf(buf, "%.*g", decimals, value);
        res = std::stof(buf);
    }
    return res;
}

#if ENABLE_SPLITTED_VERTEX_BUFFER
void GCodeViewer::VBuffer::reset()
{
    // release gpu memory
    if (!vbos.empty()) {
        glsafe(::glDeleteBuffers(static_cast<GLsizei>(vbos.size()), static_cast<const GLuint*>(vbos.data())));
        vbos.clear();
    }
    sizes.clear();
    count = 0;
}
#else
void GCodeViewer::VBuffer::reset()
{
    // release gpu memory
    if (id > 0) {
        glsafe(::glDeleteBuffers(1, &id));
        id = 0;
    }

    count = 0;
}
#endif // ENABLE_SPLITTED_VERTEX_BUFFER

void GCodeViewer::IBuffer::reset()
{
#if ENABLE_SPLITTED_VERTEX_BUFFER
    // release gpu memory
    if (ibo > 0) {
        glsafe(::glDeleteBuffers(1, &ibo));
        ibo = 0;
    }
#else
    // release gpu memory
    if (id > 0) {
        glsafe(::glDeleteBuffers(1, &id));
        id = 0;
    }
#endif // ENABLE_SPLITTED_VERTEX_BUFFER

#if ENABLE_SPLITTED_VERTEX_BUFFER
    vbo = 0;
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
    count = 0;
}

bool GCodeViewer::Path::matches(const GCodeProcessor::MoveVertex& move) const
{
#if ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE
    auto matches_percent = [](float value1, float value2, float max_percent) {
        return std::abs(value2 - value1) / value1 <= max_percent;
    };
#endif // ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE

    switch (move.type)
    {
    case EMoveType::Tool_change:
    case EMoveType::Color_change:
    case EMoveType::Pause_Print:
    case EMoveType::Custom_GCode:
    case EMoveType::Retract:
    case EMoveType::Unretract:
    case EMoveType::Extrude: {
        // use rounding to reduce the number of generated paths
#if ENABLE_SPLITTED_VERTEX_BUFFER
#if ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE
        return type == move.type && extruder_id == move.extruder_id && cp_color_id == move.cp_color_id && role == move.extrusion_role &&
            move.position[2] <= sub_paths.front().first.position[2] && feedrate == move.feedrate && fan_speed == move.fan_speed &&
            height == round_to_nearest(move.height, 2) && width == round_to_nearest(move.width, 2) &&
            matches_percent(volumetric_rate, move.volumetric_rate(), 0.05f);
#else
        return type == move.type && move.position[2] <= sub_paths.front().position[2] && role == move.extrusion_role && height == round_to_nearest(move.height, 2) &&
            width == round_to_nearest(move.width, 2) && feedrate == move.feedrate && fan_speed == move.fan_speed &&
            volumetric_rate == round_to_nearest(move.volumetric_rate(), 2) && extruder_id == move.extruder_id &&
            cp_color_id == move.cp_color_id;
#endif // ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE
#else
#if ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE
        return type == move.type && extruder_id == move.extruder_id && cp_color_id == move.cp_color_id && role == move.extrusion_role &&
            move.position[2] <= first.position[2] && feedrate == move.feedrate && fan_speed == move.fan_speed &&
            height == round_to_nearest(move.height, 2) && width == round_to_nearest(move.width, 2) &&
            matches_percent(volumetric_rate, move.volumetric_rate(), 0.05f);
#else
        return type == move.type && move.position[2] <= first.position[2] && role == move.extrusion_role && height == round_to_nearest(move.height, 2) &&
            width == round_to_nearest(move.width, 2) && feedrate == move.feedrate && fan_speed == move.fan_speed &&
            volumetric_rate == round_to_nearest(move.volumetric_rate(), 2) && extruder_id == move.extruder_id &&
            cp_color_id == move.cp_color_id;
#endif // ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
    }
    case EMoveType::Travel: {
        return type == move.type && feedrate == move.feedrate && extruder_id == move.extruder_id && cp_color_id == move.cp_color_id;
    }
    default: { return false; }
    }
}

void GCodeViewer::TBuffer::reset()
{
    // release gpu memory
    vertices.reset();
    for (IBuffer& buffer : indices) {
        buffer.reset();
    }

    // release cpu memory
    indices.clear();
    paths.clear();
    render_paths.clear();
}

void GCodeViewer::TBuffer::add_path(const GCodeProcessor::MoveVertex& move, unsigned int b_id, size_t i_id, size_t s_id)
{
    Path::Endpoint endpoint = { b_id, i_id, s_id, move.position };
    // use rounding to reduce the number of generated paths
#if ENABLE_SPLITTED_VERTEX_BUFFER
#if ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE
    paths.push_back({ move.type, move.extrusion_role, move.delta_extruder,
        round_to_nearest(move.height, 2), round_to_nearest(move.width, 2), move.feedrate, move.fan_speed,
        move.volumetric_rate(), move.extruder_id, move.cp_color_id, { { endpoint, endpoint } } });
#else
    paths.push_back({ move.type, move.extrusion_role, move.delta_extruder,
        round_to_nearest(move.height, 2), round_to_nearest(move.width, 2), move.feedrate, move.fan_speed,
        round_to_nearest(move.volumetric_rate(), 2), move.extruder_id, move.cp_color_id, { { endpoint, endpoint } } });
#endif // ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE
#else
#if ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE
    paths.push_back({ move.type, move.extrusion_role, endpoint, endpoint, move.delta_extruder,
        round_to_nearest(move.height, 2), round_to_nearest(move.width, 2), move.feedrate, move.fan_speed,
        move.volumetric_rate(), move.extruder_id, move.cp_color_id });
#else
    paths.push_back({ move.type, move.extrusion_role, endpoint, endpoint, move.delta_extruder,
        round_to_nearest(move.height, 2), round_to_nearest(move.width, 2), move.feedrate, move.fan_speed,
        round_to_nearest(move.volumetric_rate(), 2), move.extruder_id, move.cp_color_id });
#endif // ENABLE_TOOLPATHS_WIDTH_HEIGHT_FROM_GCODE
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
}

GCodeViewer::Color GCodeViewer::Extrusions::Range::get_color_at(float value) const
{
    // Input value scaled to the colors range
    const float step = step_size();
    const float global_t = (step != 0.0f) ? std::max(0.0f, value - min) / step : 0.0f; // lower limit of 0.0f

    const size_t color_max_idx = Range_Colors.size() - 1;

    // Compute the two colors just below (low) and above (high) the input value
    const size_t color_low_idx = std::clamp<size_t>(static_cast<size_t>(global_t), 0, color_max_idx);
    const size_t color_high_idx = std::clamp<size_t>(color_low_idx + 1, 0, color_max_idx);

    // Compute how far the value is between the low and high colors so that they can be interpolated
    const float local_t = std::clamp(global_t - static_cast<float>(color_low_idx), 0.0f, 1.0f);

    // Interpolate between the low and high colors to find exactly which color the input value should get
    Color ret;
    for (unsigned int i = 0; i < 3; ++i) {
        ret[i] = lerp(Range_Colors[color_low_idx][i], Range_Colors[color_high_idx][i], local_t);
    }
    return ret;
}

#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
GCodeViewer::SequentialRangeCap::~SequentialRangeCap() {
    if (ibo > 0)
        glsafe(::glDeleteBuffers(1, &ibo));
}

void GCodeViewer::SequentialRangeCap::reset() {
    if (ibo > 0)
        glsafe(::glDeleteBuffers(1, &ibo));

    buffer = nullptr;
    ibo = 0;
    vbo = 0;
    color = { 0.0f, 0.0f, 0.0f };
}
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS

void GCodeViewer::SequentialView::Marker::init()
{
    m_model.init_from(stilized_arrow(16, 2.0f, 4.0f, 1.0f, 8.0f));
}

void GCodeViewer::SequentialView::Marker::set_world_position(const Vec3f& position)
{    
    m_world_position = position;
    m_world_transform = (Geometry::assemble_transform((position + m_z_offset * Vec3f::UnitZ()).cast<double>()) * Geometry::assemble_transform(m_model.get_bounding_box().size()[2] * Vec3d::UnitZ(), { M_PI, 0.0, 0.0 })).cast<float>();
}

void GCodeViewer::SequentialView::Marker::render() const
{
    if (!m_visible)
        return;

    GLShaderProgram* shader = wxGetApp().get_shader("gouraud_light");
    if (shader == nullptr)
        return;

    glsafe(::glEnable(GL_BLEND));
    glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));

    shader->start_using();
    shader->set_uniform("uniform_color", m_color);

    glsafe(::glPushMatrix());
    glsafe(::glMultMatrixf(m_world_transform.data()));

    m_model.render();

    glsafe(::glPopMatrix());

    shader->stop_using();

    glsafe(::glDisable(GL_BLEND));

    static float last_window_width = 0.0f;
    static size_t last_text_length = 0;

    ImGuiWrapper& imgui = *wxGetApp().imgui();
    Size cnv_size = wxGetApp().plater()->get_current_canvas3D()->get_canvas_size();
    imgui.set_next_window_pos(0.5f * static_cast<float>(cnv_size.get_width()), static_cast<float>(cnv_size.get_height()), ImGuiCond_Always, 0.5f, 1.0f);
    ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f);
    ImGui::SetNextWindowBgAlpha(0.25f);
    imgui.begin(std::string("ToolPosition"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_NoMove);
    imgui.text_colored(ImGuiWrapper::COL_ORANGE_LIGHT, _u8L("Tool position") + ":");
    ImGui::SameLine();
    char buf[1024];
    sprintf(buf, "X: %.2f, Y: %.2f, Z: %.2f", m_world_position(0), m_world_position(1), m_world_position(2));
    imgui.text(std::string(buf));

    // force extra frame to automatically update window size
    float width = ImGui::GetWindowWidth();
    size_t length = strlen(buf);
    if (width != last_window_width || length != last_text_length) {
        last_window_width = width;
        last_text_length = length;
        wxGetApp().plater()->get_current_canvas3D()->set_as_dirty();
        wxGetApp().plater()->get_current_canvas3D()->request_extra_frame();
    }

    imgui.end();
    ImGui::PopStyleVar();
}

const std::vector<GCodeViewer::Color> GCodeViewer::Extrusion_Role_Colors {{
    { 0.75f, 0.75f, 0.75f },   // erNone
    { 1.00f, 0.90f, 0.30f },   // erPerimeter
    { 1.00f, 0.49f, 0.22f },   // erExternalPerimeter
    { 0.12f, 0.12f, 1.00f },   // erOverhangPerimeter
    { 0.69f, 0.19f, 0.16f },   // erInternalInfill
    { 0.59f, 0.33f, 0.80f },   // erSolidInfill
    { 0.94f, 0.25f, 0.25f },   // erTopSolidInfill
    { 1.00f, 0.55f, 0.41f },   // erIroning
    { 0.30f, 0.50f, 0.73f },   // erBridgeInfill
    { 1.00f, 1.00f, 1.00f },   // erGapFill
    { 0.00f, 0.53f, 0.43f },   // erSkirt
    { 0.00f, 1.00f, 0.00f },   // erSupportMaterial
    { 0.00f, 0.50f, 0.00f },   // erSupportMaterialInterface
    { 0.70f, 0.89f, 0.67f },   // erWipeTower
    { 0.37f, 0.82f, 0.58f },   // erCustom
    { 0.00f, 0.00f, 0.00f }    // erMixed
}};

const std::vector<GCodeViewer::Color> GCodeViewer::Options_Colors {{
    { 0.803f, 0.135f, 0.839f },   // Retractions
    { 0.287f, 0.679f, 0.810f },   // Unretractions
    { 0.758f, 0.744f, 0.389f },   // ToolChanges
    { 0.856f, 0.582f, 0.546f },   // ColorChanges
    { 0.322f, 0.942f, 0.512f },   // PausePrints
    { 0.886f, 0.825f, 0.262f }    // CustomGCodes
}};

const std::vector<GCodeViewer::Color> GCodeViewer::Travel_Colors {{
    { 0.219f, 0.282f, 0.609f }, // Move
    { 0.112f, 0.422f, 0.103f }, // Extrude
    { 0.505f, 0.064f, 0.028f }  // Retract
}};

const GCodeViewer::Color GCodeViewer::Wipe_Color = { 1.0f, 1.0f, 0.0f };

const std::vector<GCodeViewer::Color> GCodeViewer::Range_Colors {{
    { 0.043f, 0.173f, 0.478f }, // bluish
    { 0.075f, 0.349f, 0.522f },
    { 0.110f, 0.533f, 0.569f },
    { 0.016f, 0.839f, 0.059f },
    { 0.667f, 0.949f, 0.000f },
    { 0.988f, 0.975f, 0.012f },
    { 0.961f, 0.808f, 0.039f },
    { 0.890f, 0.533f, 0.125f },
    { 0.820f, 0.408f, 0.188f },
    { 0.761f, 0.322f, 0.235f },
    { 0.581f, 0.149f, 0.087f }  // reddish
}};

GCodeViewer::GCodeViewer()
{
    // initializes non OpenGL data of TBuffers
    // OpenGL data are initialized into render().init_gl_data()
    for (size_t i = 0; i < m_buffers.size(); ++i) {
        TBuffer& buffer = m_buffers[i];
        switch (buffer_type(i))
        {
        default: { break; }
        case EMoveType::Tool_change:
        case EMoveType::Color_change:
        case EMoveType::Pause_Print:
        case EMoveType::Custom_GCode:
        case EMoveType::Retract:
        case EMoveType::Unretract: {
            buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Point;
            buffer.vertices.format = VBuffer::EFormat::Position;
            break;
        }
        case EMoveType::Wipe:
        case EMoveType::Extrude: {
            buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Triangle;
            buffer.vertices.format = VBuffer::EFormat::PositionNormal3;
            break;
        }
        case EMoveType::Travel: {
            buffer.render_primitive_type = TBuffer::ERenderPrimitiveType::Line;
            buffer.vertices.format = VBuffer::EFormat::PositionNormal1;
            break;
        }
        }
    }

    set_toolpath_move_type_visible(EMoveType::Extrude, true);
//    m_sequential_view.skip_invisible_moves = true;
}

void GCodeViewer::load(const GCodeProcessor::Result& gcode_result, const Print& print, bool initialized)
{
    // avoid processing if called with the same gcode_result
    if (m_last_result_id == gcode_result.id)
        return;

    m_last_result_id = gcode_result.id;

    // release gpu memory, if used
    reset();

    load_toolpaths(gcode_result);

    if (m_layers.empty())
        return;

    m_settings_ids = gcode_result.settings_ids;

    if (wxGetApp().is_editor())
        load_shells(print, initialized);
    else {
        Pointfs bed_shape;
        std::string texture;
        std::string model;

        if (!gcode_result.bed_shape.empty()) {
            // bed shape detected in the gcode
            bed_shape = gcode_result.bed_shape;
            auto bundle = wxGetApp().preset_bundle;
            if (bundle != nullptr && !m_settings_ids.printer.empty()) {
                const Preset* preset = bundle->printers.find_preset(m_settings_ids.printer);
                if (preset != nullptr) {
                    model = PresetUtils::system_printer_bed_model(*preset);
                    texture = PresetUtils::system_printer_bed_texture(*preset);
                }
            }
        }
        else {
            // adjust printbed size in dependence of toolpaths bbox
            const double margin = 10.0;
            Vec2d min(m_paths_bounding_box.min(0) - margin, m_paths_bounding_box.min(1) - margin);
            Vec2d max(m_paths_bounding_box.max(0) + margin, m_paths_bounding_box.max(1) + margin);

            Vec2d size = max - min;
            bed_shape = {
                { min(0), min(1) },
                { max(0), min(1) },
                { max(0), min(1) + 0.442265 * size[1]},
                { max(0) - 10.0, min(1) + 0.4711325 * size[1]},
                { max(0) + 10.0, min(1) + 0.5288675 * size[1]},
                { max(0), min(1) + 0.557735 * size[1]},
                { max(0), max(1) },
                { min(0) + 0.557735 * size[0], max(1)},
                { min(0) + 0.5288675 * size[0], max(1) - 10.0},
                { min(0) + 0.4711325 * size[0], max(1) + 10.0},
                { min(0) + 0.442265 * size[0], max(1)},
                { min(0), max(1) } };
        }

        wxGetApp().plater()->set_bed_shape(bed_shape, texture, model, gcode_result.bed_shape.empty());
    }

    m_time_statistics = gcode_result.time_statistics;

    if (m_time_estimate_mode != PrintEstimatedTimeStatistics::ETimeMode::Normal) {
        float time = m_time_statistics.modes[static_cast<size_t>(m_time_estimate_mode)].time;
        if (time == 0.0f ||
            short_time(get_time_dhms(time)) == short_time(get_time_dhms(m_time_statistics.modes[static_cast<size_t>(PrintEstimatedTimeStatistics::ETimeMode::Normal)].time)))
            m_time_estimate_mode = PrintEstimatedTimeStatistics::ETimeMode::Normal;
    }
}

void GCodeViewer::refresh(const GCodeProcessor::Result& gcode_result, const std::vector<std::string>& str_tool_colors)
{
#if ENABLE_GCODE_VIEWER_STATISTICS
    auto start_time = std::chrono::high_resolution_clock::now();
#endif // ENABLE_GCODE_VIEWER_STATISTICS

    if (m_moves_count == 0)
        return;

    wxBusyCursor busy;

    if (m_view_type == EViewType::Tool && !gcode_result.extruder_colors.empty())
        // update tool colors from config stored in the gcode
        m_tool_colors = decode_colors(gcode_result.extruder_colors);
    else
        // update tool colors
        m_tool_colors = decode_colors(str_tool_colors);

    // ensure at least one (default) color is defined
    if (m_tool_colors.empty())
        m_tool_colors.push_back(decode_color("#FF8000"));

    // update ranges for coloring / legend
    m_extrusions.reset_ranges();
    for (size_t i = 0; i < m_moves_count; ++i) {
        // skip first vertex
        if (i == 0)
            continue;

        const GCodeProcessor::MoveVertex& curr = gcode_result.moves[i];

        switch (curr.type)
        {
        case EMoveType::Extrude:
        {
            m_extrusions.ranges.height.update_from(round_to_nearest(curr.height, 2));
            m_extrusions.ranges.width.update_from(round_to_nearest(curr.width, 2));
            m_extrusions.ranges.fan_speed.update_from(curr.fan_speed);
            m_extrusions.ranges.volumetric_rate.update_from(round_to_nearest(curr.volumetric_rate(), 2));
            [[fallthrough]];
        }
        case EMoveType::Travel:
        {
            if (m_buffers[buffer_id(curr.type)].visible)
                m_extrusions.ranges.feedrate.update_from(curr.feedrate);

            break;
        }
        default: { break; }
        }
    }

#if ENABLE_GCODE_VIEWER_STATISTICS
    m_statistics.refresh_time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS

    // update buffers' render paths
#if ENABLE_RENDER_PATH_REFRESH_AFTER_OPTIONS_CHANGE
    refresh_render_paths();
#else
    refresh_render_paths(false, false);
#endif // ENABLE_RENDER_PATH_REFRESH_AFTER_OPTIONS_CHANGE

    log_memory_used("Refreshed G-code extrusion paths, ");
}

#if ENABLE_RENDER_PATH_REFRESH_AFTER_OPTIONS_CHANGE
void GCodeViewer::refresh_render_paths()
{
    refresh_render_paths(false, false);
}
#endif // ENABLE_RENDER_PATH_REFRESH_AFTER_OPTIONS_CHANGE

void GCodeViewer::update_shells_color_by_extruder(const DynamicPrintConfig* config)
{
    if (config != nullptr)
        m_shells.volumes.update_colors_by_extruder(config);
}

void GCodeViewer::reset()
{
    m_moves_count = 0;
    for (TBuffer& buffer : m_buffers) {
        buffer.reset();
    }

    m_paths_bounding_box = BoundingBoxf3();
    m_max_bounding_box = BoundingBoxf3();
    m_tool_colors = std::vector<Color>();
    m_extruders_count = 0;
    m_extruder_ids = std::vector<unsigned char>();
    m_extrusions.reset_role_visibility_flags();
    m_extrusions.reset_ranges();
    m_shells.volumes.clear();
    m_layers.reset();
    m_layers_z_range = { 0, 0 };
    m_roles = std::vector<ExtrusionRole>();
    m_time_statistics.reset();

#if ENABLE_GCODE_VIEWER_STATISTICS
    m_statistics.reset_all();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}

void GCodeViewer::render() const
{
    auto init_gl_data = [this]() {
        // initializes opengl data of TBuffers
        for (size_t i = 0; i < m_buffers.size(); ++i) {
            TBuffer& buffer = const_cast<TBuffer&>(m_buffers[i]);
            switch (buffer_type(i))
            {
            default: { break; }
            case EMoveType::Tool_change:
            case EMoveType::Color_change:
            case EMoveType::Pause_Print:
            case EMoveType::Custom_GCode:
            case EMoveType::Retract:
            case EMoveType::Unretract: {
                buffer.shader = wxGetApp().is_glsl_version_greater_or_equal_to(1, 20) ? "options_120" : "options_110";
                break;
            }
            case EMoveType::Wipe:
            case EMoveType::Extrude: {
                buffer.shader = "gouraud_light";
                break;
            }
            case EMoveType::Travel: {
                buffer.shader = "toolpaths_lines";
                break;
            }
            }
        }

        // initializes tool marker
        const_cast<SequentialView*>(&m_sequential_view)->marker.init();

        // initializes point sizes
        std::array<int, 2> point_sizes;
        ::glGetIntegerv(GL_ALIASED_POINT_SIZE_RANGE, point_sizes.data());
        *const_cast<std::array<float, 2>*>(&m_detected_point_sizes) = { static_cast<float>(point_sizes[0]), static_cast<float>(point_sizes[1]) };
        *const_cast<bool*>(&m_gl_data_initialized) = true;
    };

#if ENABLE_GCODE_VIEWER_STATISTICS
    const_cast<Statistics*>(&m_statistics)->reset_opengl();
#endif // ENABLE_GCODE_VIEWER_STATISTICS

    // OpenGL data must be initialized after the glContext has been created.
    // This is ensured when this method is called by GLCanvas3D::_render_gcode().
    if (!m_gl_data_initialized)
        init_gl_data();

    if (m_roles.empty())
        return;

    glsafe(::glEnable(GL_DEPTH_TEST));
    render_toolpaths();
    SequentialView* sequential_view = const_cast<SequentialView*>(&m_sequential_view);
    if (sequential_view->current.last != sequential_view->endpoints.last) {
        sequential_view->marker.set_world_position(sequential_view->current_position);
        sequential_view->marker.render();
    }
    render_shells();
    render_legend();
#if ENABLE_GCODE_VIEWER_STATISTICS
    render_statistics();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}

