Welcome to mirror list, hosted at ThFree Co, Russian Federation.

MeshUtils.cpp « GUI « slic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 588e50dab279d5345ddbf8b364dad4ce0fa97401 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#include "MeshUtils.hpp"

#include "libslic3r/Tesselate.hpp"
#include "libslic3r/TriangleMesh.hpp"
#include "libslic3r/TriangleMeshSlicer.hpp"
#include "libslic3r/ClipperUtils.hpp"

#include "slic3r/GUI/Camera.hpp"

#include <GL/glew.h>

#include <igl/unproject.h>


namespace Slic3r {
namespace GUI {

void MeshClipper::set_plane(const ClippingPlane& plane)
{
    if (m_plane != plane) {
        m_plane = plane;
        m_triangles_valid = false;
    }
}


void MeshClipper::set_limiting_plane(const ClippingPlane& plane)
{
    if (m_limiting_plane != plane) {
        m_limiting_plane = plane;
        m_triangles_valid = false;
    }
}



void MeshClipper::set_mesh(const TriangleMesh& mesh)
{
    if (m_mesh != &mesh) {
        m_mesh = &mesh;
        m_triangles_valid = false;
        m_triangles2d.resize(0);
    }
}

void MeshClipper::set_negative_mesh(const TriangleMesh& mesh)
{
    if (m_negative_mesh != &mesh) {
        m_negative_mesh = &mesh;
        m_triangles_valid = false;
        m_triangles2d.resize(0);
    }
}



void MeshClipper::set_transformation(const Geometry::Transformation& trafo)
{
    if (! m_trafo.get_matrix().isApprox(trafo.get_matrix())) {
        m_trafo = trafo;
        m_triangles_valid = false;
        m_triangles2d.resize(0);
    }
}



void MeshClipper::render_cut()
{
    if (! m_triangles_valid)
        recalculate_triangles();

    if (m_vertex_array.has_VBOs())
        m_vertex_array.render();
}



void MeshClipper::recalculate_triangles()
{
    const Transform3f& instance_matrix_no_translation_no_scaling = m_trafo.get_matrix(true,false,true).cast<float>();
    const Vec3f& scaling = m_trafo.get_scaling_factor().cast<float>();
    // Calculate clipping plane normal in mesh coordinates.
    Vec3f up_noscale = instance_matrix_no_translation_no_scaling.inverse() * m_plane.get_normal().cast<float>();
    Vec3d up (up_noscale(0)*scaling(0), up_noscale(1)*scaling(1), up_noscale(2)*scaling(2));
    // Calculate distance from mesh origin to the clipping plane (in mesh coordinates).
    float height_mesh = m_plane.distance(m_trafo.get_offset()) * (up_noscale.norm()/up.norm());

    // Now do the cutting
    MeshSlicingParams slicing_params;
    slicing_params.trafo.rotate(Eigen::Quaternion<double, Eigen::DontAlign>::FromTwoVectors(up, Vec3d::UnitZ()));

    assert(m_mesh->has_shared_vertices());
    ExPolygons expolys = union_ex(slice_mesh(m_mesh->its, height_mesh, slicing_params));

    if (m_negative_mesh && !m_negative_mesh->empty()) {
        assert(m_negative_mesh->has_shared_vertices());
        ExPolygons neg_expolys = union_ex(slice_mesh(m_negative_mesh->its, height_mesh, slicing_params));
        expolys = diff_ex(expolys, neg_expolys);
    }

    // Triangulate and rotate the cut into world coords:
    Eigen::Quaterniond q;
    q.setFromTwoVectors(Vec3d::UnitZ(), up);
    Transform3d tr = Transform3d::Identity();
    tr.rotate(q);
    tr = m_trafo.get_matrix() * tr;
    height_mesh += 0.001f; // to avoid z-fighting

    if (m_limiting_plane != ClippingPlane::ClipsNothing())
    {
        // Now remove whatever ended up below the limiting plane (e.g. sinking objects).
        // First transform the limiting plane from world to mesh coords.
        // Note that inverse of tr transforms the plane from world to horizontal.
        Vec3d normal_old = m_limiting_plane.get_normal().normalized();
        Vec3d normal_new = (tr.matrix().block<3,3>(0,0).transpose() * normal_old).normalized();

        // normal_new should now be the plane normal in mesh coords. To find the offset,
        // transform a point and set offset so it belongs to the transformed plane.
        Vec3d pt = Vec3d::Zero();
        double plane_offset = m_limiting_plane.get_data()[3];
        if (std::abs(normal_old.z()) > 0.5) // normal is normalized, at least one of the coords if larger than sqrt(3)/3 = 0.57
            pt.z() = - plane_offset / normal_old.z();
        else if (std::abs(normal_old.y()) > 0.5)
            pt.y() = - plane_offset / normal_old.y();
        else
            pt.x() = - plane_offset / normal_old.x();
        pt = tr.inverse() * pt;
        double offset = -(normal_new.dot(pt));

        if (std::abs(normal_old.dot(m_plane.get_normal().normalized())) > 0.99) {
            // The cuts are parallel, show all or nothing.
            if (offset < height_mesh)
                expolys.clear();
        } else {
            // The cut is a horizontal plane defined by z=height_mesh.
            // ax+by+e=0 is the line of intersection with the limiting plane.
            // Normalized so a^2 + b^2 = 1.
            double len = std::hypot(normal_new.x(), normal_new.y());
            if (len == 0.)
                return;
            double a = normal_new.x() / len;
            double b = normal_new.y() / len;
            double e = (normal_new.z() * height_mesh + offset) / len;
            if (b == 0.)
                return;

            // We need a half-plane to limit the cut. Get angle of the intersecting line.
            double angle = std::atan(-a/b);
            if (b > 0) // select correct half-plane
                angle += M_PI;

            // We'll take a big rectangle above x-axis and rotate and translate
            // it so it lies on our line. This will be the figure to subtract
            // from the cut. The coordinates must not overflow after the transform,
            // make the rectangle a bit smaller.
            coord_t size = (std::numeric_limits<coord_t>::max() - scale_(std::max(std::abs(e*a), std::abs(e*b)))) / 4;
            Polygons ep {Polygon({Point(-size, 0), Point(size, 0), Point(size, 2*size), Point(-size, 2*size)})};
            ep.front().rotate(angle);
            ep.front().translate(scale_(-e * a), scale_(-e * b));
            expolys = diff_ex(expolys, ep);
        }
    }

    m_triangles2d = triangulate_expolygons_2f(expolys, m_trafo.get_matrix().matrix().determinant() < 0.);

    m_vertex_array.release_geometry();
    for (auto it=m_triangles2d.cbegin(); it != m_triangles2d.cend(); it=it+3) {
        m_vertex_array.push_geometry(tr * Vec3d((*(it+0))(0), (*(it+0))(1), height_mesh), up);
        m_vertex_array.push_geometry(tr * Vec3d((*(it+1))(0), (*(it+1))(1), height_mesh), up);
        m_vertex_array.push_geometry(tr * Vec3d((*(it+2))(0), (*(it+2))(1), height_mesh), up);
        size_t idx = it - m_triangles2d.cbegin();
        m_vertex_array.push_triangle(idx, idx+1, idx+2);
    }
    m_vertex_array.finalize_geometry(true);

    m_triangles_valid = true;
}


Vec3f MeshRaycaster::get_triangle_normal(size_t facet_idx) const
{
    return m_normals[facet_idx];
}

void MeshRaycaster::line_from_mouse_pos(const Vec2d& mouse_pos, const Transform3d& trafo, const Camera& camera,
                                        Vec3d& point, Vec3d& direction) const
{
    Matrix4d modelview = camera.get_view_matrix().matrix();
    Matrix4d projection= camera.get_projection_matrix().matrix();
    Vec4i viewport(camera.get_viewport().data());

    Vec3d pt1;
    Vec3d pt2;
    igl::unproject(Vec3d(mouse_pos(0), viewport[3] - mouse_pos(1), 0.),
                   modelview, projection, viewport, pt1);
    igl::unproject(Vec3d(mouse_pos(0), viewport[3] - mouse_pos(1), 1.),
                   modelview, projection, viewport, pt2);