#if ENABLE_SPLITTED_VERTEX_BUFFER
bool GCodeViewer::can_export_toolpaths() const
{
    return has_data() && m_buffers[buffer_id(EMoveType::Extrude)].render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle;
}
#endif // ENABLE_SPLITTED_VERTEX_BUFFER

void GCodeViewer::update_sequential_view_current(unsigned int first, unsigned int last)
{
    auto is_visible = [this](unsigned int id) {
        for (const TBuffer& buffer : m_buffers) {
            if (buffer.visible) {
                for (const Path& path : buffer.paths) {
#if ENABLE_SPLITTED_VERTEX_BUFFER
                    if (path.sub_paths.front().first.s_id <= id && id <= path.sub_paths.back().last.s_id)
#else
                    if (path.first.s_id <= id && id <= path.last.s_id)
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
                    return true;
                }
            }
        }
        return false;
    };

    int first_diff = static_cast<int>(first) - static_cast<int>(m_sequential_view.last_current.first);
    int last_diff = static_cast<int>(last) - static_cast<int>(m_sequential_view.last_current.last);

    unsigned int new_first = first;
    unsigned int new_last = last;

    if (m_sequential_view.skip_invisible_moves) {
        while (!is_visible(new_first)) {
            if (first_diff > 0)
                ++new_first;
            else
                --new_first;
        }

        while (!is_visible(new_last)) {
            if (last_diff > 0)
                ++new_last;
            else
                --new_last;
        }
    }

    m_sequential_view.current.first = new_first;
    m_sequential_view.current.last = new_last;
    m_sequential_view.last_current = m_sequential_view.current;

    refresh_render_paths(true, true);

    if (new_first != first || new_last != last)
        wxGetApp().plater()->update_preview_moves_slider();
}

bool GCodeViewer::is_toolpath_move_type_visible(EMoveType type) const
{
    size_t id = static_cast<size_t>(buffer_id(type));
    return (id < m_buffers.size()) ? m_buffers[id].visible : false;
}

void GCodeViewer::set_toolpath_move_type_visible(EMoveType type, bool visible)
{
    size_t id = static_cast<size_t>(buffer_id(type));
    if (id < m_buffers.size())
        m_buffers[id].visible = visible;
}

unsigned int GCodeViewer::get_options_visibility_flags() const
{
    auto set_flag = [](unsigned int flags, unsigned int flag, bool active) {
        return active ? (flags | (1 << flag)) : flags;
    };

    unsigned int flags = 0;
    flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Travel), is_toolpath_move_type_visible(EMoveType::Travel));
    flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Wipe), is_toolpath_move_type_visible(EMoveType::Wipe));
    flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Retractions), is_toolpath_move_type_visible(EMoveType::Retract));
    flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Unretractions), is_toolpath_move_type_visible(EMoveType::Unretract));
    flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::ToolChanges), is_toolpath_move_type_visible(EMoveType::Tool_change));
    flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::ColorChanges), is_toolpath_move_type_visible(EMoveType::Color_change));
    flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::PausePrints), is_toolpath_move_type_visible(EMoveType::Pause_Print));
    flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::CustomGCodes), is_toolpath_move_type_visible(EMoveType::Custom_GCode));
    flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Shells), m_shells.visible);
    flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::ToolMarker), m_sequential_view.marker.is_visible());
    flags = set_flag(flags, static_cast<unsigned int>(Preview::OptionType::Legend), is_legend_enabled());
    return flags;
}

void GCodeViewer::set_options_visibility_from_flags(unsigned int flags)
{
    auto is_flag_set = [flags](unsigned int flag) {
        return (flags & (1 << flag)) != 0;
    };

    set_toolpath_move_type_visible(EMoveType::Travel, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Travel)));
    set_toolpath_move_type_visible(EMoveType::Wipe, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Wipe)));
    set_toolpath_move_type_visible(EMoveType::Retract, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Retractions)));
    set_toolpath_move_type_visible(EMoveType::Unretract, is_flag_set(static_cast<unsigned int>(Preview::OptionType::Unretractions)));
    set_toolpath_move_type_visible(EMoveType::Tool_change, is_flag_set(static_cast<unsigned int>(Preview::OptionType::ToolChanges)));
    set_toolpath_move_type_visible(EMoveType::Color_change, is_flag_set(static_cast<unsigned int>(Preview::OptionType::ColorChanges)));
    set_toolpath_move_type_visible(EMoveType::Pause_Print, is_flag_set(static_cast<unsigned int>(Preview::OptionType::PausePrints)));
    set_toolpath_move_type_visible(EMoveType::Custom_GCode, is_flag_set(static_cast<unsigned int>(Preview::OptionType::CustomGCodes)));
    m_shells.visible = is_flag_set(static_cast<unsigned int>(Preview::OptionType::Shells));
    m_sequential_view.marker.set_visible(is_flag_set(static_cast<unsigned int>(Preview::OptionType::ToolMarker)));
    enable_legend(is_flag_set(static_cast<unsigned int>(Preview::OptionType::Legend)));
}

void GCodeViewer::set_layers_z_range(const std::array<unsigned int, 2>& layers_z_range)
{
    bool keep_sequential_current_first = layers_z_range[0] >= m_layers_z_range[0];
    bool keep_sequential_current_last = layers_z_range[1] <= m_layers_z_range[1];
    m_layers_z_range = layers_z_range;
    refresh_render_paths(keep_sequential_current_first, keep_sequential_current_last);
    wxGetApp().plater()->update_preview_moves_slider();
}

void GCodeViewer::export_toolpaths_to_obj(const char* filename) const
{
    if (filename == nullptr)
        return;

    if (!has_data())
        return;

    wxBusyCursor busy;

    // the data needed is contained into the Extrude TBuffer
    const TBuffer& t_buffer = m_buffers[buffer_id(EMoveType::Extrude)];
    if (!t_buffer.has_data())
        return;

#if ENABLE_SPLITTED_VERTEX_BUFFER
    if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Triangle)
        return;
#endif // ENABLE_SPLITTED_VERTEX_BUFFER

    // collect color information to generate materials
    std::vector<Color> colors;
    for (const RenderPath& path : t_buffer.render_paths) {
        colors.push_back(path.color);
    }
#if ENABLE_SPLITTED_VERTEX_BUFFER
    std::sort(colors.begin(), colors.end());
    colors.erase(std::unique(colors.begin(), colors.end()), colors.end());
#endif // ENABLE_SPLITTED_VERTEX_BUFFER

    // save materials file
    boost::filesystem::path mat_filename(filename);
    mat_filename.replace_extension("mtl");
    FILE* fp = boost::nowide::fopen(mat_filename.string().c_str(), "w");
    if (fp == nullptr) {
        BOOST_LOG_TRIVIAL(error) << "GCodeViewer::export_toolpaths_to_obj: Couldn't open " << mat_filename.string().c_str() << " for writing";
        return;
    }

    fprintf(fp, "# G-Code Toolpaths Materials\n");
    fprintf(fp, "# Generated by %s-%s based on Slic3r\n", SLIC3R_APP_NAME, SLIC3R_VERSION);

    unsigned int colors_count = 1;
    for (const Color& color : colors) {
        fprintf(fp, "\nnewmtl material_%d\n", colors_count++);
        fprintf(fp, "Ka 1 1 1\n");
        fprintf(fp, "Kd %g %g %g\n", color[0], color[1], color[2]);
        fprintf(fp, "Ks 0 0 0\n");
    }

    fclose(fp);

    // save geometry file
    fp = boost::nowide::fopen(filename, "w");
    if (fp == nullptr) {
        BOOST_LOG_TRIVIAL(error) << "GCodeViewer::export_toolpaths_to_obj: Couldn't open " << filename << " for writing";
        return;
    }

    fprintf(fp, "# G-Code Toolpaths\n");
    fprintf(fp, "# Generated by %s-%s based on Slic3r\n", SLIC3R_APP_NAME, SLIC3R_VERSION);
    fprintf(fp, "\nmtllib ./%s\n", mat_filename.filename().string().c_str());

#if ENABLE_SPLITTED_VERTEX_BUFFER
    const size_t floats_per_vertex = t_buffer.vertices.vertex_size_floats();

    std::vector<Vec3f> out_vertices;
    std::vector<Vec3f> out_normals;

    struct VerticesOffset
    {
        unsigned int vbo;
        size_t offset;
    };
    std::vector<VerticesOffset> vertices_offsets;
    vertices_offsets.push_back({ t_buffer.vertices.vbos.front(), 0 });

    // get vertices/normals data from vertex buffers on gpu
    for (size_t i = 0; i < t_buffer.vertices.vbos.size(); ++i) {
        const size_t floats_count = t_buffer.vertices.sizes[i] / sizeof(float);
        VertexBuffer vertices(floats_count);
        glsafe(::glBindBuffer(GL_ARRAY_BUFFER, t_buffer.vertices.vbos[i]));
        glsafe(::glGetBufferSubData(GL_ARRAY_BUFFER, 0, static_cast<GLsizeiptr>(t_buffer.vertices.sizes[i]), static_cast<void*>(vertices.data())));
        glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
        const size_t vertices_count = floats_count / floats_per_vertex;
        for (size_t j = 0; j < vertices_count; ++j) {
            const size_t base = j * floats_per_vertex;
            out_vertices.push_back({ vertices[base + 0], vertices[base + 1], vertices[base + 2] });
            out_normals.push_back({ vertices[base + 3], vertices[base + 4], vertices[base + 5] });
        }

        if (i < t_buffer.vertices.vbos.size() - 1)
            vertices_offsets.push_back({ t_buffer.vertices.vbos[i + 1], vertices_offsets.back().offset + vertices_count });
    }

    // save vertices to file
    fprintf(fp, "\n# vertices\n");
    for (const Vec3f& v : out_vertices) {
        fprintf(fp, "v %g %g %g\n", v[0], v[1], v[2]);
    }

    // save normals to file
    fprintf(fp, "\n# normals\n");
    for (const Vec3f& n : out_normals) {
        fprintf(fp, "vn %g %g %g\n", n[0], n[1], n[2]);
    }

    size_t i = 0;
    for (const Color& color : colors) {
        // save material triangles to file
        fprintf(fp, "\nusemtl material_%zu\n", i + 1);
        fprintf(fp, "# triangles material %zu\n", i + 1);

        for (const RenderPath& render_path : t_buffer.render_paths) {
            if (render_path.color != color)
                continue;

            const IBuffer& ibuffer = t_buffer.indices[render_path.ibuffer_id];
            size_t vertices_offset = 0;
            for (size_t j = 0; j < vertices_offsets.size(); ++j) {
                const VerticesOffset& offset = vertices_offsets[j];
                if (offset.vbo == ibuffer.vbo) {
                    vertices_offset = offset.offset;
                    break;
                }
            }

            // get indices data from index buffer on gpu
            glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibuffer.ibo));
            for (size_t j = 0; j < render_path.sizes.size(); ++j) {
                IndexBuffer indices(render_path.sizes[j]);
                glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>(render_path.offsets[j]),
                    static_cast<GLsizeiptr>(render_path.sizes[j] * sizeof(IBufferType)), static_cast<void*>(indices.data())));

                const size_t triangles_count = render_path.sizes[j] / 3;
                for (size_t k = 0; k < triangles_count; ++k) {
                    const size_t base = k * 3;
                    const size_t v1 = 1 + static_cast<size_t>(indices[base + 0]) + vertices_offset;
                    const size_t v2 = 1 + static_cast<size_t>(indices[base + 1]) + vertices_offset;
                    const size_t v3 = 1 + static_cast<size_t>(indices[base + 2]) + vertices_offset;
                    if (v1 != v2)
                        // do not export dummy triangles
                        fprintf(fp, "f %zu//%zu %zu//%zu %zu//%zu\n", v1, v1, v2, v2, v3, v3);
                }
            }
            glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
        }
        ++i;
    }
#else
    // get vertices data from vertex buffer on gpu
    size_t floats_per_vertex = t_buffer.vertices.vertex_size_floats();
    VertexBuffer vertices = VertexBuffer(t_buffer.vertices.count * floats_per_vertex);
    glsafe(::glBindBuffer(GL_ARRAY_BUFFER, t_buffer.vertices.id));
    glsafe(::glGetBufferSubData(GL_ARRAY_BUFFER, 0, t_buffer.vertices.data_size_bytes(), vertices.data()));
    glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));

    // get indices data from index buffer on gpu
    MultiIndexBuffer indices;
    for (size_t i = 0; i < t_buffer.indices.size(); ++i) {
        indices.push_back(IndexBuffer(t_buffer.indices[i].count));
        glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, t_buffer.indices[i].id));
        glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, static_cast<GLsizeiptr>(indices.back().size() * sizeof(unsigned int)), indices.back().data()));
        glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
    }

    auto get_vertex = [&vertices, floats_per_vertex](unsigned int id) {
        // extract vertex from vector of floats
        unsigned int base_id = id * floats_per_vertex;
        return Vec3f(vertices[base_id + 0], vertices[base_id + 1], vertices[base_id + 2]);
    };

    struct Segment
    {
        Vec3f v1;
        Vec3f v2;
        Vec3f dir;
        Vec3f right;
        Vec3f up;
        Vec3f rl_displacement;
        Vec3f tb_displacement;
        float length;
    };

    auto generate_segment = [get_vertex](unsigned int start_id, unsigned int end_id, float half_width, float half_height) {
        auto local_basis = [](const Vec3f& dir) {
            // calculate local basis (dir, right, up) on given segment
            std::array<Vec3f, 3> ret;
            ret[0] = dir.normalized();
            if (std::abs(ret[0][2]) < EPSILON) {
                // segment parallel to XY plane
                ret[1] = { ret[0][1], -ret[0][0], 0.0f };
                ret[2] = Vec3f::UnitZ();
            }
            else if (std::abs(std::abs(ret[0].dot(Vec3f::UnitZ())) - 1.0f) < EPSILON) {
                // segment parallel to Z axis
                ret[1] = Vec3f::UnitX();
                ret[2] = Vec3f::UnitY();
            }
            else {
                ret[0] = dir.normalized();
                ret[1] = ret[0].cross(Vec3f::UnitZ()).normalized();
                ret[2] = ret[1].cross(ret[0]);
            }
            return ret;
        };

        Vec3f v1 = get_vertex(start_id) - half_height * Vec3f::UnitZ();
        Vec3f v2 = get_vertex(end_id) - half_height * Vec3f::UnitZ();
        float length = (v2 - v1).norm();
        const auto&& [dir, right, up] = local_basis(v2 - v1);
        return Segment({ v1, v2, dir, right, up, half_width * right, half_height * up, length });
    };

    size_t out_vertices_count = 0;
    unsigned int indices_per_segment = t_buffer.indices_per_segment();
    unsigned int start_vertex_offset = t_buffer.start_segment_vertex_offset();
    unsigned int end_vertex_offset = t_buffer.end_segment_vertex_offset();

    size_t i = 0;
    for (const RenderPath& render_path : t_buffer.render_paths) {
        // get paths segments from buffer paths
        const IndexBuffer& ibuffer = indices[render_path.ibuffer_id];
        const Path& path = t_buffer.paths[render_path.path_id];

        float half_width = 0.5f * path.width;
        // clamp height to avoid artifacts due to z-fighting when importing the obj file into blender and similar
        float half_height = std::max(0.5f * path.height, 0.005f);

        // generates vertices/normals/triangles
        std::vector<Vec3f> out_vertices;
        std::vector<Vec3f> out_normals;
        using Triangle = std::array<size_t, 3>;
        std::vector<Triangle> out_triangles;
        for (size_t j = 0; j < render_path.offsets.size(); ++j) {
            unsigned int start = static_cast<unsigned int>(render_path.offsets[j] / sizeof(unsigned int));
            unsigned int end = start + render_path.sizes[j];

            for (size_t k = start; k < end; k += static_cast<size_t>(indices_per_segment)) {
                Segment curr = generate_segment(ibuffer[k + start_vertex_offset], ibuffer[k + end_vertex_offset], half_width, half_height);
                if (k == start) {
                    // starting endpoint vertices/normals
                    out_vertices.push_back(curr.v1 + curr.rl_displacement); out_normals.push_back(curr.right);  // right
                    out_vertices.push_back(curr.v1 + curr.tb_displacement); out_normals.push_back(curr.up);     // top
                    out_vertices.push_back(curr.v1 - curr.rl_displacement); out_normals.push_back(-curr.right); // left
                    out_vertices.push_back(curr.v1 - curr.tb_displacement); out_normals.push_back(-curr.up);    // bottom
                    out_vertices_count += 4;

                    // starting cap triangles
                    size_t base_id = out_vertices_count - 4 + 1;
                    out_triangles.push_back({ base_id + 0, base_id + 1, base_id + 2 });
                    out_triangles.push_back({ base_id + 0, base_id + 2, base_id + 3 });
                }
                else {
                    // for the endpoint shared by the current and the previous segments
                    // we keep the top and bottom vertices of the previous vertices
                    // and add new left/right vertices for the current segment
                    out_vertices.push_back(curr.v1 + curr.rl_displacement); out_normals.push_back(curr.right);  // right
                    out_vertices.push_back(curr.v1 - curr.rl_displacement); out_normals.push_back(-curr.right); // left
                    out_vertices_count += 2;

                    size_t first_vertex_id = k - static_cast<size_t>(indices_per_segment);
                    Segment prev = generate_segment(ibuffer[first_vertex_id + start_vertex_offset], ibuffer[first_vertex_id + end_vertex_offset], half_width, half_height);
                    float disp = 0.0f;
                    float cos_dir = prev.dir.dot(curr.dir);
                    if (cos_dir > -0.9998477f) {
                        // if the angle between adjacent segments is smaller than 179 degrees
                        Vec3f med_dir = (prev.dir + curr.dir).normalized();
                        disp = half_width * ::tan(::acos(std::clamp(curr.dir.dot(med_dir), -1.0f, 1.0f)));
                    }

                    Vec3f disp_vec = disp * prev.dir;

                    bool is_right_turn = prev.up.dot(prev.dir.cross(curr.dir)) <= 0.0f;
                    if (cos_dir < 0.7071068f) {
                        // if the angle between two consecutive segments is greater than 45 degrees
                        // we add a cap in the outside corner 
                        // and displace the vertices in the inside corner to the same position, if possible
                        if (is_right_turn) {
                            // corner cap triangles (left)
                            size_t base_id = out_vertices_count - 6 + 1;
                            out_triangles.push_back({ base_id + 5, base_id + 2, base_id + 1 });
                            out_triangles.push_back({ base_id + 5, base_id + 3, base_id + 2 });

                            // update right vertices
                            if (disp > 0.0f && disp < prev.length && disp < curr.length) {
                                base_id = out_vertices.size() - 6;
                                out_vertices[base_id + 0] -= disp_vec;
                                out_vertices[base_id + 4] = out_vertices[base_id + 0];
                            }
                        }
                        else {
                            // corner cap triangles (right)
                            size_t base_id = out_vertices_count - 6 + 1;
                            out_triangles.push_back({ base_id + 0, base_id + 4, base_id + 1 });
                            out_triangles.push_back({ base_id + 0, base_id + 3, base_id + 4 });

                            // update left vertices
                            if (disp > 0.0f && disp < prev.length && disp < curr.length) {
                                base_id = out_vertices.size() - 6;
                                out_vertices[base_id + 2] -= disp_vec;
                                out_vertices[base_id + 5] = out_vertices[base_id + 2];
                            }
                        }
                    }
                    else {
                        // if the angle between two consecutive segments is lesser than 45 degrees
                        // displace the vertices to the same position
                        if (is_right_turn) {
                            size_t base_id = out_vertices.size() - 6;
                            // right
                            out_vertices[base_id + 0] -= disp_vec;
                            out_vertices[base_id + 4] = out_vertices[base_id + 0];
                            // left
                            out_vertices[base_id + 2] += disp_vec;
                            out_vertices[base_id + 5] = out_vertices[base_id + 2];
                        }
                        else {
                            size_t base_id = out_vertices.size() - 6;
                            // right
                            out_vertices[base_id + 0] += disp_vec;
                            out_vertices[base_id + 4] = out_vertices[base_id + 0];
                            // left
                            out_vertices[base_id + 2] -= disp_vec;
                            out_vertices[base_id + 5] = out_vertices[base_id + 2];
                        }
                    }
                }

                // current second endpoint vertices/normals
                out_vertices.push_back(curr.v2 + curr.rl_displacement); out_normals.push_back(curr.right);  // right
                out_vertices.push_back(curr.v2 + curr.tb_displacement); out_normals.push_back(curr.up);     // top
                out_vertices.push_back(curr.v2 - curr.rl_displacement); out_normals.push_back(-curr.right); // left
                out_vertices.push_back(curr.v2 - curr.tb_displacement); out_normals.push_back(-curr.up);    // bottom
                out_vertices_count += 4;

                // sides triangles
                if (k == start) {
                    size_t base_id = out_vertices_count - 8 + 1;
                    out_triangles.push_back({ base_id + 0, base_id + 4, base_id + 5 });
                    out_triangles.push_back({ base_id + 0, base_id + 5, base_id + 1 });
                    out_triangles.push_back({ base_id + 1, base_id + 5, base_id + 6 });
                    out_triangles.push_back({ base_id + 1, base_id + 6, base_id + 2 });
                    out_triangles.push_back({ base_id + 2, base_id + 6, base_id + 7 });
                    out_triangles.push_back({ base_id + 2, base_id + 7, base_id + 3 });
                    out_triangles.push_back({ base_id + 3, base_id + 7, base_id + 4 });
                    out_triangles.push_back({ base_id + 3, base_id + 4, base_id + 0 });
                }
                else {
                    size_t base_id = out_vertices_count - 10 + 1;
                    out_triangles.push_back({ base_id + 4, base_id + 6, base_id + 7 });
                    out_triangles.push_back({ base_id + 4, base_id + 7, base_id + 1 });
                    out_triangles.push_back({ base_id + 1, base_id + 7, base_id + 8 });
                    out_triangles.push_back({ base_id + 1, base_id + 8, base_id + 5 });
                    out_triangles.push_back({ base_id + 5, base_id + 8, base_id + 9 });
                    out_triangles.push_back({ base_id + 5, base_id + 9, base_id + 3 });
                    out_triangles.push_back({ base_id + 3, base_id + 9, base_id + 6 });
                    out_triangles.push_back({ base_id + 3, base_id + 6, base_id + 4 });
                }

                if (k + 2 == end) {
                    // ending cap triangles
                    size_t base_id = out_vertices_count - 4 + 1;
                    out_triangles.push_back({ base_id + 0, base_id + 2, base_id + 1 });
                    out_triangles.push_back({ base_id + 0, base_id + 3, base_id + 2 });
                }
            }
        }

        // save to file
        fprintf(fp, "\n# vertices path %zu\n", i + 1);
        for (const Vec3f& v : out_vertices) {
            fprintf(fp, "v %g %g %g\n", v[0], v[1], v[2]);
        }

        fprintf(fp, "\n# normals path %zu\n", i + 1);
        for (const Vec3f& n : out_normals) {
            fprintf(fp, "vn %g %g %g\n", n[0], n[1], n[2]);
        }

        fprintf(fp, "\n# material path %zu\n", i + 1);
        fprintf(fp, "usemtl material_%zu\n", i + 1);

        fprintf(fp, "\n# triangles path %zu\n", i + 1);
        for (const Triangle& t : out_triangles) {
            fprintf(fp, "f %zu//%zu %zu//%zu %zu//%zu\n", t[0], t[0], t[1], t[1], t[2], t[2]);
        }

        ++ i;
    }
#endif // ENABLE_SPLITTED_VERTEX_BUFFER

    fclose(fp);
}

#if ENABLE_SPLITTED_VERTEX_BUFFER
void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
{
    // max index buffer size, in bytes
    static const size_t IBUFFER_THRESHOLD_BYTES = 64 * 1024 * 1024;

    auto log_memory_usage = [this](const std::string& label, const std::vector<MultiVertexBuffer>& vertices, const std::vector<MultiIndexBuffer>& indices) {
        int64_t vertices_size = 0;
        for (const MultiVertexBuffer& buffers : vertices) {
            for (const VertexBuffer& buffer : buffers) {
                vertices_size += SLIC3R_STDVEC_MEMSIZE(buffer, float);
            }
        }
        int64_t indices_size = 0;
        for (const MultiIndexBuffer& buffers : indices) {
            for (const IndexBuffer& buffer : buffers) {
                indices_size += SLIC3R_STDVEC_MEMSIZE(buffer, IBufferType);
            }
        }
        log_memory_used(label, vertices_size + indices_size);
    };

    // format data into the buffers to be rendered as points
    auto add_vertices_as_point = [](const GCodeProcessor::MoveVertex& curr, VertexBuffer& vertices) {
        vertices.push_back(curr.position[0]);
        vertices.push_back(curr.position[1]);
        vertices.push_back(curr.position[2]);
    };
    auto add_indices_as_point = [](const GCodeProcessor::MoveVertex& curr, TBuffer& buffer,
        unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
            buffer.add_path(curr, ibuffer_id, indices.size(), move_id);
            indices.push_back(static_cast<IBufferType>(indices.size()));
    };

    // format data into the buffers to be rendered as lines
    auto add_vertices_as_line = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, VertexBuffer& vertices) {
        // x component of the normal to the current segment (the normal is parallel to the XY plane)
        float normal_x = (curr.position - prev.position).normalized()[1];

        auto add_vertex = [&vertices, normal_x](const GCodeProcessor::MoveVertex& vertex) {
            // add position
            vertices.push_back(vertex.position[0]);
            vertices.push_back(vertex.position[1]);
            vertices.push_back(vertex.position[2]);
            // add normal x component
            vertices.push_back(normal_x);
        };

        // add previous vertex
        add_vertex(prev);
        // add current vertex
        add_vertex(curr);
    };
    auto add_indices_as_line = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, TBuffer& buffer,
        unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
            if (prev.type != curr.type || !buffer.paths.back().matches(curr)) {
                // add starting index
                indices.push_back(static_cast<unsigned int>(indices.size()));
                buffer.add_path(curr, ibuffer_id, indices.size() - 1, move_id - 1);
                buffer.paths.back().sub_paths.front().first.position = prev.position;
            }

            Path& last_path = buffer.paths.back();
            if (last_path.sub_paths.front().first.i_id != last_path.sub_paths.back().last.i_id) {
                // add previous index
                indices.push_back(static_cast<unsigned int>(indices.size()));
            }

            // add current index
            indices.push_back(static_cast<unsigned int>(indices.size()));
            last_path.sub_paths.back().last = { ibuffer_id, indices.size() - 1, move_id, curr.position };
    };

    // format data into the buffers to be rendered as solid
    auto add_vertices_as_solid = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, TBuffer& buffer, unsigned int vbuffer_id, VertexBuffer& vertices, size_t move_id) {
        auto store_vertex = [](VertexBuffer& vertices, const Vec3f& position, const Vec3f& normal) {
            // append position
            vertices.push_back(position[0]);
            vertices.push_back(position[1]);
            vertices.push_back(position[2]);
            // append normal
            vertices.push_back(normal[0]);
            vertices.push_back(normal[1]);
            vertices.push_back(normal[2]);
        };

        if (prev.type != curr.type || !buffer.paths.back().matches(curr)) {
            buffer.add_path(curr, vbuffer_id, vertices.size(), move_id - 1);
            buffer.paths.back().sub_paths.back().first.position = prev.position;
        }

        Path& last_path = buffer.paths.back();

        Vec3f dir = (curr.position - prev.position).normalized();
        Vec3f right = Vec3f(dir[1], -dir[0], 0.0f).normalized();
        Vec3f left = -right;
        Vec3f up = right.cross(dir);
        Vec3f down = -up;
        float half_width = 0.5f * last_path.width;
        float half_height = 0.5f * last_path.height;
        Vec3f prev_pos = prev.position - half_height * up;
        Vec3f curr_pos = curr.position - half_height * up;
        Vec3f d_up = half_height * up;
        Vec3f d_down = -half_height * up;
        Vec3f d_right = half_width * right;
        Vec3f d_left = -half_width * right;

        // vertices 1st endpoint
        if (last_path.vertices_count() == 1 || vertices.empty()) {
            // 1st segment or restart into a new vertex buffer
            // ===============================================
            store_vertex(vertices, prev_pos + d_up, up);
            store_vertex(vertices, prev_pos + d_right, right);
            store_vertex(vertices, prev_pos + d_down, down);
            store_vertex(vertices, prev_pos + d_left, left);
        }
        else {
            // any other segment
            // =================
            store_vertex(vertices, prev_pos + d_right, right);
            store_vertex(vertices, prev_pos + d_left, left);
        }

        // vertices 2nd endpoint
        store_vertex(vertices, curr_pos + d_up, up);
        store_vertex(vertices, curr_pos + d_right, right);
        store_vertex(vertices, curr_pos + d_down, down);
        store_vertex(vertices, curr_pos + d_left, left);

        last_path.sub_paths.back().last = { vbuffer_id, vertices.size(), move_id, curr.position };
    };
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
    auto add_indices_as_solid = [&](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, const GCodeProcessor::MoveVertex* next,
        TBuffer& buffer, size_t& vbuffer_size, unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
#else
    auto add_indices_as_solid = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, TBuffer& buffer,
        size_t& vbuffer_size, unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
            static Vec3f prev_dir;
            static Vec3f prev_up;
            static float sq_prev_length;
            auto store_triangle = [](IndexBuffer& indices, IBufferType i1, IBufferType i2, IBufferType i3) {
                indices.push_back(i1);
                indices.push_back(i2);
                indices.push_back(i3);
            };
            auto append_dummy_cap = [store_triangle](IndexBuffer& indices, IBufferType id) {
                store_triangle(indices, id, id, id);
                store_triangle(indices, id, id, id);
            };
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
            auto convert_vertices_offset = [](size_t vbuffer_size, const std::array<int, 8>& v_offsets) {
                std::array<IBufferType, 8> ret = {
                    static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[0]),
                    static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[1]),
                    static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[2]),
                    static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[3]),
                    static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[4]),
                    static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[5]),
                    static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[6]),
                    static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[7])
                };
                return ret;
            };
            auto append_starting_cap_triangles = [&](IndexBuffer& indices, const std::array<IBufferType, 8>& v_offsets) {
                store_triangle(indices, v_offsets[0], v_offsets[2], v_offsets[1]);
                store_triangle(indices, v_offsets[0], v_offsets[3], v_offsets[2]);
            };
            auto append_stem_triangles = [&](IndexBuffer& indices, const std::array<IBufferType, 8>& v_offsets) {
                store_triangle(indices, v_offsets[0], v_offsets[1], v_offsets[4]);
                store_triangle(indices, v_offsets[1], v_offsets[5], v_offsets[4]);
                store_triangle(indices, v_offsets[1], v_offsets[2], v_offsets[5]);
                store_triangle(indices, v_offsets[2], v_offsets[6], v_offsets[5]);
                store_triangle(indices, v_offsets[2], v_offsets[3], v_offsets[6]);
                store_triangle(indices, v_offsets[3], v_offsets[7], v_offsets[6]);
                store_triangle(indices, v_offsets[3], v_offsets[0], v_offsets[7]);
                store_triangle(indices, v_offsets[0], v_offsets[4], v_offsets[7]);
            };
            auto append_ending_cap_triangles = [&](IndexBuffer& indices, const std::array<IBufferType, 8>& v_offsets) {
                store_triangle(indices, v_offsets[4], v_offsets[6], v_offsets[7]);
                store_triangle(indices, v_offsets[4], v_offsets[5], v_offsets[6]);
            };
#else
            auto append_stem_triangles = [&](IndexBuffer& indices, size_t vbuffer_size, const std::array<int, 8>& v_offsets) {
                std::array<IBufferType, 8> v_ids;
                for (size_t i = 0; i < v_ids.size(); ++i) {
                    v_ids[i] = static_cast<IBufferType>(static_cast<int>(vbuffer_size) + v_offsets[i]);
                }

                // triangles starting cap
                store_triangle(indices, v_ids[0], v_ids[2], v_ids[1]);
                store_triangle(indices, v_ids[0], v_ids[3], v_ids[2]);

                // triangles sides
                store_triangle(indices, v_ids[0], v_ids[1], v_ids[4]);
                store_triangle(indices, v_ids[1], v_ids[5], v_ids[4]);
                store_triangle(indices, v_ids[1], v_ids[2], v_ids[5]);
                store_triangle(indices, v_ids[2], v_ids[6], v_ids[5]);
                store_triangle(indices, v_ids[2], v_ids[3], v_ids[6]);
                store_triangle(indices, v_ids[3], v_ids[7], v_ids[6]);
                store_triangle(indices, v_ids[3], v_ids[0], v_ids[7]);
                store_triangle(indices, v_ids[0], v_ids[4], v_ids[7]);

                // triangles ending cap
                store_triangle(indices, v_ids[4], v_ids[6], v_ids[7]);
                store_triangle(indices, v_ids[4], v_ids[5], v_ids[6]);
            };
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS

            if (prev.type != curr.type || !buffer.paths.back().matches(curr)) {
                buffer.add_path(curr, ibuffer_id, indices.size(), move_id - 1);
                buffer.paths.back().sub_paths.back().first.position = prev.position;
            }

            Path& last_path = buffer.paths.back();

            Vec3f dir = (curr.position - prev.position).normalized();
            Vec3f right = Vec3f(dir[1], -dir[0], 0.0f).normalized();
            Vec3f up = right.cross(dir);
            float sq_length = (curr.position - prev.position).squaredNorm();

#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
            const std::array<IBufferType, 8> first_seg_v_offsets = convert_vertices_offset(vbuffer_size, { 0, 1, 2, 3, 4, 5, 6, 7 });
            const std::array<IBufferType, 8> non_first_seg_v_offsets = convert_vertices_offset(vbuffer_size, { -4, 0, -2, 1, 2, 3, 4, 5 });
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS

            if (last_path.vertices_count() == 1 || vbuffer_size == 0) {
                // 1st segment or restart into a new vertex buffer
                // ===============================================
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
                if (last_path.vertices_count() == 1)
                    // starting cap triangles
                    append_starting_cap_triangles(indices, first_seg_v_offsets);
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
                // dummy triangles outer corner cap
                append_dummy_cap(indices, vbuffer_size);

                // stem triangles
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
                append_stem_triangles(indices, first_seg_v_offsets);
#else
                append_stem_triangles(indices, vbuffer_size, { 0, 1, 2, 3, 4, 5, 6, 7 });
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS

                vbuffer_size += 8;
            }
            else {
                // any other segment
                // =================
                float displacement = 0.0f;
                float cos_dir = prev_dir.dot(dir);
                if (cos_dir > -0.9998477f) {
                    // if the angle between adjacent segments is smaller than 179 degrees
                    Vec3f med_dir = (prev_dir + dir).normalized();
                    float half_width = 0.5f * last_path.width;
                    displacement = half_width * ::tan(::acos(std::clamp(dir.dot(med_dir), -1.0f, 1.0f)));
                }

                float sq_displacement = sqr(displacement);
                bool can_displace = displacement > 0.0f && sq_displacement < sq_prev_length && sq_displacement < sq_length;

                bool is_right_turn = prev_up.dot(prev_dir.cross(dir)) <= 0.0f;
                // whether the angle between adjacent segments is greater than 45 degrees
                bool is_sharp = cos_dir < 0.7071068f;

                bool right_displaced = false;
                bool left_displaced = false;

                if (!is_sharp && can_displace) {
                    if (is_right_turn)
                        left_displaced = true;
                    else
                        right_displaced = true;
                }

                // triangles outer corner cap
                if (is_right_turn) {
                    if (left_displaced)
                        // dummy triangles
                        append_dummy_cap(indices, vbuffer_size);
                    else {
                        store_triangle(indices, vbuffer_size - 4, vbuffer_size + 1, vbuffer_size - 1);
                        store_triangle(indices, vbuffer_size + 1, vbuffer_size - 2, vbuffer_size - 1);
                    }
                }
                else {
                    if (right_displaced)
                        // dummy triangles
                        append_dummy_cap(indices, vbuffer_size);
                    else {
                        store_triangle(indices, vbuffer_size - 4, vbuffer_size - 3, vbuffer_size + 0);
                        store_triangle(indices, vbuffer_size - 3, vbuffer_size - 2, vbuffer_size + 0);
                    }
                }

                // stem triangles
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
                append_stem_triangles(indices, non_first_seg_v_offsets);
#else
                append_stem_triangles(indices, vbuffer_size, { -4, 0, -2, 1, 2, 3, 4, 5 });
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS

                vbuffer_size += 6;
            }

#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
            if (next != nullptr && (curr.type != next->type || !last_path.matches(*next)))
                // ending cap triangles
                append_ending_cap_triangles(indices, non_first_seg_v_offsets);
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS

            last_path.sub_paths.back().last = { ibuffer_id, indices.size() - 1, move_id, curr.position };
            prev_dir = dir;
            prev_up = up;
            sq_prev_length = sq_length;
    };

#if ENABLE_GCODE_VIEWER_STATISTICS
    auto start_time = std::chrono::high_resolution_clock::now();
    m_statistics.results_size = SLIC3R_STDVEC_MEMSIZE(gcode_result.moves, GCodeProcessor::MoveVertex);
    m_statistics.results_time = gcode_result.time;
#endif // ENABLE_GCODE_VIEWER_STATISTICS

    m_moves_count = gcode_result.moves.size();
    if (m_moves_count == 0)
        return;

    unsigned int progress_count = 0;
    static const unsigned int progress_threshold = 1000;
    wxProgressDialog* progress_dialog = wxGetApp().is_gcode_viewer() ?
        new wxProgressDialog(_L("Generating toolpaths"), "...",
            100, wxGetApp().plater(), wxPD_AUTO_HIDE | wxPD_APP_MODAL) : nullptr;

    wxBusyCursor busy;

    // extract approximate paths bounding box from result
    for (const GCodeProcessor::MoveVertex& move : gcode_result.moves) {
        if (wxGetApp().is_gcode_viewer())
            // for the gcode viewer we need to take in account all moves to correctly size the printbed
            m_paths_bounding_box.merge(move.position.cast<double>());
        else {
            if (move.type == EMoveType::Extrude && move.width != 0.0f && move.height != 0.0f)
                m_paths_bounding_box.merge(move.position.cast<double>());
        }
    }

    // set approximate max bounding box (take in account also the tool marker)
    m_max_bounding_box = m_paths_bounding_box;
    m_max_bounding_box.merge(m_paths_bounding_box.max + m_sequential_view.marker.get_bounding_box().size()[2] * Vec3d::UnitZ());

    std::vector<MultiVertexBuffer> vertices(m_buffers.size());
    std::vector<MultiIndexBuffer> indices(m_buffers.size());
    std::vector<float> options_zs;

    // toolpaths data -> extract vertices from result
    for (size_t i = 0; i < m_moves_count; ++i) {
        const GCodeProcessor::MoveVertex& curr = gcode_result.moves[i];

        // skip first vertex
        if (i == 0)
            continue;

        const GCodeProcessor::MoveVertex& prev = gcode_result.moves[i - 1];

        // update progress dialog
        ++progress_count;
        if (progress_dialog != nullptr && progress_count % progress_threshold == 0) {
            progress_dialog->Update(int(100.0f * float(i) / (2.0f * float(m_moves_count))),
                _L("Generating vertex buffer") + ": " + wxNumberFormatter::ToString(100.0 * double(i) / double(m_moves_count), 0, wxNumberFormatter::Style_None) + "%");
            progress_dialog->Fit();
            progress_count = 0;
        }

        unsigned char id = buffer_id(curr.type);
        TBuffer& t_buffer = m_buffers[id];
        MultiVertexBuffer& v_multibuffer = vertices[id];

        // ensure there is at least one vertex buffer
        if (v_multibuffer.empty())
            v_multibuffer.push_back(VertexBuffer());

        // if adding the vertices for the current segment exceeds the threshold size of the current vertex buffer
        // add another vertex buffer
        if (v_multibuffer.back().size() * sizeof(float) > t_buffer.vertices.max_size_bytes() - t_buffer.max_vertices_per_segment_size_bytes()) {
            v_multibuffer.push_back(VertexBuffer());
            if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
                Path& last_path = t_buffer.paths.back();
                if (prev.type == curr.type && last_path.matches(curr))
                    last_path.add_sub_path(prev, static_cast<unsigned int>(v_multibuffer.size()) - 1, 0, i - 1);
            }
        }

        VertexBuffer& v_buffer = v_multibuffer.back();

        switch (t_buffer.render_primitive_type)
        {
        case TBuffer::ERenderPrimitiveType::Point:    { add_vertices_as_point(curr, v_buffer); break; }
        case TBuffer::ERenderPrimitiveType::Line:     { add_vertices_as_line(prev, curr, v_buffer); break; }
        case TBuffer::ERenderPrimitiveType::Triangle: { add_vertices_as_solid(prev, curr, t_buffer, static_cast<unsigned int>(v_multibuffer.size()) - 1, v_buffer, i); break; }
        }

        // collect options zs for later use
        if (curr.type == EMoveType::Pause_Print || curr.type == EMoveType::Custom_GCode) {
            const float* const last_z = options_zs.empty() ? nullptr : &options_zs.back();
            if (last_z == nullptr || curr.position[2] < *last_z - EPSILON || *last_z + EPSILON < curr.position[2])
                options_zs.emplace_back(curr.position[2]);
        }
    }

    // smooth toolpaths corners for the given TBuffer using triangles
    auto smooth_triangle_toolpaths_corners = [&gcode_result](const TBuffer& t_buffer, MultiVertexBuffer& v_multibuffer) {
        auto extract_position_at = [](const VertexBuffer& vertices, size_t offset) {
            return Vec3f(vertices[offset + 0], vertices[offset + 1], vertices[offset + 2]);
        };
        auto update_position_at = [](VertexBuffer& vertices, size_t offset, const Vec3f& position) {
            vertices[offset + 0] = position[0];
            vertices[offset + 1] = position[1];
            vertices[offset + 2] = position[2];
        };
        auto match_right_vertices = [&](const Path::Sub_Path& prev_sub_path, const Path::Sub_Path& next_sub_path,
            size_t curr_s_id, size_t vertex_size_floats, const Vec3f& displacement_vec) {
                if (&prev_sub_path == &next_sub_path) { // previous and next segment are both contained into to the same vertex buffer
                    VertexBuffer& vbuffer = v_multibuffer[prev_sub_path.first.b_id];
                    // offset into the vertex buffer of the next segment 1st vertex
                    size_t next_1st_offset = (prev_sub_path.last.s_id - curr_s_id) * 6 * vertex_size_floats;
                    // offset into the vertex buffer of the right vertex of the previous segment 
                    size_t prev_right_offset = prev_sub_path.last.i_id - next_1st_offset - 3 * vertex_size_floats;
                    // new position of the right vertices
                    Vec3f shared_vertex = extract_position_at(vbuffer, prev_right_offset) + displacement_vec;
                    // update previous segment
                    update_position_at(vbuffer, prev_right_offset, shared_vertex);
                    // offset into the vertex buffer of the right vertex of the next segment
                    size_t next_right_offset = next_sub_path.last.i_id - next_1st_offset;
                    // update next segment
                    update_position_at(vbuffer, next_right_offset, shared_vertex);
                }
                else { // previous and next segment are contained into different vertex buffers
                    VertexBuffer& prev_vbuffer = v_multibuffer[prev_sub_path.first.b_id];
                    VertexBuffer& next_vbuffer = v_multibuffer[next_sub_path.first.b_id];
                    // offset into the previous vertex buffer of the right vertex of the previous segment 
                    size_t prev_right_offset = prev_sub_path.last.i_id - 3 * vertex_size_floats;
                    // new position of the right vertices
                    Vec3f shared_vertex = extract_position_at(prev_vbuffer, prev_right_offset) + displacement_vec;
                    // update previous segment
                    update_position_at(prev_vbuffer, prev_right_offset, shared_vertex);
                    // offset into the next vertex buffer of the right vertex of the next segment
                    size_t next_right_offset = next_sub_path.first.i_id + 1 * vertex_size_floats;
                    // update next segment
                    update_position_at(next_vbuffer, next_right_offset, shared_vertex);
                }
        };
        auto match_left_vertices = [&](const Path::Sub_Path& prev_sub_path, const Path::Sub_Path& next_sub_path,
            size_t curr_s_id, size_t vertex_size_floats, const Vec3f& displacement_vec) {
                if (&prev_sub_path == &next_sub_path) { // previous and next segment are both contained into to the same vertex buffer
                    VertexBuffer& vbuffer = v_multibuffer[prev_sub_path.first.b_id];
                    // offset into the vertex buffer of the next segment 1st vertex
                    size_t next_1st_offset = (prev_sub_path.last.s_id - curr_s_id) * 6 * vertex_size_floats;
                    // offset into the vertex buffer of the left vertex of the previous segment 
                    size_t prev_left_offset = prev_sub_path.last.i_id - next_1st_offset - 1 * vertex_size_floats;
                    // new position of the left vertices
                    Vec3f shared_vertex = extract_position_at(vbuffer, prev_left_offset) + displacement_vec;
                    // update previous segment
                    update_position_at(vbuffer, prev_left_offset, shared_vertex);
                    // offset into the vertex buffer of the left vertex of the next segment
                    size_t next_left_offset = next_sub_path.last.i_id - next_1st_offset + 1 * vertex_size_floats;
                    // update next segment
                    update_position_at(vbuffer, next_left_offset, shared_vertex);
                }
                else { // previous and next segment are contained into different vertex buffers
                    VertexBuffer& prev_vbuffer = v_multibuffer[prev_sub_path.first.b_id];
                    VertexBuffer& next_vbuffer = v_multibuffer[next_sub_path.first.b_id];
                    // offset into the previous vertex buffer of the left vertex of the previous segment 
                    size_t prev_left_offset = prev_sub_path.last.i_id - 1 * vertex_size_floats;
                    // new position of the left vertices
                    Vec3f shared_vertex = extract_position_at(prev_vbuffer, prev_left_offset) + displacement_vec;
                    // update previous segment
                    update_position_at(prev_vbuffer, prev_left_offset, shared_vertex);
                    // offset into the next vertex buffer of the left vertex of the next segment
                    size_t next_left_offset = next_sub_path.first.i_id + 3 * vertex_size_floats;
                    // update next segment
                    update_position_at(next_vbuffer, next_left_offset, shared_vertex);
                }
        };

        size_t vertex_size_floats = t_buffer.vertices.vertex_size_floats();
        for (const Path& path : t_buffer.paths) {
            // the two segments of the path sharing the current vertex may belong
            // to two different vertex buffers
            size_t prev_sub_path_id = 0;
            size_t next_sub_path_id = 0;
            size_t path_vertices_count = path.vertices_count();
            float half_width = 0.5f * path.width;
            for (size_t j = 1; j < path_vertices_count - 1; ++j) {
                size_t curr_s_id = path.sub_paths.front().first.s_id + j;
                const Vec3f& prev = gcode_result.moves[curr_s_id - 1].position;
                const Vec3f& curr = gcode_result.moves[curr_s_id].position;
                const Vec3f& next = gcode_result.moves[curr_s_id + 1].position;

                // select the subpaths which contains the previous/next segments
                if (!path.sub_paths[prev_sub_path_id].contains(curr_s_id))
                    ++prev_sub_path_id;
                if (!path.sub_paths[next_sub_path_id].contains(curr_s_id + 1))
                    ++next_sub_path_id;
                const Path::Sub_Path& prev_sub_path = path.sub_paths[prev_sub_path_id];
                const Path::Sub_Path& next_sub_path = path.sub_paths[next_sub_path_id];

                Vec3f prev_dir = (curr - prev).normalized();
                Vec3f prev_right = Vec3f(prev_dir[1], -prev_dir[0], 0.0f).normalized();
                Vec3f prev_up = prev_right.cross(prev_dir);

                Vec3f next_dir = (next - curr).normalized();

                bool is_right_turn = prev_up.dot(prev_dir.cross(next_dir)) <= 0.0f;
                float cos_dir = prev_dir.dot(next_dir);
                // whether the angle between adjacent segments is greater than 45 degrees
                bool is_sharp = cos_dir < 0.7071068f;

                float displacement = 0.0f;
                if (cos_dir > -0.9998477f) {
                    // if the angle between adjacent segments is smaller than 179 degrees
                    Vec3f med_dir = (prev_dir + next_dir).normalized();
                    displacement = half_width * ::tan(::acos(std::clamp(next_dir.dot(med_dir), -1.0f, 1.0f)));
                }

                float sq_prev_length = (curr - prev).squaredNorm();
                float sq_next_length = (next - curr).squaredNorm();
                float sq_displacement = sqr(displacement);
                bool can_displace = displacement > 0.0f && sq_displacement < sq_prev_length && sq_displacement < sq_next_length;

                if (can_displace) {
                    // displacement to apply to the vertices to match
                    Vec3f displacement_vec = displacement * prev_dir;
                    // matches inner corner vertices
                    if (is_right_turn)
                        match_right_vertices(prev_sub_path, next_sub_path, curr_s_id, vertex_size_floats, -displacement_vec);
                    else
                        match_left_vertices(prev_sub_path, next_sub_path, curr_s_id, vertex_size_floats, -displacement_vec);

                    if (!is_sharp) {
                        // matches outer corner vertices
                        if (is_right_turn)
                            match_left_vertices(prev_sub_path, next_sub_path, curr_s_id, vertex_size_floats, displacement_vec);
                        else
                            match_right_vertices(prev_sub_path, next_sub_path, curr_s_id, vertex_size_floats, displacement_vec);
                    }
                }
            }
        }
    };

#if ENABLE_GCODE_VIEWER_STATISTICS
    auto load_vertices_time = std::chrono::high_resolution_clock::now();
    m_statistics.load_vertices = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS

    // smooth toolpaths corners for TBuffers using triangles
    for (size_t i = 0; i < m_buffers.size(); ++i) {
        const TBuffer& t_buffer = m_buffers[i];
        if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
            smooth_triangle_toolpaths_corners(t_buffer, vertices[i]);
        }
    }

    for (MultiVertexBuffer& v_multibuffer : vertices) {
        for (VertexBuffer& v_buffer : v_multibuffer) {
            v_buffer.shrink_to_fit();
        }
    }

    // move the wipe toolpaths half height up to render them on proper position
    MultiVertexBuffer& wipe_vertices = vertices[buffer_id(EMoveType::Wipe)];
    for (VertexBuffer& v_buffer : wipe_vertices) {
        for (size_t i = 2; i < v_buffer.size(); i += 3) {
            v_buffer[i] += 0.5f * GCodeProcessor::Wipe_Height;
        }
    }

    // send vertices data to gpu
    for (size_t i = 0; i < m_buffers.size(); ++i) {
        TBuffer& t_buffer = m_buffers[i];

        const MultiVertexBuffer& v_multibuffer = vertices[i];
        for (const VertexBuffer& v_buffer : v_multibuffer) {
            size_t size_elements = v_buffer.size();
            size_t size_bytes = size_elements * sizeof(float);
            size_t vertices_count = size_elements / t_buffer.vertices.vertex_size_floats();
            t_buffer.vertices.count += vertices_count;

#if ENABLE_GCODE_VIEWER_STATISTICS
            m_statistics.total_vertices_gpu_size += static_cast<int64_t>(size_bytes);
            m_statistics.max_vbuffer_gpu_size = std::max(m_statistics.max_vbuffer_gpu_size, static_cast<int64_t>(size_bytes));
            ++m_statistics.vbuffers_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS

            GLuint id = 0;
            glsafe(::glGenBuffers(1, &id));
            t_buffer.vertices.vbos.push_back(static_cast<unsigned int>(id));
            t_buffer.vertices.sizes.push_back(size_bytes);
            glsafe(::glBindBuffer(GL_ARRAY_BUFFER, id));
            glsafe(::glBufferData(GL_ARRAY_BUFFER, size_bytes, v_buffer.data(), GL_STATIC_DRAW));
            glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
        }
    }