    Transform3d inv = trafo.inverse();
    pt1 = inv * pt1;
    pt2 = inv * pt2;

    point = pt1;
    direction = pt2-pt1;
}


bool MeshRaycaster::unproject_on_mesh(const Vec2d& mouse_pos, const Transform3d& trafo, const Camera& camera,
                                      Vec3f& position, Vec3f& normal, const ClippingPlane* clipping_plane,
                                      size_t* facet_idx) const
{
    Vec3d point;
    Vec3d direction;
    line_from_mouse_pos(mouse_pos, trafo, camera, point, direction);

    std::vector<sla::IndexedMesh::hit_result> hits = m_emesh.query_ray_hits(point, direction);

    if (hits.empty())
        return false; // no intersection found

    unsigned i = 0;

    // Remove points that are obscured or cut by the clipping plane.
    // Also, remove anything below the bed (sinking objects).
    for (i=0; i<hits.size(); ++i) {
        Vec3d transformed_hit = trafo * hits[i].position();
        if (transformed_hit.z() >= 0. &&
            (! clipping_plane || ! clipping_plane->is_point_clipped(transformed_hit)))
            break;
    }

    if (i==hits.size() || (hits.size()-i) % 2 != 0) {
        // All hits are either clipped, or there is an odd number of unclipped
        // hits - meaning the nearest must be from inside the mesh.
        return false;
    }

    // Now stuff the points in the provided vector and calculate normals if asked about them:
    position = hits[i].position().cast<float>();
    normal = hits[i].normal().cast<float>();

    if (facet_idx)
        *facet_idx = hits[i].face();

    return true;
}


std::vector<unsigned> MeshRaycaster::get_unobscured_idxs(const Geometry::Transformation& trafo, const Camera& camera, const std::vector<Vec3f>& points,
                                                       const ClippingPlane* clipping_plane) const
{
    std::vector<unsigned> out;

    const Transform3d& instance_matrix_no_translation_no_scaling = trafo.get_matrix(true,false,true);
    Vec3f direction_to_camera = -camera.get_dir_forward().cast<float>();
    Vec3f direction_to_camera_mesh = (instance_matrix_no_translation_no_scaling.inverse().cast<float>() * direction_to_camera).normalized().eval();
    Vec3f scaling = trafo.get_scaling_factor().cast<float>();
    direction_to_camera_mesh = Vec3f(direction_to_camera_mesh(0)*scaling(0), direction_to_camera_mesh(1)*scaling(1), direction_to_camera_mesh(2)*scaling(2));
    const Transform3f inverse_trafo = trafo.get_matrix().inverse().cast<float>();

    for (size_t i=0; i<points.size(); ++i) {
        const Vec3f& pt = points[i];
        if (clipping_plane && clipping_plane->is_point_clipped(pt.cast<double>()))
            continue;

        bool is_obscured = false;
        // Cast a ray in the direction of the camera and look for intersection with the mesh:
        std::vector<sla::IndexedMesh::hit_result> hits;
        // Offset the start of the ray by EPSILON to account for numerical inaccuracies.
        hits = m_emesh.query_ray_hits((inverse_trafo * pt + direction_to_camera_mesh * EPSILON).cast<double>(),
                                      direction_to_camera.cast<double>());


        if (! hits.empty()) {
            // If the closest hit facet normal points in the same direction as the ray,
            // we are looking through the mesh and should therefore discard the point:
            if (hits.front().normal().dot(direction_to_camera_mesh.cast<double>()) > 0)
                is_obscured = true;

            // Eradicate all hits that the caller wants to ignore
            for (unsigned j=0; j<hits.size(); ++j) {
                if (clipping_plane && clipping_plane->is_point_clipped(trafo.get_matrix() * hits[j].position())) {
                    hits.erase(hits.begin()+j);
                    --j;
                }
            }

            // FIXME: the intersection could in theory be behind the camera, but as of now we only have camera direction.
            // Also, the threshold is in mesh coordinates, not in actual dimensions.
            if (! hits.empty())
                is_obscured = true;
        }
        if (! is_obscured)
            out.push_back(i);
    }
    return out;
}


Vec3f MeshRaycaster::get_closest_point(const Vec3f& point, Vec3f* normal) const
{
    int idx = 0;
    Vec3d closest_point;
    m_emesh.squared_distance(point.cast<double>(), idx, closest_point);
    if (normal)
        *normal = m_normals[idx];

    return closest_point.cast<float>();
}



} // namespace GUI
} // namespace Slic3r