#if ENABLE_GCODE_VIEWER_STATISTICS
    auto smooth_vertices_time = std::chrono::high_resolution_clock::now();
    m_statistics.smooth_vertices = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - load_vertices_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
    log_memory_usage("Loaded G-code generated vertex buffers ", vertices, indices);

    // dismiss vertices data, no more needed
    std::vector<MultiVertexBuffer>().swap(vertices);

    // toolpaths data -> extract indices from result
    // paths may have been filled while extracting vertices,
    // so reset them, they will be filled again while extracting indices
    for (TBuffer& buffer : m_buffers) {
        buffer.paths.clear();
    }

    // variable used to keep track of the current vertex buffers index and size
    using CurrVertexBuffer = std::pair<unsigned int, size_t>;
    std::vector<CurrVertexBuffer> curr_vertex_buffers(m_buffers.size(), { 0, 0 });

    // variable used to keep track of the vertex buffers ids
    using VboIndexList = std::vector<unsigned int>;
    std::vector<VboIndexList> vbo_indices(m_buffers.size());

    for (size_t i = 0; i < m_moves_count; ++i) {
        const GCodeProcessor::MoveVertex& curr = gcode_result.moves[i];

        // skip first vertex
        if (i == 0)
            continue;

        const GCodeProcessor::MoveVertex& prev = gcode_result.moves[i - 1];
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
        const GCodeProcessor::MoveVertex* next = nullptr;
        if (i < m_moves_count - 1)
            next = &gcode_result.moves[i + 1];
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS

        ++progress_count;
        if (progress_dialog != nullptr && progress_count % progress_threshold == 0) {
            progress_dialog->Update(int(100.0f * float(m_moves_count + i) / (2.0f * float(m_moves_count))),
                _L("Generating index buffers") + ": " + wxNumberFormatter::ToString(100.0 * double(i) / double(m_moves_count), 0, wxNumberFormatter::Style_None) + "%");
            progress_dialog->Fit();
            progress_count = 0;
        }

        unsigned char id = buffer_id(curr.type);
        TBuffer& t_buffer = m_buffers[id];
        MultiIndexBuffer& i_multibuffer = indices[id];
        CurrVertexBuffer& curr_vertex_buffer = curr_vertex_buffers[id];
        VboIndexList& vbo_index_list = vbo_indices[id];

        // ensure there is at least one index buffer
        if (i_multibuffer.empty()) {
            i_multibuffer.push_back(IndexBuffer());
            vbo_index_list.push_back(t_buffer.vertices.vbos[curr_vertex_buffer.first]);
        }

        // if adding the indices for the current segment exceeds the threshold size of the current index buffer
        // create another index buffer
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
        if (i_multibuffer.back().size() * sizeof(IBufferType) >= IBUFFER_THRESHOLD_BYTES - t_buffer.max_indices_per_segment_size_bytes()) {
#else
        if (i_multibuffer.back().size() * sizeof(IBufferType) >= IBUFFER_THRESHOLD_BYTES - t_buffer.indices_per_segment_size_bytes()) {
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
            i_multibuffer.push_back(IndexBuffer());
            vbo_index_list.push_back(t_buffer.vertices.vbos[curr_vertex_buffer.first]);
            if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Point) {
                Path& last_path = t_buffer.paths.back();
                last_path.add_sub_path(prev, static_cast<unsigned int>(i_multibuffer.size()) - 1, 0, i - 1);
            }
        }

        // if adding the vertices for the current segment exceeds the threshold size of the current vertex buffer
        // create another index buffer
        if (curr_vertex_buffer.second * t_buffer.vertices.vertex_size_bytes() > t_buffer.vertices.max_size_bytes() - t_buffer.max_vertices_per_segment_size_bytes()) {
            i_multibuffer.push_back(IndexBuffer());

            ++curr_vertex_buffer.first;
            curr_vertex_buffer.second = 0;
            vbo_index_list.push_back(t_buffer.vertices.vbos[curr_vertex_buffer.first]);

            if (t_buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Point) {
                Path& last_path = t_buffer.paths.back();
                last_path.add_sub_path(prev, static_cast<unsigned int>(i_multibuffer.size()) - 1, 0, i - 1);
            }
        }

        IndexBuffer& i_buffer = i_multibuffer.back();

        switch (t_buffer.render_primitive_type)
        {
        case TBuffer::ERenderPrimitiveType::Point: {
            add_indices_as_point(curr, t_buffer, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, i);
            curr_vertex_buffer.second += t_buffer.max_vertices_per_segment();
            break;
        }
        case TBuffer::ERenderPrimitiveType::Line: {
            add_indices_as_line(prev, curr, t_buffer, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, i);
            curr_vertex_buffer.second += t_buffer.max_vertices_per_segment();
            break;
        }
        case TBuffer::ERenderPrimitiveType::Triangle: {
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
            add_indices_as_solid(prev, curr, next, t_buffer, curr_vertex_buffer.second, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, i);
#else
            add_indices_as_solid(prev, curr, t_buffer, curr_vertex_buffer.second, static_cast<unsigned int>(i_multibuffer.size()) - 1, i_buffer, i);
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
            break;
        }
        }
    }

    for (MultiIndexBuffer& i_multibuffer : indices) {
        for (IndexBuffer& i_buffer : i_multibuffer) {
            i_buffer.shrink_to_fit();
        }
    }

    // toolpaths data -> send indices data to gpu
    for (size_t i = 0; i < m_buffers.size(); ++i) {
        TBuffer& t_buffer = m_buffers[i];
        const MultiIndexBuffer& i_multibuffer = indices[i];
        for (const IndexBuffer& i_buffer : i_multibuffer) {
            size_t size_elements = i_buffer.size();
            size_t size_bytes = size_elements * sizeof(IBufferType);

            // stores index buffer informations into TBuffer
            t_buffer.indices.push_back(IBuffer());
            IBuffer& ibuf = t_buffer.indices.back();
            ibuf.count = size_elements;
            ibuf.vbo = vbo_indices[i][t_buffer.indices.size() - 1];

#if ENABLE_GCODE_VIEWER_STATISTICS
            m_statistics.total_indices_gpu_size += static_cast<int64_t>(size_bytes);
            m_statistics.max_ibuffer_gpu_size = std::max(m_statistics.max_ibuffer_gpu_size, static_cast<int64_t>(size_bytes));
            ++m_statistics.ibuffers_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS

            glsafe(::glGenBuffers(1, &ibuf.ibo));
            glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibuf.ibo));
            glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, size_bytes, i_buffer.data(), GL_STATIC_DRAW));
            glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
        }
    }

    if (progress_dialog != nullptr) {
        progress_dialog->Update(100, "");
        progress_dialog->Fit();
    }

#if ENABLE_GCODE_VIEWER_STATISTICS
    for (const TBuffer& buffer : m_buffers) {
        m_statistics.paths_size += SLIC3R_STDVEC_MEMSIZE(buffer.paths, Path);
    }

    auto update_segments_count = [&](EMoveType type, int64_t& count) {
        unsigned int id = buffer_id(type);
        const MultiIndexBuffer& buffers = indices[id];
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
        int64_t indices_count = 0;
        for (const IndexBuffer& buffer : buffers) {
            indices_count += buffer.size();
        }
        const TBuffer& t_buffer = m_buffers[id];
        if (t_buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle)
            indices_count -= static_cast<int64_t>(12 * t_buffer.paths.size()); // remove the starting + ending caps = 4 triangles

        count += indices_count / t_buffer.indices_per_segment();
#else
        for (const IndexBuffer& buffer : buffers) {
            count += buffer.size() / m_buffers[id].indices_per_segment();
        }
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
    };

    update_segments_count(EMoveType::Travel, m_statistics.travel_segments_count);
    update_segments_count(EMoveType::Wipe, m_statistics.wipe_segments_count);
    update_segments_count(EMoveType::Extrude, m_statistics.extrude_segments_count);

    m_statistics.load_indices = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - smooth_vertices_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS

    log_memory_usage("Loaded G-code generated indices buffers ", vertices, indices);

    // dismiss indices data, no more needed
    std::vector<MultiIndexBuffer>().swap(indices);

    // layers zs / roles / extruder ids -> extract from result
    size_t last_travel_s_id = 0;
    for (size_t i = 0; i < m_moves_count; ++i) {
        const GCodeProcessor::MoveVertex& move = gcode_result.moves[i];
        if (move.type == EMoveType::Extrude) {
            // layers zs
            const double* const last_z = m_layers.empty() ? nullptr : &m_layers.get_zs().back();
            double z = static_cast<double>(move.position[2]);
            if (last_z == nullptr || z < *last_z - EPSILON || *last_z + EPSILON < z)
                m_layers.append(z, { last_travel_s_id, i });
            else
                m_layers.get_endpoints().back().last = i;
            // extruder ids
            m_extruder_ids.emplace_back(move.extruder_id);
            // roles
            if (i > 0)
                m_roles.emplace_back(move.extrusion_role);
        }
        else if (move.type == EMoveType::Travel) {
            if (i - last_travel_s_id > 1 && !m_layers.empty())
                m_layers.get_endpoints().back().last = i;

            last_travel_s_id = i;
        }
    }

    // roles -> remove duplicates
    std::sort(m_roles.begin(), m_roles.end());
    m_roles.erase(std::unique(m_roles.begin(), m_roles.end()), m_roles.end());
    m_roles.shrink_to_fit();

    // extruder ids -> remove duplicates
    std::sort(m_extruder_ids.begin(), m_extruder_ids.end());
    m_extruder_ids.erase(std::unique(m_extruder_ids.begin(), m_extruder_ids.end()), m_extruder_ids.end());
    m_extruder_ids.shrink_to_fit();

    // set layers z range
    if (!m_layers.empty())
        m_layers_z_range = { 0, static_cast<unsigned int>(m_layers.size() - 1) };

    // change color of paths whose layer contains option points
    if (!options_zs.empty()) {
        TBuffer& extrude_buffer = m_buffers[buffer_id(EMoveType::Extrude)];
        for (Path& path : extrude_buffer.paths) {
            float z = path.sub_paths.front().first.position[2];
            if (std::find_if(options_zs.begin(), options_zs.end(), [z](float f) { return f - EPSILON <= z && z <= f + EPSILON; }) != options_zs.end())
                path.cp_color_id = 255 - path.cp_color_id;
        }
    }

#if ENABLE_GCODE_VIEWER_STATISTICS
    m_statistics.load_time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS

    if (progress_dialog != nullptr)
        progress_dialog->Destroy();
}
#else
void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
{
#if ENABLE_GCODE_VIEWER_STATISTICS
    auto start_time = std::chrono::high_resolution_clock::now();
    m_statistics.results_size = SLIC3R_STDVEC_MEMSIZE(gcode_result.moves, GCodeProcessor::MoveVertex);
    m_statistics.results_time = gcode_result.time;
#endif // ENABLE_GCODE_VIEWER_STATISTICS

    // vertices data
    m_moves_count = gcode_result.moves.size();
    if (m_moves_count == 0)
        return;

    unsigned int progress_count = 0;
    static const unsigned int progress_threshold = 1000;
    wxProgressDialog* progress_dialog = wxGetApp().is_gcode_viewer() ?
        new wxProgressDialog(_L("Generating toolpaths"), "...",
            100, wxGetApp().plater(), wxPD_AUTO_HIDE | wxPD_APP_MODAL) : nullptr;

    m_extruders_count = gcode_result.extruders_count;

    for (size_t i = 0; i < m_moves_count; ++i) {
        const GCodeProcessor::MoveVertex& move = gcode_result.moves[i];
        if (wxGetApp().is_gcode_viewer())
            // for the gcode viewer we need all moves to correctly size the printbed
            m_paths_bounding_box.merge(move.position.cast<double>());
        else {
            if (move.type == EMoveType::Extrude && move.width != 0.0f && move.height != 0.0f)
                m_paths_bounding_box.merge(move.position.cast<double>());
        }
    }

    // max bounding box (account for tool marker)
    m_max_bounding_box = m_paths_bounding_box;
    m_max_bounding_box.merge(m_paths_bounding_box.max + m_sequential_view.marker.get_bounding_box().size()[2] * Vec3d::UnitZ());

    auto log_memory_usage = [this](const std::string& label, const std::vector<VertexBuffer>& vertices, const std::vector<MultiIndexBuffer>& indices) {
        int64_t vertices_size = 0;
        for (size_t i = 0; i < vertices.size(); ++i) {
            vertices_size += SLIC3R_STDVEC_MEMSIZE(vertices[i], float);
        }
        int64_t indices_size = 0;
        for (size_t i = 0; i < indices.size(); ++i) {
            for (size_t j = 0; j < indices[i].size(); ++j) {
                indices_size += SLIC3R_STDVEC_MEMSIZE(indices[i][j], unsigned int);
            }
        }
        log_memory_used(label, vertices_size + indices_size);
    };

    // format data into the buffers to be rendered as points
    auto add_vertices_as_point = [](const GCodeProcessor::MoveVertex& curr, VertexBuffer& vertices) {
        vertices.push_back(curr.position[0]);
        vertices.push_back(curr.position[1]);
        vertices.push_back(curr.position[2]);
    };
    auto add_indices_as_point = [](const GCodeProcessor::MoveVertex& curr, TBuffer& buffer,
            unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
            buffer.add_path(curr, ibuffer_id, indices.size(), move_id);
            indices.push_back(static_cast<unsigned int>(indices.size()));
    };

    // format data into the buffers to be rendered as lines
    auto add_vertices_as_line = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr,
        VertexBuffer& vertices) {
            // x component of the normal to the current segment (the normal is parallel to the XY plane)
            float normal_x = (curr.position - prev.position).normalized()[1];

            auto add_vertex = [&vertices, normal_x](const GCodeProcessor::MoveVertex& vertex) {
                // add position
                vertices.push_back(vertex.position[0]);
                vertices.push_back(vertex.position[1]);
                vertices.push_back(vertex.position[2]);
                // add normal x component
                vertices.push_back(normal_x);
            };

            // add previous vertex
            add_vertex(prev);
            // add current vertex
            add_vertex(curr);
    };
    auto add_indices_as_line = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, TBuffer& buffer,
        unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
            if (prev.type != curr.type || !buffer.paths.back().matches(curr)) {
                // add starting index
                indices.push_back(static_cast<unsigned int>(indices.size()));
                buffer.add_path(curr, ibuffer_id, indices.size() - 1, move_id - 1);
                buffer.paths.back().first.position = prev.position;
            }

            Path& last_path = buffer.paths.back();
            if (last_path.first.i_id != last_path.last.i_id) {
                // add previous index
                indices.push_back(static_cast<unsigned int>(indices.size()));
            }

            // add current index
            indices.push_back(static_cast<unsigned int>(indices.size()));
            last_path.last = { ibuffer_id, indices.size() - 1, move_id, curr.position };
    };

    // format data into the buffers to be rendered as solid
    auto add_vertices_as_solid = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, TBuffer& buffer,
        VertexBuffer& vertices, size_t move_id) {
            static Vec3f prev_dir;
            static Vec3f prev_up;
            static float prev_length;
            auto store_vertex = [](VertexBuffer& vertices, const Vec3f& position, const Vec3f& normal) {
                // append position
                vertices.push_back(position[0]);
                vertices.push_back(position[1]);
                vertices.push_back(position[2]);
                // append normal
                vertices.push_back(normal[0]);
                vertices.push_back(normal[1]);
                vertices.push_back(normal[2]);
            };
            auto extract_position_at = [](const VertexBuffer& vertices, size_t id) {
                return Vec3f(vertices[id + 0], vertices[id + 1], vertices[id + 2]);
            };
            auto update_position_at = [](VertexBuffer& vertices, size_t id, const Vec3f& position) {
                vertices[id + 0] = position[0];
                vertices[id + 1] = position[1];
                vertices[id + 2] = position[2];
            };

            if (prev.type != curr.type || !buffer.paths.back().matches(curr)) {
                buffer.add_path(curr, 0, 0, move_id - 1);
                buffer.paths.back().first.position = prev.position;
            }

            unsigned int starting_vertices_size = static_cast<unsigned int>(vertices.size() / buffer.vertices.vertex_size_floats());

            Vec3f dir = (curr.position - prev.position).normalized();
            Vec3f right = (std::abs(std::abs(dir.dot(Vec3f::UnitZ())) - 1.0f) < EPSILON) ? -Vec3f::UnitY() : Vec3f(dir[1], -dir[0], 0.0f).normalized();
            Vec3f left = -right;
            Vec3f up = right.cross(dir);
            Vec3f down = -up;

            Path& last_path = buffer.paths.back();

            float half_width = 0.5f * last_path.width;
            float half_height = 0.5f * last_path.height;

            Vec3f prev_pos = prev.position - half_height * up;
            Vec3f curr_pos = curr.position - half_height * up;

            float length = (curr_pos - prev_pos).norm();
            if (last_path.vertices_count() == 1) {
                // 1st segment

                // vertices 1st endpoint
                store_vertex(vertices, prev_pos + half_height * up, up);
                store_vertex(vertices, prev_pos + half_width * right, right);
                store_vertex(vertices, prev_pos + half_height * down, down);
                store_vertex(vertices, prev_pos + half_width * left, left);

                // vertices 2nd endpoint
                store_vertex(vertices, curr_pos + half_height * up, up);
                store_vertex(vertices, curr_pos + half_width * right, right);
                store_vertex(vertices, curr_pos + half_height * down, down);
                store_vertex(vertices, curr_pos + half_width * left, left);
            }
            else {
                // any other segment
                float displacement = 0.0f;
                float cos_dir = prev_dir.dot(dir);
                if (cos_dir > -0.9998477f) {
                    // if the angle between adjacent segments is smaller than 179 degrees
                    Vec3f med_dir = (prev_dir + dir).normalized();
                    displacement = half_width * ::tan(::acos(std::clamp(dir.dot(med_dir), -1.0f, 1.0f)));
                }

                Vec3f displacement_vec = displacement * prev_dir;
                bool can_displace = displacement > 0.0f && displacement < prev_length&& displacement < length;

                size_t prev_right_id = (starting_vertices_size - 3) * buffer.vertices.vertex_size_floats();
                size_t prev_left_id = (starting_vertices_size - 1) * buffer.vertices.vertex_size_floats();
                Vec3f prev_right_pos = extract_position_at(vertices, prev_right_id);
                Vec3f prev_left_pos = extract_position_at(vertices, prev_left_id);

                bool is_right_turn = prev_up.dot(prev_dir.cross(dir)) <= 0.0f;
                // whether the angle between adjacent segments is greater than 45 degrees
                bool is_sharp = cos_dir < 0.7071068f;

                bool right_displaced = false;
                bool left_displaced = false;

                // displace the vertex (inner with respect to the corner) of the previous segment 2nd enpoint, if possible
                if (can_displace) {
                    if (is_right_turn) {
                        prev_right_pos -= displacement_vec;
                        update_position_at(vertices, prev_right_id, prev_right_pos);
                        right_displaced = true;
                    }
                    else {
                        prev_left_pos -= displacement_vec;
                        update_position_at(vertices, prev_left_id, prev_left_pos);
                        left_displaced = true;
                    }
                }

                if (!is_sharp) {
                    // displace the vertex (outer with respect to the corner) of the previous segment 2nd enpoint, if possible
                    if (can_displace) {
                        if (is_right_turn) {
                            prev_left_pos += displacement_vec;
                            update_position_at(vertices, prev_left_id, prev_left_pos);
                            left_displaced = true;
                        }
                        else {
                            prev_right_pos += displacement_vec;
                            update_position_at(vertices, prev_right_id, prev_right_pos);
                            right_displaced = true;
                        }
                    }

                    // vertices 1st endpoint (top and bottom are from previous segment 2nd endpoint)
                    // vertices position matches that of the previous segment 2nd endpoint, if displaced
                    store_vertex(vertices, right_displaced ? prev_right_pos : prev_pos + half_width * right, right);
                    store_vertex(vertices, left_displaced ? prev_left_pos : prev_pos + half_width * left, left);
                }
                else {
                    // vertices 1st endpoint (top and bottom are from previous segment 2nd endpoint)
                    // the inner corner vertex position matches that of the previous segment 2nd endpoint, if displaced
                    if (is_right_turn) {
                        store_vertex(vertices, right_displaced ? prev_right_pos : prev_pos + half_width * right, right);
                        store_vertex(vertices, prev_pos + half_width * left, left);
                    }
                    else {
                        store_vertex(vertices, prev_pos + half_width * right, right);
                        store_vertex(vertices, left_displaced ? prev_left_pos : prev_pos + half_width * left, left);
                    }
                }

                // vertices 2nd endpoint
                store_vertex(vertices, curr_pos + half_height * up, up);
                store_vertex(vertices, curr_pos + half_width * right, right);
                store_vertex(vertices, curr_pos + half_height * down, down);
                store_vertex(vertices, curr_pos + half_width * left, left);
            }

            last_path.last = { 0, 0, move_id, curr.position };
            prev_dir = dir;
            prev_up = up;
            prev_length = length;
    };
    auto add_indices_as_solid = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, TBuffer& buffer,
        size_t& buffer_vertices_size, unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
            static Vec3f prev_dir;
            static Vec3f prev_up;
            static float prev_length;
            auto store_triangle = [](IndexBuffer& indices, unsigned int i1, unsigned int i2, unsigned int i3) {
                indices.push_back(i1);
                indices.push_back(i2);
                indices.push_back(i3);
            };
            auto append_dummy_cap = [store_triangle](IndexBuffer& indices, unsigned int id) {
                store_triangle(indices, id, id, id);
                store_triangle(indices, id, id, id);
            };

            if (prev.type != curr.type || !buffer.paths.back().matches(curr)) {
                buffer.add_path(curr, ibuffer_id, indices.size(), move_id - 1);
                buffer.paths.back().first.position = prev.position;
            }

            Vec3f dir = (curr.position - prev.position).normalized();
            Vec3f right = (std::abs(std::abs(dir.dot(Vec3f::UnitZ())) - 1.0f) < EPSILON) ? -Vec3f::UnitY() : Vec3f(dir[1], -dir[0], 0.0f).normalized();
            Vec3f up = right.cross(dir);

            Path& last_path = buffer.paths.back();

            float half_width = 0.5f * last_path.width;
            float half_height = 0.5f * last_path.height;

            Vec3f prev_pos = prev.position - half_height * up;
            Vec3f curr_pos = curr.position - half_height * up;

            float length = (curr_pos - prev_pos).norm();
            if (last_path.vertices_count() == 1) {
                // 1st segment

                // triangles starting cap
                store_triangle(indices, buffer_vertices_size + 0, buffer_vertices_size + 2, buffer_vertices_size + 1);
                store_triangle(indices, buffer_vertices_size + 0, buffer_vertices_size + 3, buffer_vertices_size + 2);

                // dummy triangles outer corner cap
                append_dummy_cap(indices, buffer_vertices_size);

                // triangles sides
                store_triangle(indices, buffer_vertices_size + 0, buffer_vertices_size + 1, buffer_vertices_size + 4);
                store_triangle(indices, buffer_vertices_size + 1, buffer_vertices_size + 5, buffer_vertices_size + 4);
                store_triangle(indices, buffer_vertices_size + 1, buffer_vertices_size + 2, buffer_vertices_size + 5);
                store_triangle(indices, buffer_vertices_size + 2, buffer_vertices_size + 6, buffer_vertices_size + 5);
                store_triangle(indices, buffer_vertices_size + 2, buffer_vertices_size + 3, buffer_vertices_size + 6);
                store_triangle(indices, buffer_vertices_size + 3, buffer_vertices_size + 7, buffer_vertices_size + 6);
                store_triangle(indices, buffer_vertices_size + 3, buffer_vertices_size + 0, buffer_vertices_size + 7);
                store_triangle(indices, buffer_vertices_size + 0, buffer_vertices_size + 4, buffer_vertices_size + 7);

                // triangles ending cap
                store_triangle(indices, buffer_vertices_size + 4, buffer_vertices_size + 6, buffer_vertices_size + 7);
                store_triangle(indices, buffer_vertices_size + 4, buffer_vertices_size + 5, buffer_vertices_size + 6);

                buffer_vertices_size += 8;
            }
            else {
                // any other segment
                float displacement = 0.0f;
                float cos_dir = prev_dir.dot(dir);
                if (cos_dir > -0.9998477f) {
                    // if the angle between adjacent segments is smaller than 179 degrees
                    Vec3f med_dir = (prev_dir + dir).normalized();
                    displacement = half_width * ::tan(::acos(std::clamp(dir.dot(med_dir), -1.0f, 1.0f)));
                }

                Vec3f displacement_vec = displacement * prev_dir;
                bool can_displace = displacement > 0.0f && displacement < prev_length && displacement < length;

                bool is_right_turn = prev_up.dot(prev_dir.cross(dir)) <= 0.0f;
                // whether the angle between adjacent segments is greater than 45 degrees
                bool is_sharp = cos_dir < 0.7071068f;

                bool right_displaced = false;
                bool left_displaced = false;

                if (!is_sharp) {
                    if (can_displace) {
                        if (is_right_turn)
                            left_displaced = true;
                        else
                            right_displaced = true;
                    }
                }

                // triangles starting cap
                store_triangle(indices, buffer_vertices_size - 4, buffer_vertices_size - 2, buffer_vertices_size + 0);
                store_triangle(indices, buffer_vertices_size - 4, buffer_vertices_size + 1, buffer_vertices_size - 2);

                // triangles outer corner cap
                if (is_right_turn) {
                    if (left_displaced)
                        // dummy triangles
                        append_dummy_cap(indices, buffer_vertices_size);
                    else {
                        store_triangle(indices, buffer_vertices_size - 4, buffer_vertices_size + 1, buffer_vertices_size - 1);
                        store_triangle(indices, buffer_vertices_size + 1, buffer_vertices_size - 2, buffer_vertices_size - 1);
                    }
                }
                else {
                    if (right_displaced)
                        // dummy triangles
                        append_dummy_cap(indices, buffer_vertices_size);
                    else {
                        store_triangle(indices, buffer_vertices_size - 4, buffer_vertices_size - 3, buffer_vertices_size + 0);
                        store_triangle(indices, buffer_vertices_size - 3, buffer_vertices_size - 2, buffer_vertices_size + 0);
                    }
                }

                // triangles sides
                store_triangle(indices, buffer_vertices_size - 4, buffer_vertices_size + 0, buffer_vertices_size + 2);
                store_triangle(indices, buffer_vertices_size + 0, buffer_vertices_size + 3, buffer_vertices_size + 2);
                store_triangle(indices, buffer_vertices_size + 0, buffer_vertices_size - 2, buffer_vertices_size + 3);
                store_triangle(indices, buffer_vertices_size - 2, buffer_vertices_size + 4, buffer_vertices_size + 3);
                store_triangle(indices, buffer_vertices_size - 2, buffer_vertices_size + 1, buffer_vertices_size + 4);
                store_triangle(indices, buffer_vertices_size + 1, buffer_vertices_size + 5, buffer_vertices_size + 4);
                store_triangle(indices, buffer_vertices_size + 1, buffer_vertices_size - 4, buffer_vertices_size + 5);
                store_triangle(indices, buffer_vertices_size - 4, buffer_vertices_size + 2, buffer_vertices_size + 5);

                // triangles ending cap
                store_triangle(indices, buffer_vertices_size + 2, buffer_vertices_size + 4, buffer_vertices_size + 5);
                store_triangle(indices, buffer_vertices_size + 2, buffer_vertices_size + 3, buffer_vertices_size + 4);

                buffer_vertices_size += 6;
            }

            last_path.last = { ibuffer_id, indices.size() - 1, move_id, curr.position };
            prev_dir = dir;
            prev_up = up;
            prev_length = length;
    };

    wxBusyCursor busy;

    // to reduce the peak in memory usage, we split the generation of the vertex and index buffers in two steps.
    // the data are deleted as soon as they are sent to the gpu.
    std::vector<VertexBuffer> vertices(m_buffers.size());
    std::vector<MultiIndexBuffer> indices(m_buffers.size());
    std::vector<float> options_zs;

    // toolpaths data -> extract vertices from result
    for (size_t i = 0; i < m_moves_count; ++i) {
        // skip first vertex
        if (i == 0)
            continue;

        ++progress_count;
        if (progress_dialog != nullptr && progress_count % progress_threshold == 0) {
            progress_dialog->Update(int(100.0f * float(i) / (2.0f * float(m_moves_count))),
                _L("Generating vertex buffer") + ": " + wxNumberFormatter::ToString(100.0 * double(i) / double(m_moves_count), 0, wxNumberFormatter::Style_None) + "%");
            progress_dialog->Fit();
            progress_count = 0;
        }

        const GCodeProcessor::MoveVertex& prev = gcode_result.moves[i - 1];
        const GCodeProcessor::MoveVertex& curr = gcode_result.moves[i];

        unsigned char id = buffer_id(curr.type);
        TBuffer& buffer = m_buffers[id];
        VertexBuffer& buffer_vertices = vertices[id];

        switch (buffer.render_primitive_type)
        {
        case TBuffer::ERenderPrimitiveType::Point: {
            add_vertices_as_point(curr, buffer_vertices);
            break;
        }
        case TBuffer::ERenderPrimitiveType::Line: {
            add_vertices_as_line(prev, curr, buffer_vertices);
            break;
        }
        case TBuffer::ERenderPrimitiveType::Triangle: {
            add_vertices_as_solid(prev, curr, buffer, buffer_vertices, i);
            break;
        }
        }

        if (curr.type == EMoveType::Pause_Print || curr.type == EMoveType::Custom_GCode) {
            const float* const last_z = options_zs.empty() ? nullptr : &options_zs.back();
            if (last_z == nullptr || curr.position[2] < *last_z - EPSILON || *last_z + EPSILON < curr.position[2])
                options_zs.emplace_back(curr.position[2]);
        }
    }

    // move the wipe toolpaths half height up to render them on proper position
    VertexBuffer& wipe_vertices = vertices[buffer_id(EMoveType::Wipe)];
    for (size_t i = 2; i < wipe_vertices.size(); i += 3) {
        wipe_vertices[i] += 0.5f * GCodeProcessor::Wipe_Height;
    }

    log_memory_usage("Loaded G-code generated vertex buffers, ", vertices, indices);

    // toolpaths data -> send vertices data to gpu
    for (size_t i = 0; i < m_buffers.size(); ++i) {
        TBuffer& buffer = m_buffers[i];

        const VertexBuffer& buffer_vertices = vertices[i];
        buffer.vertices.count = buffer_vertices.size() / buffer.vertices.vertex_size_floats();
#if ENABLE_GCODE_VIEWER_STATISTICS
        m_statistics.total_vertices_gpu_size += buffer_vertices.size() * sizeof(float);
        m_statistics.max_vbuffer_gpu_size = std::max(m_statistics.max_vbuffer_gpu_size, static_cast<int64_t>(buffer_vertices.size() * sizeof(float)));
#endif // ENABLE_GCODE_VIEWER_STATISTICS

        if (buffer.vertices.count > 0) {
#if ENABLE_GCODE_VIEWER_STATISTICS
            ++m_statistics.vbuffers_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
            glsafe(::glGenBuffers(1, &buffer.vertices.id));
            glsafe(::glBindBuffer(GL_ARRAY_BUFFER, buffer.vertices.id));
            glsafe(::glBufferData(GL_ARRAY_BUFFER, buffer_vertices.size() * sizeof(float), buffer_vertices.data(), GL_STATIC_DRAW));
            glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
        }
    }

    // dismiss vertices data, no more needed
    std::vector<VertexBuffer>().swap(vertices);

    // toolpaths data -> extract indices from result
    // paths may have been filled while extracting vertices,
    // so reset them, they will be filled again while extracting indices
    for (TBuffer& buffer : m_buffers) {
        buffer.paths.clear();
    }

    // max index buffer size
    const size_t IBUFFER_THRESHOLD = 1024 * 1024 * 32;

    // variable used to keep track of the current size (in vertices) of the vertex buffer
    std::vector<size_t> curr_buffer_vertices_size(m_buffers.size(), 0);
    for (size_t i = 0; i < m_moves_count; ++i) {
        // skip first vertex
        if (i == 0)
            continue;

        ++progress_count;
        if (progress_dialog != nullptr && progress_count % progress_threshold == 0) {
            progress_dialog->Update(int(100.0f * float(m_moves_count + i) / (2.0f * float(m_moves_count))),
                _L("Generating index buffers") + ": " + wxNumberFormatter::ToString(100.0 * double(i) / double(m_moves_count), 0, wxNumberFormatter::Style_None) + "%");
            progress_dialog->Fit();
            progress_count = 0;
        }

        const GCodeProcessor::MoveVertex& prev = gcode_result.moves[i - 1];
        const GCodeProcessor::MoveVertex& curr = gcode_result.moves[i];

        unsigned char id = buffer_id(curr.type);
        TBuffer& buffer = m_buffers[id];
        MultiIndexBuffer& buffer_indices = indices[id];
        if (buffer_indices.empty())
            buffer_indices.push_back(IndexBuffer());

        // if adding the indices for the current segment exceeds the threshold size of the current index buffer
        // create another index buffer, and move the current path indices into it
        if (buffer_indices.back().size() >= IBUFFER_THRESHOLD - static_cast<size_t>(buffer.indices_per_segment())) {
            buffer_indices.push_back(IndexBuffer());
            if (buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Point) {
                if (!(prev.type != curr.type || !buffer.paths.back().matches(curr))) {
                    Path& last_path = buffer.paths.back();
                    size_t delta_id = last_path.last.i_id - last_path.first.i_id;

                    // move indices of the last path from the previous into the new index buffer
                    IndexBuffer& src_buffer = buffer_indices[buffer_indices.size() - 2];
                    IndexBuffer& dst_buffer = buffer_indices[buffer_indices.size() - 1];
                    std::move(src_buffer.begin() + last_path.first.i_id, src_buffer.end(), std::back_inserter(dst_buffer));
                    src_buffer.erase(src_buffer.begin() + last_path.first.i_id, src_buffer.end());

                    // updates path indices
                    last_path.first.b_id = buffer_indices.size() - 1;
                    last_path.first.i_id = 0;
                    last_path.last.b_id = buffer_indices.size() - 1;
                    last_path.last.i_id = delta_id;
                }
            }
        }

        switch (buffer.render_primitive_type)
        {
        case TBuffer::ERenderPrimitiveType::Point: {
            add_indices_as_point(curr, buffer, static_cast<unsigned int>(buffer_indices.size()) - 1, buffer_indices.back(), i);
            break;
        }
        case TBuffer::ERenderPrimitiveType::Line: {
            add_indices_as_line(prev, curr, buffer, static_cast<unsigned int>(buffer_indices.size()) - 1, buffer_indices.back(), i);
            break;
        }
        case TBuffer::ERenderPrimitiveType::Triangle: {
            add_indices_as_solid(prev, curr, buffer, curr_buffer_vertices_size[id], static_cast<unsigned int>(buffer_indices.size()) - 1, buffer_indices.back(), i);
            break;
        }
        }
    }

    if (progress_dialog != nullptr) {
        progress_dialog->Update(100, "");
        progress_dialog->Fit();
    }

    log_memory_usage("Loaded G-code generated indices buffers, ", vertices, indices);

    // toolpaths data -> send indices data to gpu
    for (size_t i = 0; i < m_buffers.size(); ++i) {
        TBuffer& buffer = m_buffers[i];

        for (size_t j = 0; j < indices[i].size(); ++j) {
            const IndexBuffer& buffer_indices = indices[i][j];
            buffer.indices.push_back(IBuffer());
            IBuffer& ibuffer = buffer.indices.back();
            ibuffer.count = buffer_indices.size();
#if ENABLE_GCODE_VIEWER_STATISTICS
            m_statistics.total_indices_gpu_size += ibuffer.count * sizeof(unsigned int);
            m_statistics.max_ibuffer_gpu_size = std::max(m_statistics.max_ibuffer_gpu_size, static_cast<int64_t>(ibuffer.count * sizeof(unsigned int)));
#endif // ENABLE_GCODE_VIEWER_STATISTICS

            if (ibuffer.count > 0) {
#if ENABLE_GCODE_VIEWER_STATISTICS
                ++m_statistics.ibuffers_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
                glsafe(::glGenBuffers(1, &ibuffer.id));
                glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibuffer.id));
                glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, buffer_indices.size() * sizeof(unsigned int), buffer_indices.data(), GL_STATIC_DRAW));
                glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
            }
        }
    }

#if ENABLE_GCODE_VIEWER_STATISTICS
    for (const TBuffer& buffer : m_buffers) {
        m_statistics.paths_size += SLIC3R_STDVEC_MEMSIZE(buffer.paths, Path);
    }
    unsigned int travel_buffer_id = buffer_id(EMoveType::Travel);
    const MultiIndexBuffer& travel_buffer_indices = indices[travel_buffer_id];
    for (size_t i = 0; i < travel_buffer_indices.size(); ++i) {
        m_statistics.travel_segments_count += travel_buffer_indices[i].size() / m_buffers[travel_buffer_id].indices_per_segment();
    }
    unsigned int wipe_buffer_id = buffer_id(EMoveType::Wipe);
    const MultiIndexBuffer& wipe_buffer_indices = indices[wipe_buffer_id];
    for (size_t i = 0; i < wipe_buffer_indices.size(); ++i) {
        m_statistics.wipe_segments_count += wipe_buffer_indices[i].size() / m_buffers[wipe_buffer_id].indices_per_segment();
    }
    unsigned int extrude_buffer_id = buffer_id(EMoveType::Extrude);
    const MultiIndexBuffer& extrude_buffer_indices = indices[extrude_buffer_id];
    for (size_t i = 0; i < extrude_buffer_indices.size(); ++i) {
        m_statistics.extrude_segments_count += extrude_buffer_indices[i].size() / m_buffers[extrude_buffer_id].indices_per_segment();
    }
#endif // ENABLE_GCODE_VIEWER_STATISTICS

    // dismiss indices data, no more needed
    std::vector<MultiIndexBuffer>().swap(indices);

    // layers zs / roles / extruder ids / cp color ids -> extract from result
    size_t last_travel_s_id = 0;
    for (size_t i = 0; i < m_moves_count; ++i) {
        const GCodeProcessor::MoveVertex& move = gcode_result.moves[i];
        if (move.type == EMoveType::Extrude) {
            // layers zs
            const double* const last_z = m_layers.empty() ? nullptr : &m_layers.get_zs().back();
            double z = static_cast<double>(move.position[2]);
            if (last_z == nullptr || z < *last_z - EPSILON || *last_z + EPSILON < z)
                m_layers.append(z, { last_travel_s_id, i });
            else
                m_layers.get_endpoints().back().last = i;
            // extruder ids
            m_extruder_ids.emplace_back(move.extruder_id);
            // roles
            if (i > 0)
                m_roles.emplace_back(move.extrusion_role);
        }
        else if (move.type == EMoveType::Travel) {
            if (i - last_travel_s_id > 1 && !m_layers.empty())
                m_layers.get_endpoints().back().last = i;

            last_travel_s_id = i;
        }
    }

    // set layers z range
    if (!m_layers.empty())
        m_layers_z_range = { 0, static_cast<unsigned int>(m_layers.size() - 1) };

    // change color of paths whose layer contains option points
    if (!options_zs.empty()) {
        TBuffer& extrude_buffer = m_buffers[buffer_id(EMoveType::Extrude)];
        for (Path& path : extrude_buffer.paths) {
            float z = path.first.position[2];
            if (std::find_if(options_zs.begin(), options_zs.end(), [z](float f) { return f - EPSILON <= z && z <= f + EPSILON; }) != options_zs.end())
                path.cp_color_id = 255 - path.cp_color_id;
        }
    }

    // roles -> remove duplicates
    std::sort(m_roles.begin(), m_roles.end());
    m_roles.erase(std::unique(m_roles.begin(), m_roles.end()), m_roles.end());
    m_roles.shrink_to_fit();

    // extruder ids -> remove duplicates
    std::sort(m_extruder_ids.begin(), m_extruder_ids.end());
    m_extruder_ids.erase(std::unique(m_extruder_ids.begin(), m_extruder_ids.end()), m_extruder_ids.end());
    m_extruder_ids.shrink_to_fit();

    log_memory_usage("Loaded G-code generated extrusion paths, ", vertices, indices);

#if ENABLE_GCODE_VIEWER_STATISTICS
    m_statistics.load_time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS

    if (progress_dialog != nullptr)
        progress_dialog->Destroy();
}
#endif // ENABLE_SPLITTED_VERTEX_BUFFER

void GCodeViewer::load_shells(const Print& print, bool initialized)
{
    if (print.objects().empty())
        // no shells, return
        return;

    // adds objects' volumes 
    int object_id = 0;
    for (const PrintObject* obj : print.objects()) {
        const ModelObject* model_obj = obj->model_object();

        std::vector<int> instance_ids(model_obj->instances.size());
        for (int i = 0; i < (int)model_obj->instances.size(); ++i) {
            instance_ids[i] = i;
        }

        m_shells.volumes.load_object(model_obj, object_id, instance_ids, "object", initialized);

        ++object_id;
    }

    if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() == ptFFF) {
        // adds wipe tower's volume
        double max_z = print.objects()[0]->model_object()->get_model()->bounding_box().max(2);
        const PrintConfig& config = print.config();
        size_t extruders_count = config.nozzle_diameter.size();
        if ((extruders_count > 1) && config.wipe_tower && !config.complete_objects) {
            const DynamicPrintConfig& print_config = wxGetApp().preset_bundle->prints.get_edited_preset().config;
            double layer_height = print_config.opt_float("layer_height");
            double first_layer_height = print_config.get_abs_value("first_layer_height", layer_height);
            double nozzle_diameter = print.config().nozzle_diameter.values[0];
            float depth = print.wipe_tower_data(extruders_count, first_layer_height, nozzle_diameter).depth;
            float brim_width = print.wipe_tower_data(extruders_count, first_layer_height, nozzle_diameter).brim_width;

            m_shells.volumes.load_wipe_tower_preview(1000, config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, depth, max_z, config.wipe_tower_rotation_angle,
                !print.is_step_done(psWipeTower), brim_width, initialized);
        }
    }

    // remove modifiers
    while (true) {
        GLVolumePtrs::iterator it = std::find_if(m_shells.volumes.volumes.begin(), m_shells.volumes.volumes.end(), [](GLVolume* volume) { return volume->is_modifier; });
        if (it != m_shells.volumes.volumes.end()) {
            delete (*it);
            m_shells.volumes.volumes.erase(it);
        }
        else
            break;
    } 

    for (GLVolume* volume : m_shells.volumes.volumes) {
        volume->zoom_to_volumes = false;
        volume->color[3] = 0.25f;
        volume->force_native_color = true;
        volume->set_render_color();
    }
}

#if ENABLE_SPLITTED_VERTEX_BUFFER
void GCodeViewer::refresh_render_paths(bool keep_sequential_current_first, bool keep_sequential_current_last) const
{
#if ENABLE_GCODE_VIEWER_STATISTICS
    auto start_time = std::chrono::high_resolution_clock::now();
#endif // ENABLE_GCODE_VIEWER_STATISTICS

    auto extrusion_color = [this](const Path& path) {
        Color color;
        switch (m_view_type)
        {
        case EViewType::FeatureType:    { color = Extrusion_Role_Colors[static_cast<unsigned int>(path.role)]; break; }
        case EViewType::Height:         { color = m_extrusions.ranges.height.get_color_at(path.height); break; }
        case EViewType::Width:          { color = m_extrusions.ranges.width.get_color_at(path.width); break; }
        case EViewType::Feedrate:       { color = m_extrusions.ranges.feedrate.get_color_at(path.feedrate); break; }
        case EViewType::FanSpeed:       { color = m_extrusions.ranges.fan_speed.get_color_at(path.fan_speed); break; }
        case EViewType::VolumetricRate: { color = m_extrusions.ranges.volumetric_rate.get_color_at(path.volumetric_rate); break; }
        case EViewType::Tool:           { color = m_tool_colors[path.extruder_id]; break; }
        case EViewType::ColorPrint:     {
            if (path.cp_color_id >= static_cast<unsigned char>(m_tool_colors.size())) {
                color = { 0.5f, 0.5f, 0.5f };
//                // complementary color
//                color = m_tool_colors[255 - path.cp_color_id];
//                color = { 1.0f - color[0], 1.0f - color[1], 1.0f - color[2] };
            }
            else
                color = m_tool_colors[path.cp_color_id];

            break;
        }
        default: { color = { 1.0f, 1.0f, 1.0f }; break; }
        }

        return color;
    };

    auto travel_color = [this](const Path& path) {
        return (path.delta_extruder < 0.0f) ? Travel_Colors[2] /* Retract */ :
            ((path.delta_extruder > 0.0f) ? Travel_Colors[1] /* Extrude */ :
                Travel_Colors[0] /* Move */);
    };

    auto is_in_layers_range = [this](const Path& path, size_t min_id, size_t max_id) {
        auto in_layers_range = [this, min_id, max_id](size_t id) {
            return m_layers.get_endpoints_at(min_id).first <= id && id <= m_layers.get_endpoints_at(max_id).last;
        };

        return in_layers_range(path.sub_paths.front().first.s_id) || in_layers_range(path.sub_paths.back().last.s_id);
    };

    auto is_travel_in_layers_range = [this](size_t path_id, size_t min_id, size_t max_id) {
        const TBuffer& buffer = m_buffers[buffer_id(EMoveType::Travel)];
        if (path_id >= buffer.paths.size())
            return false;

        Path path = buffer.paths[path_id];
        size_t first = path_id;
        size_t last = path_id;

        // check adjacent paths
        while (first > 0 && path.sub_paths.front().first.position.isApprox(buffer.paths[first - 1].sub_paths.back().last.position)) {
            --first;
            path.sub_paths.front().first = buffer.paths[first].sub_paths.front().first;
        }
        while (last < buffer.paths.size() - 1 && path.sub_paths.back().last.position.isApprox(buffer.paths[last + 1].sub_paths.front().first.position)) {
            ++last;
            path.sub_paths.back().last = buffer.paths[last].sub_paths.back().last;
        }

        size_t min_s_id = m_layers.get_endpoints_at(min_id).first;
        size_t max_s_id = m_layers.get_endpoints_at(max_id).last;

        return (min_s_id <= path.sub_paths.front().first.s_id && path.sub_paths.front().first.s_id <= max_s_id) ||
            (min_s_id <= path.sub_paths.back().last.s_id && path.sub_paths.back().last.s_id <= max_s_id);
    };

#if ENABLE_GCODE_VIEWER_STATISTICS
    Statistics* statistics = const_cast<Statistics*>(&m_statistics);
    statistics->render_paths_size = 0;
#endif // ENABLE_GCODE_VIEWER_STATISTICS

    bool top_layer_only = get_app_config()->get("seq_top_layer_only") == "1";

    SequentialView::Endpoints global_endpoints = { m_moves_count , 0 };
    SequentialView::Endpoints top_layer_endpoints = global_endpoints;
    SequentialView* sequential_view = const_cast<SequentialView*>(&m_sequential_view);
    if (top_layer_only || !keep_sequential_current_first) sequential_view->current.first = 0;
    if (!keep_sequential_current_last) sequential_view->current.last = m_moves_count;

    // first pass: collect visible paths and update sequential view data
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
    std::vector<std::tuple<unsigned char, unsigned int, unsigned int, unsigned int>> paths;
#else
    std::vector<std::tuple<TBuffer*, unsigned int, unsigned int, unsigned int>> paths;
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
    for (size_t b = 0; b < m_buffers.size(); ++b) {
        TBuffer& buffer = const_cast<TBuffer&>(m_buffers[b]);
        // reset render paths
        buffer.render_paths.clear();

        if (!buffer.visible)
            continue;

        for (size_t i = 0; i < buffer.paths.size(); ++i) {
            const Path& path = buffer.paths[i];
            if (path.type == EMoveType::Travel) {
                if (!is_travel_in_layers_range(i, m_layers_z_range[0], m_layers_z_range[1]))
                    continue;
            }
            else if (!is_in_layers_range(path, m_layers_z_range[0], m_layers_z_range[1]))
                continue;

            if (path.type == EMoveType::Extrude && !is_visible(path))
                continue;

            // store valid path
            for (size_t j = 0; j < path.sub_paths.size(); ++j) {
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
                paths.push_back({ static_cast<unsigned char>(b), path.sub_paths[j].first.b_id, static_cast<unsigned int>(i), static_cast<unsigned int>(j) });
#else
                paths.push_back({ &buffer, path.sub_paths[j].first.b_id, static_cast<unsigned int>(i), static_cast<unsigned int>(j) });
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
            }

            global_endpoints.first = std::min(global_endpoints.first, path.sub_paths.front().first.s_id);
            global_endpoints.last = std::max(global_endpoints.last, path.sub_paths.back().last.s_id);

            if (top_layer_only) {
                if (path.type == EMoveType::Travel) {
                    if (is_travel_in_layers_range(i, m_layers_z_range[1], m_layers_z_range[1])) {
                        top_layer_endpoints.first = std::min(top_layer_endpoints.first, path.sub_paths.front().first.s_id);
                        top_layer_endpoints.last = std::max(top_layer_endpoints.last, path.sub_paths.back().last.s_id);
                    }
                }
                else if (is_in_layers_range(path, m_layers_z_range[1], m_layers_z_range[1])) {
                    top_layer_endpoints.first = std::min(top_layer_endpoints.first, path.sub_paths.front().first.s_id);
                    top_layer_endpoints.last = std::max(top_layer_endpoints.last, path.sub_paths.back().last.s_id);
                }
            }
        }
    }

    // update current sequential position
    sequential_view->current.first = !top_layer_only && keep_sequential_current_first ? std::clamp(sequential_view->current.first, global_endpoints.first, global_endpoints.last) : global_endpoints.first;
    sequential_view->current.last = keep_sequential_current_last ? std::clamp(sequential_view->current.last, global_endpoints.first, global_endpoints.last) : global_endpoints.last;

    // get the world position from gpu
    bool found = false;
    for (const TBuffer& buffer : m_buffers) {
        // searches the path containing the current position
        for (const Path& path : buffer.paths) {
            if (path.contains(m_sequential_view.current.last)) {
                int sub_path_id = path.get_id_of_sub_path_containing(m_sequential_view.current.last);
                if (sub_path_id != -1) {
                    const Path::Sub_Path& sub_path = path.sub_paths[sub_path_id];
                    unsigned int offset = static_cast<unsigned int>(m_sequential_view.current.last - sub_path.first.s_id);
                    if (offset > 0) {
                        if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Line)
                            offset = 2 * offset - 1;
                        else if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
                            unsigned int indices_count = buffer.indices_per_segment();
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
                            offset = indices_count * (offset - 1) + (indices_count - 2);
                            if (sub_path_id == 0)
                                offset += 6; // add 2 triangles for starting cap 
#else
                            offset = indices_count * (offset - 1) + (indices_count - 6);
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
                        }
                    }
                    offset += static_cast<unsigned int>(sub_path.first.i_id);

                    // gets the vertex index from the index buffer on gpu
                    const IBuffer& i_buffer = buffer.indices[sub_path.first.b_id];
                    unsigned int index = 0;
                    glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
                    glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>(offset * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&index)));
                    glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));

                    // gets the position from the vertices buffer on gpu
                    glsafe(::glBindBuffer(GL_ARRAY_BUFFER, i_buffer.vbo));
                    glsafe(::glGetBufferSubData(GL_ARRAY_BUFFER, static_cast<GLintptr>(index * buffer.vertices.vertex_size_bytes()), static_cast<GLsizeiptr>(3 * sizeof(float)), static_cast<void*>(sequential_view->current_position.data())));
                    glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));

                    found = true;
                    break;
                }
            }
        }

        if (found)
            break;
    }

    // second pass: filter paths by sequential data and collect them by color
    RenderPath* render_path = nullptr;
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
    for (const auto& [tbuffer_id, ibuffer_id, path_id, sub_path_id] : paths) {
        TBuffer& buffer = const_cast<TBuffer&>(m_buffers[tbuffer_id]);
        const Path& path = buffer.paths[path_id];
#else
    for (const auto& [buffer, ibuffer_id, path_id, sub_path_id] : paths) {
        const Path& path = buffer->paths[path_id];
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
        const Path::Sub_Path& sub_path = path.sub_paths[sub_path_id];
        if (m_sequential_view.current.last <= sub_path.first.s_id || sub_path.last.s_id <= m_sequential_view.current.first)
            continue;

        Color color;
        switch (path.type)
        {
        case EMoveType::Tool_change:  { color = Options_Colors[static_cast<unsigned int>(EOptionsColors::ToolChanges)]; break; }
        case EMoveType::Color_change: { color = Options_Colors[static_cast<unsigned int>(EOptionsColors::ColorChanges)]; break; }
        case EMoveType::Pause_Print:  { color = Options_Colors[static_cast<unsigned int>(EOptionsColors::PausePrints)]; break; }
        case EMoveType::Custom_GCode: { color = Options_Colors[static_cast<unsigned int>(EOptionsColors::CustomGCodes)]; break; }
        case EMoveType::Retract:      { color = Options_Colors[static_cast<unsigned int>(EOptionsColors::Retractions)]; break; }
        case EMoveType::Unretract:    { color = Options_Colors[static_cast<unsigned int>(EOptionsColors::Unretractions)]; break; }
        case EMoveType::Extrude: {
            if (!top_layer_only ||
                m_sequential_view.current.last == global_endpoints.last ||
                is_in_layers_range(path, m_layers_z_range[1], m_layers_z_range[1]))
                color = extrusion_color(path);
            else
                color = { 0.25f, 0.25f, 0.25f };

            break;
        }
        case EMoveType::Travel: {
            if (!top_layer_only || m_sequential_view.current.last == global_endpoints.last || is_travel_in_layers_range(path_id, m_layers_z_range[1], m_layers_z_range[1]))
                color = (m_view_type == EViewType::Feedrate || m_view_type == EViewType::Tool || m_view_type == EViewType::ColorPrint) ? extrusion_color(path) : travel_color(path);
            else
                color = { 0.25f, 0.25f, 0.25f };

            break;
        }
        case EMoveType::Wipe: { color = Wipe_Color; break; }
        default: { color = { 0.0f, 0.0f, 0.0f }; break; }
        }

#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
        RenderPath key{ tbuffer_id, color, static_cast<unsigned int>(ibuffer_id), path_id };
        if (render_path == nullptr || !RenderPathPropertyEqual()(*render_path, key))
            render_path = const_cast<RenderPath*>(&(*buffer.render_paths.emplace(key).first));

        unsigned int delta_1st = 0;
        if (sub_path.first.s_id < m_sequential_view.current.first && m_sequential_view.current.first <= sub_path.last.s_id)
            delta_1st = static_cast<unsigned int>(m_sequential_view.current.first - sub_path.first.s_id);
#else
        RenderPath key{ color, static_cast<unsigned int>(ibuffer_id), path_id };
        if (render_path == nullptr || !RenderPathPropertyEqual()(*render_path, key))
            render_path = const_cast<RenderPath*>(&(*buffer->render_paths.emplace(key).first));
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS

        unsigned int size_in_indices = 0;
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
        switch (buffer.render_primitive_type)
#else
        switch (buffer->render_primitive_type)
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
        {
        case TBuffer::ERenderPrimitiveType::Point: {
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
            size_in_indices = buffer.indices_per_segment();
#else
            size_in_indices = buffer->indices_per_segment();
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
            break;
        }
        case TBuffer::ERenderPrimitiveType::Line:
        case TBuffer::ERenderPrimitiveType::Triangle: {
            unsigned int segments_count = std::min(m_sequential_view.current.last, sub_path.last.s_id) - std::max(m_sequential_view.current.first, sub_path.first.s_id);
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
            size_in_indices = buffer.indices_per_segment() * segments_count;
#else
            size_in_indices = buffer->indices_per_segment() * segments_count;
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
            break;
        }
        }

#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
        if (size_in_indices == 0)
            continue;

        if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
            if (sub_path_id == 0 && delta_1st == 0)
                size_in_indices += 6; // add 2 triangles for starting cap 
            if (sub_path_id == path.sub_paths.size() - 1 && path.sub_paths.back().last.s_id <= m_sequential_view.current.last)
                size_in_indices += 6; // add 2 triangles for ending cap 
            if (delta_1st > 0)
                size_in_indices -= 6; // remove 2 triangles for corner cap  
        }
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS

        render_path->sizes.push_back(size_in_indices);

#if !ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
        unsigned int delta_1st = 0;
        if (sub_path.first.s_id < m_sequential_view.current.first && m_sequential_view.current.first <= sub_path.last.s_id)
            delta_1st = m_sequential_view.current.first - sub_path.first.s_id;
#endif // !ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS

#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
        if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
            delta_1st *= buffer.indices_per_segment();
            if (delta_1st > 0) {
                delta_1st += 6; // skip 2 triangles for corner cap 
                if (sub_path_id == 0)
                    delta_1st += 6; // skip 2 triangles for starting cap 
            }
        }
#else
        if (buffer->render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle)
            delta_1st *= buffer->indices_per_segment();
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS

        render_path->offsets.push_back(static_cast<size_t>((sub_path.first.i_id + delta_1st) * sizeof(IBufferType)));

#if 0
        // check sizes and offsets against index buffer size on gpu
        GLint buffer_size;
        glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer->indices[render_path->ibuffer_id].ibo));
        glsafe(::glGetBufferParameteriv(GL_ELEMENT_ARRAY_BUFFER, GL_BUFFER_SIZE, &buffer_size));
        glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
        if (render_path->offsets.back() + render_path->sizes.back() * sizeof(IBufferType) > buffer_size)
            BOOST_LOG_TRIVIAL(error) << "GCodeViewer::refresh_render_paths: Invalid render path data";
#endif 
    }

    // set sequential data to their final value
    sequential_view->endpoints = top_layer_only ? top_layer_endpoints : global_endpoints;
    sequential_view->current.first = !top_layer_only && keep_sequential_current_first ? std::clamp(sequential_view->current.first, sequential_view->endpoints.first, sequential_view->endpoints.last) : sequential_view->endpoints.first;

#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
    // updates sequential range caps
    std::array<SequentialRangeCap, 2>* sequential_range_caps = const_cast<std::array<SequentialRangeCap, 2>*>(&m_sequential_range_caps);
    (*sequential_range_caps)[0].reset();
    (*sequential_range_caps)[1].reset();

    if (m_sequential_view.current.first != m_sequential_view.current.last) {
        for (const auto& [tbuffer_id, ibuffer_id, path_id, sub_path_id] : paths) {
            TBuffer& buffer = const_cast<TBuffer&>(m_buffers[tbuffer_id]);
            if (buffer.render_primitive_type != TBuffer::ERenderPrimitiveType::Triangle)
                continue;

            const Path& path = buffer.paths[path_id];
            const Path::Sub_Path& sub_path = path.sub_paths[sub_path_id];
            if (m_sequential_view.current.last <= sub_path.first.s_id || sub_path.last.s_id <= m_sequential_view.current.first)
                continue;

            // update cap for first endpoint of current range
            if (m_sequential_view.current.first > sub_path.first.s_id) {
                SequentialRangeCap& cap = (*sequential_range_caps)[0];
                const IBuffer& i_buffer = buffer.indices[ibuffer_id];
                cap.buffer = &buffer;
                cap.vbo = i_buffer.vbo;

                // calculate offset into the index buffer
                unsigned int offset = sub_path.first.i_id;
                offset += 6; // add 2 triangles for corner cap
                offset += static_cast<unsigned int>(m_sequential_view.current.first - sub_path.first.s_id) * buffer.indices_per_segment();
                if (sub_path_id == 0)
                    offset += 6; // add 2 triangles for starting cap

                // extract indices from index buffer
                std::array<IBufferType, 6> indices{ 0, 0, 0, 0, 0, 0 };
                glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
                glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 0) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[0])));
                glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 7) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[1])));
                glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 1) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[2])));
                glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 13) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[4])));
                glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
                indices[3] = indices[0];
                indices[5] = indices[1];

                // send indices to gpu
                glsafe(::glGenBuffers(1, &cap.ibo));
                glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cap.ibo));
                glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(IBufferType), indices.data(), GL_STATIC_DRAW));
                glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));

                // extract color from render path
                size_t offset_bytes = offset * sizeof(IBufferType);
                for (const RenderPath& render_path : buffer.render_paths) {
                    if (render_path.ibuffer_id == ibuffer_id) {
                        for (size_t j = 0; j < render_path.offsets.size(); ++j) {
                            if (render_path.contains(offset_bytes)) {
                                cap.color = render_path.color;
                                break;
                            }
                        }
                    }
                }
            }

            // update cap for last endpoint of current range
            if (m_sequential_view.current.last < sub_path.last.s_id) {
                SequentialRangeCap& cap = (*sequential_range_caps)[1];
                const IBuffer& i_buffer = buffer.indices[ibuffer_id];
                cap.buffer = &buffer;
                cap.vbo = i_buffer.vbo;

                // calculate offset into the index buffer
                unsigned int offset = sub_path.first.i_id;
                offset += 6; // add 2 triangles for corner cap
                offset += static_cast<unsigned int>(m_sequential_view.current.last - 1 - sub_path.first.s_id) * buffer.indices_per_segment();
                if (sub_path_id == 0)
                    offset += 6; // add 2 triangles for starting cap

                // extract indices from index buffer
                std::array<IBufferType, 6> indices{ 0, 0, 0, 0, 0, 0 };
                glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));
                glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 2) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[0])));
                glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 4) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[1])));
                glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 10) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[2])));
                glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>((offset + 16) * sizeof(IBufferType)), static_cast<GLsizeiptr>(sizeof(IBufferType)), static_cast<void*>(&indices[5])));
                glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
                indices[3] = indices[0];
                indices[4] = indices[2];

                // send indices to gpu
                glsafe(::glGenBuffers(1, &cap.ibo));
                glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cap.ibo));
                glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, 6 * sizeof(IBufferType), indices.data(), GL_STATIC_DRAW));
                glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));

                // extract color from render path
                size_t offset_bytes = offset * sizeof(IBufferType);
                for (const RenderPath& render_path : buffer.render_paths) {
                    if (render_path.ibuffer_id == ibuffer_id) {
                        for (size_t j = 0; j < render_path.offsets.size(); ++j) {
                            if (render_path.contains(offset_bytes)) {
                                cap.color = render_path.color;
                                break;
                            }
                        }
                    }
                }
            }

            if ((*sequential_range_caps)[0].is_renderable() && (*sequential_range_caps)[1].is_renderable())
                break;
        }
    }
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS

    wxGetApp().plater()->enable_preview_moves_slider(!paths.empty());

#if ENABLE_GCODE_VIEWER_STATISTICS
    for (const TBuffer& buffer : m_buffers) {
        statistics->render_paths_size += SLIC3R_STDUNORDEREDSET_MEMSIZE(buffer.render_paths, RenderPath);
        for (const RenderPath& path : buffer.render_paths) {
            statistics->render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.sizes, unsigned int);
            statistics->render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.offsets, size_t);
        }
    }
    statistics->refresh_paths_time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
#else
void GCodeViewer::refresh_render_paths(bool keep_sequential_current_first, bool keep_sequential_current_last) const
{
#if ENABLE_GCODE_VIEWER_STATISTICS
    auto start_time = std::chrono::high_resolution_clock::now();
#endif // ENABLE_GCODE_VIEWER_STATISTICS

    auto extrusion_color = [this](const Path& path) {
        Color color;
        switch (m_view_type)
        {
        case EViewType::FeatureType:    { color = Extrusion_Role_Colors[static_cast<unsigned int>(path.role)]; break; }
        case EViewType::Height:         { color = m_extrusions.ranges.height.get_color_at(path.height); break; }
        case EViewType::Width:          { color = m_extrusions.ranges.width.get_color_at(path.width); break; }
        case EViewType::Feedrate:       { color = m_extrusions.ranges.feedrate.get_color_at(path.feedrate); break; }
        case EViewType::FanSpeed:       { color = m_extrusions.ranges.fan_speed.get_color_at(path.fan_speed); break; }
        case EViewType::VolumetricRate: { color = m_extrusions.ranges.volumetric_rate.get_color_at(path.volumetric_rate); break; }
        case EViewType::Tool:           { color = m_tool_colors[path.extruder_id]; break; }
        case EViewType::ColorPrint:     {
            if (path.cp_color_id >= static_cast<unsigned char>(m_tool_colors.size())) {
                color = { 0.5f, 0.5f, 0.5f };
//                // complementary color
//                color = m_tool_colors[255 - path.cp_color_id];
//                color = { 1.0f - color[0], 1.0f - color[1], 1.0f - color[2] };
            }
            else
                color = m_tool_colors[path.cp_color_id];

            break;
        }
        default:                        { color = { 1.0f, 1.0f, 1.0f }; break; }
        }

        return color;
    };

    auto travel_color = [this](const Path& path) {
        return (path.delta_extruder < 0.0f) ? Travel_Colors[2] /* Retract */ :
            ((path.delta_extruder > 0.0f) ? Travel_Colors[1] /* Extrude */ :
                Travel_Colors[0] /* Move */);
    };

    auto is_in_layers_range = [this](const Path& path, size_t min_id, size_t max_id) {
        auto in_layers_range = [this, min_id, max_id](size_t id) {
            return m_layers.get_endpoints_at(min_id).first <= id && id <= m_layers.get_endpoints_at(max_id).last;
        };

        return in_layers_range(path.first.s_id) || in_layers_range(path.last.s_id);
    };

    auto is_travel_in_layers_range = [this](size_t path_id, size_t min_id, size_t max_id) {
        auto is_in_z_range = [](const Path& path, double min_z, double max_z) {
            auto in_z_range = [min_z, max_z](double z) {
                return min_z - EPSILON < z&& z < max_z + EPSILON;
            };

            return in_z_range(path.first.position[2]) || in_z_range(path.last.position[2]);
        };

        const TBuffer& buffer = m_buffers[buffer_id(EMoveType::Travel)];
        if (path_id >= buffer.paths.size())
            return false;

        Path path = buffer.paths[path_id];
        size_t first = path_id;
        size_t last = path_id;

        // check adjacent paths
        while (first > 0 && path.first.position.isApprox(buffer.paths[first - 1].last.position)) {
            --first;
            path.first = buffer.paths[first].first;
        }
        while (last < buffer.paths.size() - 1 && path.last.position.isApprox(buffer.paths[last + 1].first.position)) {
            ++last;
            path.last = buffer.paths[last].last;
        }

        size_t min_s_id = m_layers.get_endpoints_at(min_id).first;
        size_t max_s_id = m_layers.get_endpoints_at(max_id).last;

        return (min_s_id <= path.first.s_id && path.first.s_id <= max_s_id) ||
            (min_s_id <= path.last.s_id && path.last.s_id <= max_s_id);
    };

#if ENABLE_GCODE_VIEWER_STATISTICS
    Statistics* statistics = const_cast<Statistics*>(&m_statistics);
    statistics->render_paths_size = 0;
#endif // ENABLE_GCODE_VIEWER_STATISTICS

    bool top_layer_only = get_app_config()->get("seq_top_layer_only") == "1";

    SequentialView::Endpoints global_endpoints = { m_moves_count , 0 };
    SequentialView::Endpoints top_layer_endpoints = global_endpoints;
    SequentialView* sequential_view = const_cast<SequentialView*>(&m_sequential_view);
    if (top_layer_only || !keep_sequential_current_first) sequential_view->current.first = 0;
    if (!keep_sequential_current_last) sequential_view->current.last = m_moves_count;

    // first pass: collect visible paths and update sequential view data
    std::vector<std::tuple<TBuffer*, unsigned int, unsigned int>> paths;
    for (size_t b = 0; b < m_buffers.size(); ++b) {
        TBuffer& buffer = const_cast<TBuffer&>(m_buffers[b]);
        // reset render paths
        buffer.render_paths.clear();

        if (!buffer.visible)
            continue;

        for (size_t i = 0; i < buffer.paths.size(); ++i) {
            const Path& path = buffer.paths[i];
            if (path.type == EMoveType::Travel) {
                if (!is_travel_in_layers_range(i, m_layers_z_range[0], m_layers_z_range[1]))
                    continue;
            }
            else if (!is_in_layers_range(path, m_layers_z_range[0], m_layers_z_range[1]))
                continue;

            if (path.type == EMoveType::Extrude && !is_visible(path))
                continue;

            // store valid path
            paths.push_back({ &buffer, path.first.b_id, static_cast<unsigned int>(i) });

            global_endpoints.first = std::min(global_endpoints.first, path.first.s_id);
            global_endpoints.last = std::max(global_endpoints.last, path.last.s_id);

            if (top_layer_only) {
                if (path.type == EMoveType::Travel) {
                    if (is_travel_in_layers_range(i, m_layers_z_range[1], m_layers_z_range[1])) {
                        top_layer_endpoints.first = std::min(top_layer_endpoints.first, path.first.s_id);
                        top_layer_endpoints.last = std::max(top_layer_endpoints.last, path.last.s_id);
                    }
                }
                else if (is_in_layers_range(path, m_layers_z_range[1], m_layers_z_range[1])) {
                    top_layer_endpoints.first = std::min(top_layer_endpoints.first, path.first.s_id);
                    top_layer_endpoints.last = std::max(top_layer_endpoints.last, path.last.s_id);
                }
            }
        }
    }

    // update current sequential position
    sequential_view->current.first = !top_layer_only && keep_sequential_current_first ? std::clamp(sequential_view->current.first, global_endpoints.first, global_endpoints.last) : global_endpoints.first;
    sequential_view->current.last = keep_sequential_current_last ? std::clamp(sequential_view->current.last, global_endpoints.first, global_endpoints.last) : global_endpoints.last;

    // get the world position from gpu
    bool found = false;
    for (const TBuffer& buffer : m_buffers) {
        // searches the path containing the current position
        for (const Path& path : buffer.paths) {
            if (path.contains(m_sequential_view.current.last)) {
                unsigned int offset = static_cast<unsigned int>(m_sequential_view.current.last - path.first.s_id);
                if (offset > 0) {
                    if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Line)
                        offset = 2 * offset - 1;
                    else if (buffer.render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle) {
                        unsigned int indices_count = buffer.indices_per_segment();
                        offset = indices_count * (offset - 1) + (indices_count - 6);
                    }
                }
                offset += static_cast<unsigned int>(path.first.i_id);

                // gets the index from the index buffer on gpu
                unsigned int index = 0;
                glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer.indices[path.first.b_id].id));
                glsafe(::glGetBufferSubData(GL_ELEMENT_ARRAY_BUFFER, static_cast<GLintptr>(offset * sizeof(unsigned int)), static_cast<GLsizeiptr>(sizeof(unsigned int)), static_cast<void*>(&index)));
                glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));

                // gets the position from the vertices buffer on gpu
                glsafe(::glBindBuffer(GL_ARRAY_BUFFER, buffer.vertices.id));
                glsafe(::glGetBufferSubData(GL_ARRAY_BUFFER, static_cast<GLintptr>(index * buffer.vertices.vertex_size_bytes()), static_cast<GLsizeiptr>(3 * sizeof(float)), static_cast<void*>(sequential_view->current_position.data())));
                glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
                found = true;
                break;
            }
        }
        if (found)
            break;
    }

    // second pass: filter paths by sequential data and collect them by color
    RenderPath *render_path = nullptr;
    for (const auto& [buffer, ibuffer_id, path_id] : paths) {
        const Path& path = buffer->paths[path_id];
        if (m_sequential_view.current.last <= path.first.s_id || path.last.s_id <= m_sequential_view.current.first)
            continue;

        Color color;
        switch (path.type)
        {
        case EMoveType::Extrude: {
            if (!top_layer_only ||
                m_sequential_view.current.last == global_endpoints.last ||
                is_in_layers_range(path, m_layers_z_range[1], m_layers_z_range[1]))
                color = extrusion_color(path);
            else
                color = { 0.25f, 0.25f, 0.25f };

            break;
        }
        case EMoveType::Travel: {
            if (!top_layer_only || m_sequential_view.current.last == global_endpoints.last || is_travel_in_layers_range(path_id, m_layers_z_range[1], m_layers_z_range[1]))
                color = (m_view_type == EViewType::Feedrate || m_view_type == EViewType::Tool || m_view_type == EViewType::ColorPrint) ? extrusion_color(path) : travel_color(path);
            else
                color = { 0.25f, 0.25f, 0.25f };

            break;
        }
        case EMoveType::Wipe: { color = Wipe_Color; break; }
        default: { color = { 0.0f, 0.0f, 0.0f }; break; }
        }

        RenderPath key{ color, static_cast<unsigned int>(ibuffer_id), path_id };
        if (render_path == nullptr || ! RenderPathPropertyEqual()(*render_path, key))
            render_path = const_cast<RenderPath*>(&(*buffer->render_paths.emplace(key).first));
        unsigned int segments_count = std::min(m_sequential_view.current.last, path.last.s_id) - std::max(m_sequential_view.current.first, path.first.s_id) + 1;
        unsigned int size_in_indices = 0;
        switch (buffer->render_primitive_type)
        {
        case TBuffer::ERenderPrimitiveType::Point: { size_in_indices = segments_count; break; }
        case TBuffer::ERenderPrimitiveType::Line:
        case TBuffer::ERenderPrimitiveType::Triangle: { size_in_indices = buffer->indices_per_segment() * (segments_count - 1); break; }
        }
        render_path->sizes.push_back(size_in_indices);

        unsigned int delta_1st = 0;
        if (path.first.s_id < m_sequential_view.current.first && m_sequential_view.current.first <= path.last.s_id)
            delta_1st = m_sequential_view.current.first - path.first.s_id;

        if (buffer->render_primitive_type == TBuffer::ERenderPrimitiveType::Triangle)
            delta_1st *= buffer->indices_per_segment();

        render_path->offsets.push_back(static_cast<size_t>((path.first.i_id + delta_1st) * sizeof(unsigned int)));
    }

    // set sequential data to their final value
    sequential_view->endpoints = top_layer_only ? top_layer_endpoints : global_endpoints;
    sequential_view->current.first = !top_layer_only && keep_sequential_current_first ? std::clamp(sequential_view->current.first, sequential_view->endpoints.first, sequential_view->endpoints.last) : sequential_view->endpoints.first;

    wxGetApp().plater()->enable_preview_moves_slider(!paths.empty());

#if ENABLE_GCODE_VIEWER_STATISTICS
    for (const TBuffer& buffer : m_buffers) {
        statistics->render_paths_size += SLIC3R_STDUNORDEREDSET_MEMSIZE(buffer.render_paths, RenderPath);
        for (const RenderPath& path : buffer.render_paths) {
            statistics->render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.sizes, unsigned int);
            statistics->render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.offsets, size_t);
        }
    }
    statistics->refresh_paths_time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count();
#endif // ENABLE_GCODE_VIEWER_STATISTICS
}
#endif // ENABLE_SPLITTED_VERTEX_BUFFER

#if ENABLE_SPLITTED_VERTEX_BUFFER
void GCodeViewer::render_toolpaths() const
{
#if ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
    float point_size = 20.0f;
#else
    float point_size = 0.8f;
#endif // ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
    std::array<float, 4> light_intensity = { 0.25f, 0.70f, 0.75f, 0.75f };
    const Camera& camera = wxGetApp().plater()->get_camera();
    double zoom = camera.get_zoom();
    const std::array<int, 4>& viewport = camera.get_viewport();
    float near_plane_height = camera.get_type() == Camera::Perspective ? static_cast<float>(viewport[3]) / (2.0f * static_cast<float>(2.0 * std::tan(0.5 * Geometry::deg2rad(camera.get_fov())))) :
        static_cast<float>(viewport[3]) * 0.0005;

    auto set_uniform_color = [](const std::array<float, 3>& color, GLShaderProgram& shader) {
        std::array<float, 4> color4 = { color[0], color[1], color[2], 1.0f };
        shader.set_uniform("uniform_color", color4);
    };

    auto render_as_points = [this, zoom, point_size, near_plane_height, set_uniform_color]
        (const TBuffer& buffer, unsigned int ibuffer_id, GLShaderProgram& shader) {
#if ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
        shader.set_uniform("use_fixed_screen_size", 1);
#else
        shader.set_uniform("use_fixed_screen_size", 0);
#endif // ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
        shader.set_uniform("zoom", zoom);
        shader.set_uniform("percent_outline_radius", 0.0f);
        shader.set_uniform("percent_center_radius", 0.33f);
        shader.set_uniform("point_size", point_size);
        shader.set_uniform("near_plane_height", near_plane_height);

        glsafe(::glEnable(GL_VERTEX_PROGRAM_POINT_SIZE));
        glsafe(::glEnable(GL_POINT_SPRITE));

        for (const RenderPath& path : buffer.render_paths) {
            if (path.ibuffer_id == ibuffer_id) {
                set_uniform_color(path.color, shader);
                glsafe(::glMultiDrawElements(GL_POINTS, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_SHORT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
                ++const_cast<Statistics*>(&m_statistics)->gl_multi_points_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
            }
        }

        glsafe(::glDisable(GL_POINT_SPRITE));
        glsafe(::glDisable(GL_VERTEX_PROGRAM_POINT_SIZE));
    };

    auto render_as_lines = [this, light_intensity, set_uniform_color](const TBuffer& buffer, unsigned int ibuffer_id, GLShaderProgram& shader) {
        shader.set_uniform("light_intensity", light_intensity);
        for (const RenderPath& path : buffer.render_paths) {
            if (path.ibuffer_id == ibuffer_id) {
                set_uniform_color(path.color, shader);
                glsafe(::glMultiDrawElements(GL_LINES, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_SHORT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
                ++const_cast<Statistics*>(&m_statistics)->gl_multi_lines_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
            }
        }
    };

    auto render_as_triangles = [this, set_uniform_color](const TBuffer& buffer, unsigned int ibuffer_id, GLShaderProgram& shader) {
        for (const RenderPath& path : buffer.render_paths) {
            if (path.ibuffer_id == ibuffer_id) {
                set_uniform_color(path.color, shader);
                glsafe(::glMultiDrawElements(GL_TRIANGLES, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_SHORT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
                ++const_cast<Statistics*>(&m_statistics)->gl_multi_triangles_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
            }
        }
    };

    auto line_width = [](double zoom) {
        return (zoom < 5.0) ? 1.0 : (1.0 + 5.0 * (zoom - 5.0) / (100.0 - 5.0));
    };

    glsafe(::glLineWidth(static_cast<GLfloat>(line_width(zoom))));

    unsigned char begin_id = buffer_id(EMoveType::Retract);
    unsigned char end_id = buffer_id(EMoveType::Count);

    for (unsigned char i = begin_id; i < end_id; ++i) {
        const TBuffer& buffer = m_buffers[i];
        if (!buffer.visible || !buffer.has_data())
            continue;

        GLShaderProgram* shader = wxGetApp().get_shader(buffer.shader.c_str());
        if (shader != nullptr) {
            shader->start_using();

            for (size_t j = 0; j < buffer.indices.size(); ++j) {
                const IBuffer& i_buffer = buffer.indices[j];

                glsafe(::glBindBuffer(GL_ARRAY_BUFFER, i_buffer.vbo));
                glsafe(::glVertexPointer(buffer.vertices.position_size_floats(), GL_FLOAT, buffer.vertices.vertex_size_bytes(), (const void*)buffer.vertices.position_offset_size()));
                glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
                bool has_normals = buffer.vertices.normal_size_floats() > 0;
                if (has_normals) {
                    glsafe(::glNormalPointer(GL_FLOAT, buffer.vertices.vertex_size_bytes(), (const void*)buffer.vertices.normal_offset_size()));
                    glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
                }

                glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, i_buffer.ibo));

                switch (buffer.render_primitive_type)
                {
                case TBuffer::ERenderPrimitiveType::Point: {
                    render_as_points(buffer, static_cast<unsigned int>(j), *shader);
                    break;
                }
                case TBuffer::ERenderPrimitiveType::Line: {
                    render_as_lines(buffer, static_cast<unsigned int>(j), *shader);
                    break;
                }
                case TBuffer::ERenderPrimitiveType::Triangle: {
                    render_as_triangles(buffer, static_cast<unsigned int>(j), *shader);
                    break;
                }
                }

                glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));

                if (has_normals)
                    glsafe(::glDisableClientState(GL_NORMAL_ARRAY));

                glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
                glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
            }

            shader->stop_using();
        }
    }

#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
    auto render_sequential_range_cap = [this, set_uniform_color](const SequentialRangeCap& cap) {
        GLShaderProgram* shader = wxGetApp().get_shader(cap.buffer->shader.c_str());
        if (shader != nullptr) {
            shader->start_using();

            glsafe(::glBindBuffer(GL_ARRAY_BUFFER, cap.vbo));
            glsafe(::glVertexPointer(cap.buffer->vertices.position_size_floats(), GL_FLOAT, cap.buffer->vertices.vertex_size_bytes(), (const void*)cap.buffer->vertices.position_offset_size()));
            glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
            bool has_normals = cap.buffer->vertices.normal_size_floats() > 0;
            if (has_normals) {
                glsafe(::glNormalPointer(GL_FLOAT, cap.buffer->vertices.vertex_size_bytes(), (const void*)cap.buffer->vertices.normal_offset_size()));
                glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
            }

            set_uniform_color(cap.color, *shader);

            glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cap.ibo));
            glsafe(::glDrawElements(GL_TRIANGLES, (GLsizei)cap.indices_count(), GL_UNSIGNED_SHORT, nullptr));
            glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));

#if ENABLE_GCODE_VIEWER_STATISTICS
            ++const_cast<Statistics*>(&m_statistics)->gl_triangles_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS

            if (has_normals)
                glsafe(::glDisableClientState(GL_NORMAL_ARRAY));

            glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
            glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));

            shader->stop_using();
        }
    };

    for (unsigned int i = 0; i < 2; ++i) {
        if (m_sequential_range_caps[i].is_renderable())
            render_sequential_range_cap(m_sequential_range_caps[i]);
    }
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
}
#else
void GCodeViewer::render_toolpaths() const
{
#if ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
    float point_size = 20.0f;
#else
    float point_size = 0.8f;
#endif // ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
    std::array<float, 4> light_intensity = { 0.25f, 0.70f, 0.75f, 0.75f };
    const Camera& camera = wxGetApp().plater()->get_camera();
    double zoom = camera.get_zoom();
    const std::array<int, 4>& viewport = camera.get_viewport();
    float near_plane_height = camera.get_type() == Camera::Perspective ? static_cast<float>(viewport[3]) / (2.0f * static_cast<float>(2.0 * std::tan(0.5 * Geometry::deg2rad(camera.get_fov())))) :
        static_cast<float>(viewport[3]) * 0.0005;

    auto set_uniform_color = [](const std::array<float, 3>& color, GLShaderProgram& shader) {
        std::array<float, 4> color4 = { color[0], color[1], color[2], 1.0f };
        shader.set_uniform("uniform_color", color4);
    };

    auto render_as_points = [this, zoom, point_size, near_plane_height, set_uniform_color]
    (const TBuffer& buffer, unsigned int ibuffer_id, EOptionsColors color_id, GLShaderProgram& shader) {
        set_uniform_color(Options_Colors[static_cast<unsigned int>(color_id)], shader);
#if ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
        shader.set_uniform("use_fixed_screen_size", 1);
#else
        shader.set_uniform("use_fixed_screen_size", 0);
#endif // ENABLE_FIXED_SCREEN_SIZE_POINT_MARKERS
        shader.set_uniform("zoom", zoom);
        shader.set_uniform("percent_outline_radius", 0.0f);
        shader.set_uniform("percent_center_radius", 0.33f);
        shader.set_uniform("point_size", point_size);
        shader.set_uniform("near_plane_height", near_plane_height);

        glsafe(::glEnable(GL_VERTEX_PROGRAM_POINT_SIZE));
        glsafe(::glEnable(GL_POINT_SPRITE));

        for (const RenderPath& path : buffer.render_paths) {
            if (path.ibuffer_id == ibuffer_id) {
                glsafe(::glMultiDrawElements(GL_POINTS, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_INT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
                ++const_cast<Statistics*>(&m_statistics)->gl_multi_points_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
            }
        }

        glsafe(::glDisable(GL_POINT_SPRITE));
        glsafe(::glDisable(GL_VERTEX_PROGRAM_POINT_SIZE));
    };

    auto render_as_lines = [this, light_intensity, set_uniform_color](const TBuffer& buffer, unsigned int ibuffer_id, GLShaderProgram& shader) {
        shader.set_uniform("light_intensity", light_intensity);
        for (const RenderPath& path : buffer.render_paths) {
            if (path.ibuffer_id == ibuffer_id) {
                set_uniform_color(path.color, shader);
                glsafe(::glMultiDrawElements(GL_LINES, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_INT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
                ++const_cast<Statistics*>(&m_statistics)->gl_multi_lines_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
            }
        }
    };

    auto render_as_triangles = [this, set_uniform_color](const TBuffer& buffer, unsigned int ibuffer_id, GLShaderProgram& shader) {
        for (const RenderPath& path : buffer.render_paths) {
            if (path.ibuffer_id == ibuffer_id) {
                set_uniform_color(path.color, shader);
                glsafe(::glMultiDrawElements(GL_TRIANGLES, (const GLsizei*)path.sizes.data(), GL_UNSIGNED_INT, (const void* const*)path.offsets.data(), (GLsizei)path.sizes.size()));
#if ENABLE_GCODE_VIEWER_STATISTICS
                ++const_cast<Statistics*>(&m_statistics)->gl_multi_triangles_calls_count;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
            }
        }
    };

    auto line_width = [](double zoom) {
        return (zoom < 5.0) ? 1.0 : (1.0 + 5.0 * (zoom - 5.0) / (100.0 - 5.0));
    };

    glsafe(::glLineWidth(static_cast<GLfloat>(line_width(zoom))));

    unsigned char begin_id = buffer_id(EMoveType::Retract);
    unsigned char end_id = buffer_id(EMoveType::Count);

    for (unsigned char i = begin_id; i < end_id; ++i) {
        const TBuffer& buffer = m_buffers[i];
        if (!buffer.visible || !buffer.has_data())
            continue;

        GLShaderProgram* shader = wxGetApp().get_shader(buffer.shader.c_str());
        if (shader != nullptr) {
            shader->start_using();

            glsafe(::glBindBuffer(GL_ARRAY_BUFFER, buffer.vertices.id));
            glsafe(::glVertexPointer(buffer.vertices.position_size_floats(), GL_FLOAT, buffer.vertices.vertex_size_bytes(), (const void*)buffer.vertices.position_offset_size()));
            glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
            bool has_normals = buffer.vertices.normal_size_floats() > 0;
            if (has_normals) {
                glsafe(::glNormalPointer(GL_FLOAT, buffer.vertices.vertex_size_bytes(), (const void*)buffer.vertices.normal_offset_size()));
                glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
            }

            for (size_t j = 0; j < buffer.indices.size(); ++j) {
                glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer.indices[j].id));

                switch (buffer.render_primitive_type)
                {
                case TBuffer::ERenderPrimitiveType::Point:
                {
                    EOptionsColors color = EOptionsColors(0);
                    switch (buffer_type(i))
                    {
                    case EMoveType::Tool_change:  { color = EOptionsColors::ToolChanges; break; }
                    case EMoveType::Color_change: { color = EOptionsColors::ColorChanges; break; }
                    case EMoveType::Pause_Print:  { color = EOptionsColors::PausePrints; break; }
                    case EMoveType::Custom_GCode: { color = EOptionsColors::CustomGCodes; break; }
                    case EMoveType::Retract:      { color = EOptionsColors::Retractions; break; }
                    case EMoveType::Unretract:    { color = EOptionsColors::Unretractions; break; }
                    default:                      { assert(false); break; }
                    }
                    render_as_points(buffer, static_cast<unsigned int>(j), color, *shader);
                    break;
                }
                case TBuffer::ERenderPrimitiveType::Line:
                {
                    render_as_lines(buffer, static_cast<unsigned int>(j), *shader);
                    break;
                }
                case TBuffer::ERenderPrimitiveType::Triangle:
                {
                    render_as_triangles(buffer, static_cast<unsigned int>(j), *shader);
                    break;
                }
                }

                glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
            }

            if (has_normals)
                glsafe(::glDisableClientState(GL_NORMAL_ARRAY));

            glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
            glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));

            shader->stop_using();
        }
    }
}
#endif // ENABLE_SPLITTED_VERTEX_BUFFER

void GCodeViewer::render_shells() const
{
    if (!m_shells.visible || m_shells.volumes.empty())
        return;

    GLShaderProgram* shader = wxGetApp().get_shader("gouraud_light");
    if (shader == nullptr)
        return;

//    glsafe(::glDepthMask(GL_FALSE));

    shader->start_using();
    m_shells.volumes.render(GLVolumeCollection::Transparent, true, wxGetApp().plater()->get_camera().get_view_matrix());
    shader->stop_using();

//    glsafe(::glDepthMask(GL_TRUE));
}

void GCodeViewer::render_legend() const
{
    if (!m_legend_enabled)
        return;

    ImGuiWrapper& imgui = *wxGetApp().imgui();

    imgui.set_next_window_pos(0.0f, 0.0f, ImGuiCond_Always);
    ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f);
    ImGui::SetNextWindowBgAlpha(0.6f);
    imgui.begin(std::string("Legend"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_NoMove);

    ImDrawList* draw_list = ImGui::GetWindowDrawList();

    enum class EItemType : unsigned char
    {
        Rect,
        Circle,
        Hexagon,
        Line
    };

    const PrintEstimatedTimeStatistics::Mode& time_mode = m_time_statistics.modes[static_cast<size_t>(m_time_estimate_mode)];

    float icon_size = ImGui::GetTextLineHeight();
    float percent_bar_size = 2.0f * ImGui::GetTextLineHeight();

    auto append_item = [this, draw_list, icon_size, percent_bar_size, &imgui](EItemType type, const Color& color, const std::string& label,
        bool visible = true, const std::string& time = "", float percent = 0.0f, float max_percent = 0.0f, const std::array<float, 2>& offsets = { 0.0f, 0.0f },
        std::function<void()> callback = nullptr) {
            if (!visible)
                ImGui::PushStyleVar(ImGuiStyleVar_Alpha, 0.3333f);
            ImVec2 pos = ImGui::GetCursorScreenPos();
            switch (type) {
            default:
            case EItemType::Rect: {
                draw_list->AddRectFilled({ pos.x + 1.0f, pos.y + 1.0f }, { pos.x + icon_size - 1.0f, pos.y + icon_size - 1.0f },
                    ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }));
                break;
            }
            case EItemType::Circle: {
                ImVec2 center(0.5f * (pos.x + pos.x + icon_size), 0.5f * (pos.y + pos.y + icon_size));
                if (m_buffers[buffer_id(EMoveType::Retract)].shader == "options_120") {
                    draw_list->AddCircleFilled(center, 0.5f * icon_size,
                        ImGui::GetColorU32({ 0.5f * color[0], 0.5f * color[1], 0.5f * color[2], 1.0f }), 16);
                    float radius = 0.5f * icon_size;
                    draw_list->AddCircleFilled(center, radius, ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }), 16);
                    radius = 0.5f * icon_size * 0.01f * 33.0f;
                    draw_list->AddCircleFilled(center, radius, ImGui::GetColorU32({ 0.5f * color[0], 0.5f * color[1], 0.5f * color[2], 1.0f }), 16);
                }
                else
                    draw_list->AddCircleFilled(center, 0.5f * icon_size, ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }), 16);

                break;
            }
            case EItemType::Hexagon: {
                ImVec2 center(0.5f * (pos.x + pos.x + icon_size), 0.5f * (pos.y + pos.y + icon_size));
                draw_list->AddNgonFilled(center, 0.5f * icon_size, ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }), 6);
                break;
            }
            case EItemType::Line: {
                draw_list->AddLine({ pos.x + 1, pos.y + icon_size - 1 }, { pos.x + icon_size - 1, pos.y + 1 }, ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }), 3.0f);
                break;
            }
            }

            // draw text
            ImGui::Dummy({ icon_size, icon_size });
            ImGui::SameLine();
            if (callback != nullptr) {
                if (ImGui::MenuItem(label.c_str()))
                    callback();
                else {
                    // show tooltip
                    if (ImGui::IsItemHovered()) {
                        if (!visible)
                            ImGui::PopStyleVar();
                        ImGui::PushStyleColor(ImGuiCol_PopupBg, ImGuiWrapper::COL_WINDOW_BACKGROUND);
                        ImGui::BeginTooltip();
                        imgui.text(visible ? _u8L("Click to hide") : _u8L("Click to show"));
                        ImGui::EndTooltip();
                        ImGui::PopStyleColor();
                        if (!visible)
                            ImGui::PushStyleVar(ImGuiStyleVar_Alpha, 0.3333f);

                        // to avoid the tooltip to change size when moving the mouse
                        wxGetApp().plater()->get_current_canvas3D()->set_as_dirty();
                        wxGetApp().plater()->get_current_canvas3D()->request_extra_frame();
                    }
                }

                if (!time.empty()) {
                    ImGui::SameLine(offsets[0]);
                    imgui.text(time);
                    ImGui::SameLine(offsets[1]);
                    pos = ImGui::GetCursorScreenPos();
                    float width = std::max(1.0f, percent_bar_size * percent / max_percent);
                    draw_list->AddRectFilled({ pos.x, pos.y + 2.0f }, { pos.x + width, pos.y + icon_size - 2.0f },
                        ImGui::GetColorU32(ImGuiWrapper::COL_ORANGE_LIGHT));
                    ImGui::Dummy({ percent_bar_size, icon_size });
                    ImGui::SameLine();
                    char buf[64];
                    ::sprintf(buf, "%.1f%%", 100.0f * percent);
                    ImGui::TextUnformatted((percent > 0.0f) ? buf : "");
                }
            }
            else
                imgui.text(label);

            if (!visible)
                ImGui::PopStyleVar();
    };

    auto append_range = [this, draw_list, &imgui, append_item](const Extrusions::Range& range, unsigned int decimals) {
        auto append_range_item = [this, draw_list, &imgui, append_item](int i, float value, unsigned int decimals) {
            char buf[1024];
            ::sprintf(buf, "%.*f", decimals, value);
            append_item(EItemType::Rect, Range_Colors[i], buf);
        };

        if (range.count == 1)
            // single item use case
            append_range_item(0, range.min, decimals);
        else if (range.count == 2) {
            append_range_item(static_cast<int>(Range_Colors.size()) - 1, range.max, decimals);
            append_range_item(0, range.min, decimals);
        }
        else {
            float step_size = range.step_size();
            for (int i = static_cast<int>(Range_Colors.size()) - 1; i >= 0; --i) {
                append_range_item(i, range.min + static_cast<float>(i) * step_size, decimals);
            }
        }
    };

    auto append_headers = [&imgui](const std::array<std::string, 3>& texts, const std::array<float, 2>& offsets) {
        imgui.text(texts[0]);
        ImGui::SameLine(offsets[0]);
        imgui.text(texts[1]);
        ImGui::SameLine(offsets[1]);
        imgui.text(texts[2]);
        ImGui::Separator();
    };

    auto max_width = [](const std::vector<std::string>& items, const std::string& title, float extra_size = 0.0f) {
        float ret = ImGui::CalcTextSize(title.c_str()).x;
        for (const std::string& item : items) {
            ret = std::max(ret, extra_size + ImGui::CalcTextSize(item.c_str()).x);
        }
        return ret;
    };

    auto calculate_offsets = [max_width](const std::vector<std::string>& labels, const std::vector<std::string>& times,
        const std::array<std::string, 2>& titles, float extra_size = 0.0f) {
            const ImGuiStyle& style = ImGui::GetStyle();
            std::array<float, 2> ret = { 0.0f, 0.0f };
            ret[0] = max_width(labels, titles[0], extra_size) + 3.0f * style.ItemSpacing.x;
            ret[1] = ret[0] + max_width(times, titles[1]) + style.ItemSpacing.x;
            return ret;
    };

    auto color_print_ranges = [this](unsigned char extruder_id, const std::vector<CustomGCode::Item>& custom_gcode_per_print_z) {
        std::vector<std::pair<Color, std::pair<double, double>>> ret;
        ret.reserve(custom_gcode_per_print_z.size());

        for (const auto& item : custom_gcode_per_print_z) {
            if (extruder_id + 1 != static_cast<unsigned char>(item.extruder))
                continue;

            if (item.type != ColorChange)
                continue;

            const std::vector<double> zs = m_layers.get_zs();
            auto lower_b = std::lower_bound(zs.begin(), zs.end(), item.print_z - Slic3r::DoubleSlider::epsilon());
            if (lower_b == zs.end())
                continue;

            double current_z = *lower_b;
            double previous_z = (lower_b == zs.begin()) ? 0.0 : *(--lower_b);

            // to avoid duplicate values, check adding values
            if (ret.empty() || !(ret.back().second.first == previous_z && ret.back().second.second == current_z))
                ret.push_back({ decode_color(item.color), { previous_z, current_z } });
        }

        return ret;
    };

    auto upto_label = [](double z) {
        char buf[64];
        ::sprintf(buf, "%.2f", z);
        return _u8L("up to") + " " + std::string(buf) + " " + _u8L("mm");
    };

    auto above_label = [](double z) {
        char buf[64];
        ::sprintf(buf, "%.2f", z);
        return _u8L("above") + " " + std::string(buf) + " " + _u8L("mm");
    };

    auto fromto_label = [](double z1, double z2) {
        char buf1[64];
        ::sprintf(buf1, "%.2f", z1);
        char buf2[64];
        ::sprintf(buf2, "%.2f", z2);
        return _u8L("from") + " " + std::string(buf1) + " " + _u8L("to") + " " + std::string(buf2) + " " + _u8L("mm");
    };

    auto role_time_and_percent = [this, time_mode](ExtrusionRole role) {
        auto it = std::find_if(time_mode.roles_times.begin(), time_mode.roles_times.end(), [role](const std::pair<ExtrusionRole, float>& item) { return role == item.first; });
        return (it != time_mode.roles_times.end()) ? std::make_pair(it->second, it->second / time_mode.time) : std::make_pair(0.0f, 0.0f);
    };

    // data used to properly align items in columns when showing time
    std::array<float, 2> offsets = { 0.0f, 0.0f };
    std::vector<std::string> labels;
    std::vector<std::string> times;
    std::vector<float> percents;
    float max_percent = 0.0f;

    if (m_view_type == EViewType::FeatureType) {
        // calculate offsets to align time/percentage data
        for (size_t i = 0; i < m_roles.size(); ++i) {
            ExtrusionRole role = m_roles[i];
            if (role < erCount) {
                labels.push_back(_u8L(ExtrusionEntity::role_to_string(role)));
                auto [time, percent] = role_time_and_percent(role);
                times.push_back((time > 0.0f) ? short_time(get_time_dhms(time)) : "");
                percents.push_back(percent);
                max_percent = std::max(max_percent, percent);
            }
        }

        offsets = calculate_offsets(labels, times, { _u8L("Feature type"), _u8L("Time") }, icon_size);
    }

    // extrusion paths section -> title
    switch (m_view_type)
    {
    case EViewType::FeatureType:
    {
        append_headers({ _u8L("Feature type"), _u8L("Time"), _u8L("Percentage") }, offsets);
        break;
    }
    case EViewType::Height:         { imgui.title(_u8L("Height (mm)")); break; }
    case EViewType::Width:          { imgui.title(_u8L("Width (mm)")); break; }
    case EViewType::Feedrate:       { imgui.title(_u8L("Speed (mm/s)")); break; }
    case EViewType::FanSpeed:       { imgui.title(_u8L("Fan Speed (%)")); break; }
    case EViewType::VolumetricRate: { imgui.title(_u8L("Volumetric flow rate (mm³/s)")); break; }
    case EViewType::Tool:           { imgui.title(_u8L("Tool")); break; }
    case EViewType::ColorPrint:     { imgui.title(_u8L("Color Print")); break; }
    default: { break; }
    }

    // extrusion paths section -> items
    switch (m_view_type)
    {
    case EViewType::FeatureType:
    {
        for (size_t i = 0; i < m_roles.size(); ++i) {
            ExtrusionRole role = m_roles[i];
            if (role >= erCount)
                continue;
            bool visible = is_visible(role);
            append_item(EItemType::Rect, Extrusion_Role_Colors[static_cast<unsigned int>(role)], labels[i],
                visible, times[i], percents[i], max_percent, offsets, [this, role, visible]() {
                    Extrusions* extrusions = const_cast<Extrusions*>(&m_extrusions);
                    extrusions->role_visibility_flags = visible ? extrusions->role_visibility_flags & ~(1 << role) : extrusions->role_visibility_flags | (1 << role);
                    // update buffers' render paths
                    refresh_render_paths(false, false);
                    wxGetApp().plater()->update_preview_moves_slider();
                    wxGetApp().plater()->get_current_canvas3D()->set_as_dirty();
                    wxGetApp().plater()->update_preview_bottom_toolbar();
                }
            );
        }
        break;
    }
    case EViewType::Height:         { append_range(m_extrusions.ranges.height, 3); break; }
    case EViewType::Width:          { append_range(m_extrusions.ranges.width, 3); break; }
    case EViewType::Feedrate:       { append_range(m_extrusions.ranges.feedrate, 1); break; }
    case EViewType::FanSpeed:       { append_range(m_extrusions.ranges.fan_speed, 0); break; }
    case EViewType::VolumetricRate: { append_range(m_extrusions.ranges.volumetric_rate, 3); break; }
    case EViewType::Tool:
    {
        // shows only extruders actually used
        for (unsigned char i : m_extruder_ids) {
            append_item(EItemType::Rect, m_tool_colors[i], _u8L("Extruder") + " " + std::to_string(i + 1));
        }
        break;
    }
    case EViewType::ColorPrint:
    {
        const std::vector<CustomGCode::Item>& custom_gcode_per_print_z = wxGetApp().plater()->model().custom_gcode_per_print_z.gcodes;
        if (m_extruders_count == 1) { // single extruder use case
            std::vector<std::pair<Color, std::pair<double, double>>> cp_values = color_print_ranges(0, custom_gcode_per_print_z);
            const int items_cnt = static_cast<int>(cp_values.size());
            if (items_cnt == 0) { // There are no color changes, but there are some pause print or custom Gcode
                append_item(EItemType::Rect, m_tool_colors.front(), _u8L("Default color"));
            }
            else {
                for (int i = items_cnt; i >= 0; --i) {
                    // create label for color change item
                    if (i == 0) {
                        append_item(EItemType::Rect, m_tool_colors[0], upto_label(cp_values.front().second.first));
                        break;
                    }
                    else if (i == items_cnt) {
                        append_item(EItemType::Rect, cp_values[i - 1].first, above_label(cp_values[i - 1].second.second));
                        continue;
                    }
                    append_item(EItemType::Rect, cp_values[i - 1].first, fromto_label(cp_values[i - 1].second.second, cp_values[i].second.first));
                }
            }
        }
        else // multi extruder use case
        {
            // shows only extruders actually used
            for (unsigned char i : m_extruder_ids) {
                std::vector<std::pair<Color, std::pair<double, double>>> cp_values = color_print_ranges(i, custom_gcode_per_print_z);
                const int items_cnt = static_cast<int>(cp_values.size());
                if (items_cnt == 0) { // There are no color changes, but there are some pause print or custom Gcode
                    append_item(EItemType::Rect, m_tool_colors[i], _u8L("Extruder") + " " + std::to_string(i + 1) + " " + _u8L("default color"));
                }
                else {
                    for (int j = items_cnt; j >= 0; --j) {
                        // create label for color change item
                        std::string label = _u8L("Extruder") + " " + std::to_string(i + 1);
                        if (j == 0) {
                            label += " " + upto_label(cp_values.front().second.first);
                            append_item(EItemType::Rect, m_tool_colors[i], label);
                            break;
                        }
                        else if (j == items_cnt) {
                            label += " " + above_label(cp_values[j - 1].second.second);
                            append_item(EItemType::Rect, cp_values[j - 1].first, label);
                            continue;
                        }

                        label += " " + fromto_label(cp_values[j - 1].second.second, cp_values[j].second.first);
                        append_item(EItemType::Rect, cp_values[j - 1].first, label);
                    }
                }
            }
        }

        break;
    }
    default: { break; }
    }

    // partial estimated printing time section
    if (m_view_type == EViewType::ColorPrint) {
        using Times = std::pair<float, float>;
        using TimesList = std::vector<std::pair<CustomGCode::Type, Times>>;

        // helper structure containig the data needed to render the time items
        struct PartialTime
        {
            enum class EType : unsigned char
            {
                Print,
                ColorChange,
                Pause
            };
            EType type;
            int extruder_id;
            Color color1;
            Color color2;
            Times times;
        };
        using PartialTimes = std::vector<PartialTime>;

        auto generate_partial_times = [this](const TimesList& times) {
            PartialTimes items;

            std::vector<CustomGCode::Item> custom_gcode_per_print_z = wxGetApp().plater()->model().custom_gcode_per_print_z.gcodes;
            int extruders_count = wxGetApp().extruders_edited_cnt();
            std::vector<Color> last_color(extruders_count);
            for (int i = 0; i < extruders_count; ++i) {
                last_color[i] = m_tool_colors[i];
            }
            int last_extruder_id = 1;
            for (const auto& time_rec : times) {
                switch (time_rec.first)
                {
                case CustomGCode::PausePrint: {
                    auto it = std::find_if(custom_gcode_per_print_z.begin(), custom_gcode_per_print_z.end(), [time_rec](const CustomGCode::Item& item) { return item.type == time_rec.first; });
                    if (it != custom_gcode_per_print_z.end()) {
                        items.push_back({ PartialTime::EType::Print, it->extruder, last_color[it->extruder - 1], Color(), time_rec.second });
                        items.push_back({ PartialTime::EType::Pause, it->extruder, Color(), Color(), time_rec.second });
                        custom_gcode_per_print_z.erase(it);
                    }
                    break;
                }
                case CustomGCode::ColorChange: {
                    auto it = std::find_if(custom_gcode_per_print_z.begin(), custom_gcode_per_print_z.end(), [time_rec](const CustomGCode::Item& item) { return item.type == time_rec.first; });
                    if (it != custom_gcode_per_print_z.end()) {
                        items.push_back({ PartialTime::EType::Print, it->extruder, last_color[it->extruder - 1], Color(), time_rec.second });
                        items.push_back({ PartialTime::EType::ColorChange, it->extruder, last_color[it->extruder - 1], decode_color(it->color), time_rec.second });
                        last_color[it->extruder - 1] = decode_color(it->color);
                        last_extruder_id = it->extruder;
                        custom_gcode_per_print_z.erase(it);
                    }
                    else
                        items.push_back({ PartialTime::EType::Print, last_extruder_id, last_color[last_extruder_id - 1], Color(), time_rec.second });

                    break;
                }
                default: { break; }
                }
            }

            return items;
        };

        auto append_color_change = [this, &imgui](const Color& color1, const Color& color2, const std::array<float, 2>& offsets, const Times& times) {
            imgui.text(_u8L("Color change"));
            ImGui::SameLine();

            float icon_size = ImGui::GetTextLineHeight();
            ImDrawList* draw_list = ImGui::GetWindowDrawList();
            ImVec2 pos = ImGui::GetCursorScreenPos();
            pos.x -= 0.5f * ImGui::GetStyle().ItemSpacing.x;

            draw_list->AddRectFilled({ pos.x + 1.0f, pos.y + 1.0f }, { pos.x + icon_size - 1.0f, pos.y + icon_size - 1.0f },
                ImGui::GetColorU32({ color1[0], color1[1], color1[2], 1.0f }));
            pos.x += icon_size;
            draw_list->AddRectFilled({ pos.x + 1.0f, pos.y + 1.0f }, { pos.x + icon_size - 1.0f, pos.y + icon_size - 1.0f },
                ImGui::GetColorU32({ color2[0], color2[1], color2[2], 1.0f }));

            ImGui::SameLine(offsets[0]);
            imgui.text(short_time(get_time_dhms(times.second - times.first)));
        };

        auto append_print = [this, &imgui](const Color& color, const std::array<float, 2>& offsets, const Times& times) {
            imgui.text(_u8L("Print"));
            ImGui::SameLine();

            float icon_size = ImGui::GetTextLineHeight();
            ImDrawList* draw_list = ImGui::GetWindowDrawList();
            ImVec2 pos = ImGui::GetCursorScreenPos();
            pos.x -= 0.5f * ImGui::GetStyle().ItemSpacing.x;

            draw_list->AddRectFilled({ pos.x + 1.0f, pos.y + 1.0f }, { pos.x + icon_size - 1.0f, pos.y + icon_size - 1.0f },
                ImGui::GetColorU32({ color[0], color[1], color[2], 1.0f }));

            ImGui::SameLine(offsets[0]);
            imgui.text(short_time(get_time_dhms(times.second)));
            ImGui::SameLine(offsets[1]);
            imgui.text(short_time(get_time_dhms(times.first)));
        };

        PartialTimes partial_times = generate_partial_times(time_mode.custom_gcode_times);
        if (!partial_times.empty()) {
            labels.clear();
            times.clear();

            for (const PartialTime& item : partial_times) {
                switch (item.type)
                {
                case PartialTime::EType::Print:       { labels.push_back(_u8L("Print")); break; }
                case PartialTime::EType::Pause:       { labels.push_back(_u8L("Pause")); break; }
                case PartialTime::EType::ColorChange: { labels.push_back(_u8L("Color change")); break; }
                }
                times.push_back(short_time(get_time_dhms(item.times.second)));
            }
            offsets = calculate_offsets(labels, times, { _u8L("Event"), _u8L("Remaining time") }, 2.0f * icon_size);

            ImGui::Spacing();
            append_headers({ _u8L("Event"), _u8L("Remaining time"), _u8L("Duration") }, offsets);
            for (const PartialTime& item : partial_times) {
                switch (item.type)
                {
                case PartialTime::EType::Print: {
                    append_print(item.color1, offsets, item.times);
                    break;
                }
                case PartialTime::EType::Pause: {
                    imgui.text(_u8L("Pause"));
                    ImGui::SameLine(offsets[0]);
                    imgui.text(short_time(get_time_dhms(item.times.second - item.times.first)));
                    break;
                }
                case PartialTime::EType::ColorChange: {
                    append_color_change(item.color1, item.color2, offsets, item.times);
                    break;
                }
                }
            }
        }
    }

    // travel paths section
    if (m_buffers[buffer_id(EMoveType::Travel)].visible) {
        switch (m_view_type)
        {
        case EViewType::Feedrate:
        case EViewType::Tool:
        case EViewType::ColorPrint: {
            break;
        }
        default: {
            // title
            ImGui::Spacing();
            imgui.title(_u8L("Travel"));

            // items
            append_item(EItemType::Line, Travel_Colors[0], _u8L("Movement"));
            append_item(EItemType::Line, Travel_Colors[1], _u8L("Extrusion"));
            append_item(EItemType::Line, Travel_Colors[2], _u8L("Retraction"));

            break;
        }
        }
    }

    // wipe paths section
    if (m_buffers[buffer_id(EMoveType::Wipe)].visible) {
        switch (m_view_type)
        {
        case EViewType::Feedrate:
        case EViewType::Tool:
        case EViewType::ColorPrint: { break; }
        default: {
            // title
            ImGui::Spacing();
            imgui.title(_u8L("Wipe"));

            // items
            append_item(EItemType::Line, Wipe_Color, _u8L("Wipe"));

            break;
        }
        }
    }

    auto any_option_available = [this]() {
        auto available = [this](EMoveType type) {
            const TBuffer& buffer = m_buffers[buffer_id(type)];
            return buffer.visible && buffer.has_data();
        };

        return available(EMoveType::Color_change) ||
            available(EMoveType::Custom_GCode) ||
            available(EMoveType::Pause_Print) ||
            available(EMoveType::Retract) ||
            available(EMoveType::Tool_change) ||
            available(EMoveType::Unretract);
    };

    auto add_option = [this, append_item](EMoveType move_type, EOptionsColors color, const std::string& text) {
        const TBuffer& buffer = m_buffers[buffer_id(move_type)];
        if (buffer.visible && buffer.has_data())
            append_item((buffer.shader == "options_110") ? EItemType::Rect : EItemType::Circle, Options_Colors[static_cast<unsigned int>(color)], text);
    };

    // options section
    if (any_option_available()) {
        // title
        ImGui::Spacing();
        imgui.title(_u8L("Options"));

        // items
        add_option(EMoveType::Retract, EOptionsColors::Retractions, _u8L("Retractions"));
        add_option(EMoveType::Unretract, EOptionsColors::Unretractions, _u8L("Deretractions"));
        add_option(EMoveType::Tool_change, EOptionsColors::ToolChanges, _u8L("Tool changes"));
        add_option(EMoveType::Color_change, EOptionsColors::ColorChanges, _u8L("Color changes"));
        add_option(EMoveType::Pause_Print, EOptionsColors::PausePrints, _u8L("Print pauses"));
        add_option(EMoveType::Custom_GCode, EOptionsColors::CustomGCodes, _u8L("Custom G-codes"));
    }

    // settings section
    if (wxGetApp().is_gcode_viewer() && 
        (m_view_type == EViewType::FeatureType || m_view_type == EViewType::Tool) &&
        (!m_settings_ids.print.empty() || !m_settings_ids.filament.empty() || !m_settings_ids.printer.empty())) {

        auto calc_offset = [this]() {
            float ret = 0.0f;
            if (!m_settings_ids.printer.empty())
                ret = std::max(ret, ImGui::CalcTextSize((_u8L("Printer") + std::string(":")).c_str()).x);
            if (!m_settings_ids.print.empty())
                ret = std::max(ret, ImGui::CalcTextSize((_u8L("Print settings") + std::string(":")).c_str()).x);
            if (!m_settings_ids.filament.empty()) {
                for (unsigned char i : m_extruder_ids) {
                    ret = std::max(ret, ImGui::CalcTextSize((_u8L("Filament") + " " + std::to_string(i + 1) + ":").c_str()).x);
                }
            }
            if (ret > 0.0f)
                ret += 2.0f * ImGui::GetStyle().ItemSpacing.x;
            return ret;
        };


        ImGui::Spacing();
        ImGui::Spacing();
        ImGui::PushStyleColor(ImGuiCol_Separator, { 1.0f, 1.0f, 1.0f, 1.0f });
        ImGui::Separator();
        ImGui::PopStyleColor();
        ImGui::Spacing();

        float offset = calc_offset();

        if (!m_settings_ids.printer.empty()) {
            imgui.text(_u8L("Printer") + ":");
            ImGui::SameLine(offset);
            imgui.text(m_settings_ids.printer);
        }
        if (!m_settings_ids.print.empty()) {
            imgui.text(_u8L("Print settings") + ":");
            ImGui::SameLine(offset);
            imgui.text(m_settings_ids.print);
        }
        if (!m_settings_ids.filament.empty()) {
            for (unsigned char i : m_extruder_ids) {
                std::string txt = _u8L("Filament");
                txt += (m_extruder_ids.size() == 1) ? ":" : " " + std::to_string(i + 1);
                imgui.text(txt);
                ImGui::SameLine(offset);
                imgui.text(m_settings_ids.filament[i]);
            }
        }
    }

    // total estimated printing time section
    if (time_mode.time > 0.0f && (m_view_type == EViewType::FeatureType ||
        (m_view_type == EViewType::ColorPrint && !time_mode.custom_gcode_times.empty()))) {

        ImGui::Spacing();
        ImGui::Spacing();
        ImGui::PushStyleColor(ImGuiCol_Separator, { 1.0f, 1.0f, 1.0f, 1.0f });
        ImGui::Separator();
        ImGui::PopStyleColor();
        ImGui::Spacing();

        ImGui::AlignTextToFramePadding();
        switch (m_time_estimate_mode)
        {
        case PrintEstimatedTimeStatistics::ETimeMode::Normal:
        {
            imgui.text(_u8L("Estimated printing time") + " [" + _u8L("Normal mode") + "]:");
            break;
        }
        case PrintEstimatedTimeStatistics::ETimeMode::Stealth:
        {
            imgui.text(_u8L("Estimated printing time") + " [" + _u8L("Stealth mode") + "]:");
            break;
        }
        default : { assert(false); break; }
        }
        ImGui::SameLine();
        imgui.text(short_time(get_time_dhms(time_mode.time)));

        auto show_mode_button = [this, &imgui](const wxString& label, PrintEstimatedTimeStatistics::ETimeMode mode) {
            bool show = false;
            for (size_t i = 0; i < m_time_statistics.modes.size(); ++i) {
                if (i != static_cast<size_t>(mode) &&
                    short_time(get_time_dhms(m_time_statistics.modes[static_cast<size_t>(mode)].time)) != short_time(get_time_dhms(m_time_statistics.modes[i].time))) {
                    show = true;
                    break;
                }
            }
            if (show && m_time_statistics.modes[static_cast<size_t>(mode)].roles_times.size() > 0) {
                if (imgui.button(label)) {
                    *const_cast<PrintEstimatedTimeStatistics::ETimeMode*>(&m_time_estimate_mode) = mode;
                    wxGetApp().plater()->get_current_canvas3D()->set_as_dirty();
                    wxGetApp().plater()->get_current_canvas3D()->request_extra_frame();
                }
            }
        };

        switch (m_time_estimate_mode) {
        case PrintEstimatedTimeStatistics::ETimeMode::Normal: {
            show_mode_button(_L("Show stealth mode"), PrintEstimatedTimeStatistics::ETimeMode::Stealth);
            break;
        }
        case PrintEstimatedTimeStatistics::ETimeMode::Stealth: {
            show_mode_button(_L("Show normal mode"), PrintEstimatedTimeStatistics::ETimeMode::Normal);
            break;
        }
        default : { assert(false); break; }
        }
    }

    imgui.end();
    ImGui::PopStyleVar();
}

#if ENABLE_GCODE_VIEWER_STATISTICS
void GCodeViewer::render_statistics() const
{
    static const float offset = 275.0f;

    ImGuiWrapper& imgui = *wxGetApp().imgui();

    auto add_time = [this, &imgui](const std::string& label, int64_t time) {
        char buf[1024];
        sprintf(buf, "%lld ms (%s)", time, get_time_dhms(static_cast<float>(time) * 0.001f).c_str());
        imgui.text_colored(ImGuiWrapper::COL_ORANGE_LIGHT, label);
        ImGui::SameLine(offset);
        imgui.text(buf);
    };

    auto add_memory = [this, &imgui](const std::string& label, int64_t memory) {
        auto format_string = [memory](const std::string& units, float value) {
            char buf[1024];
            sprintf(buf, "%lld bytes (%.3f %s)", memory, static_cast<float>(memory) * value, units.c_str());
            return std::string(buf);
        };

        static const float kb = 1024.0f;
        static const float inv_kb = 1.0f / kb;
        static const float mb = 1024.0f * kb;
        static const float inv_mb = 1.0f / mb;
        static const float gb = 1024.0f * mb;
        static const float inv_gb = 1.0f / gb;
        imgui.text_colored(ImGuiWrapper::COL_ORANGE_LIGHT, label);
        ImGui::SameLine(offset);
        if (static_cast<float>(memory) < mb)
            imgui.text(format_string("KB", inv_kb));
        else if (static_cast<float>(memory) < gb)
            imgui.text(format_string("MB", inv_mb));
        else
            imgui.text(format_string("GB", inv_gb));
    };

    auto add_counter = [this, &imgui](const std::string& label, int64_t counter) {
        char buf[1024];
        sprintf(buf, "%lld", counter);
        imgui.text_colored(ImGuiWrapper::COL_ORANGE_LIGHT, label);
        ImGui::SameLine(offset);
        imgui.text(buf);
    };

    imgui.set_next_window_pos(0.5f * wxGetApp().plater()->get_current_canvas3D()->get_canvas_size().get_width(), 0.0f, ImGuiCond_Once, 0.5f, 0.0f);
    ImGui::SetNextWindowSizeConstraints({ 300.0f, 100.0f }, { 600.0f, 900.0f });
    imgui.begin(std::string("GCodeViewer Statistics"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize);
    ImGui::BringWindowToDisplayFront(ImGui::GetCurrentWindow());

    if (ImGui::CollapsingHeader("Time")) {
        add_time(std::string("GCodeProcessor:"), m_statistics.results_time);

        ImGui::Separator();
        add_time(std::string("Load:"), m_statistics.load_time);
        add_time(std::string("  Load vertices:"), m_statistics.load_vertices);
        add_time(std::string("  Smooth vertices:"), m_statistics.smooth_vertices);
        add_time(std::string("  Load indices:"), m_statistics.load_indices);
        add_time(std::string("Refresh:"), m_statistics.refresh_time);
        add_time(std::string("Refresh paths:"), m_statistics.refresh_paths_time);
    }

    if (ImGui::CollapsingHeader("OpenGL calls")) {
        add_counter(std::string("Multi GL_POINTS:"), m_statistics.gl_multi_points_calls_count);
        add_counter(std::string("Multi GL_LINES:"), m_statistics.gl_multi_lines_calls_count);
        add_counter(std::string("Multi GL_TRIANGLES:"), m_statistics.gl_multi_triangles_calls_count);
#if ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
        add_counter(std::string("GL_TRIANGLES:"), m_statistics.gl_triangles_calls_count);
#endif // ENABLE_REDUCED_TOOLPATHS_SEGMENT_CAPS
    }

    if (ImGui::CollapsingHeader("CPU memory")) {
        add_memory(std::string("GCodeProcessor results:"), m_statistics.results_size);

        ImGui::Separator();
        add_memory(std::string("Paths:"), m_statistics.paths_size);
        add_memory(std::string("Render paths:"), m_statistics.render_paths_size);
    }

    if (ImGui::CollapsingHeader("GPU memory")) {
        add_memory(std::string("Vertices:"), m_statistics.total_vertices_gpu_size);
        add_memory(std::string("Indices:"), m_statistics.total_indices_gpu_size);
        ImGui::Separator();
        add_memory(std::string("Max VBuffer:"), m_statistics.max_vbuffer_gpu_size);
        add_memory(std::string("Max IBuffer:"), m_statistics.max_ibuffer_gpu_size);
    }

    if (ImGui::CollapsingHeader("Other")) {
        add_counter(std::string("Travel segments count:"), m_statistics.travel_segments_count);
        add_counter(std::string("Wipe segments count:"), m_statistics.wipe_segments_count);
        add_counter(std::string("Extrude segments count:"), m_statistics.extrude_segments_count);
        ImGui::Separator();
        add_counter(std::string("VBuffers count:"), m_statistics.vbuffers_count);
        add_counter(std::string("IBuffers count:"), m_statistics.ibuffers_count);
    }

    imgui.end();
}
#endif // ENABLE_GCODE_VIEWER_STATISTICS

void GCodeViewer::log_memory_used(const std::string& label, int64_t additional) const
{
    if (Slic3r::get_logging_level() >= 5) {
        int64_t paths_size = 0;
        int64_t render_paths_size = 0;
        for (const TBuffer& buffer : m_buffers) {
            paths_size += SLIC3R_STDVEC_MEMSIZE(buffer.paths, Path);
            render_paths_size += SLIC3R_STDUNORDEREDSET_MEMSIZE(buffer.render_paths, RenderPath);
            for (const RenderPath& path : buffer.render_paths) {
                render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.sizes, unsigned int);
                render_paths_size += SLIC3R_STDVEC_MEMSIZE(path.offsets, size_t);
            }
        }
        int64_t layers_size = SLIC3R_STDVEC_MEMSIZE(m_layers.get_zs(), double);
        layers_size += SLIC3R_STDVEC_MEMSIZE(m_layers.get_endpoints(), Layers::Endpoints);
#if ENABLE_SPLITTED_VERTEX_BUFFER
        BOOST_LOG_TRIVIAL(trace) << label
            << "(" << format_memsize_MB(additional + paths_size + render_paths_size + layers_size) << ");"
            << log_memory_info();
#else
        BOOST_LOG_TRIVIAL(trace) << label
            << format_memsize_MB(additional + paths_size + render_paths_size + layers_size)
            << log_memory_info();
#endif // ENABLE_SPLITTED_VERTEX_BUFFER
    }
}

} // namespace GUI
} // namespace Slic3r