Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Point.cpp « src « xs - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f9b14429c253d0cc4d9416ddb4ee3696380c1b57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#include <cmath>
#include <sstream>
#include "Point.hpp"
#include "Line.hpp"

namespace Slic3r {

bool
Point::operator==(const Point& rhs) const
{
    return this->coincides_with(rhs);
}

std::string
Point::wkt() const
{
    std::ostringstream ss;
    ss << "POINT(" << this->x << " " << this->y << ")";
    return ss.str();
}

void
Point::scale(double factor)
{
    this->x *= factor;
    this->y *= factor;
}

void
Point::translate(double x, double y)
{
    this->x += x;
    this->y += y;
}

void
Point::rotate(double angle, const Point &center)
{
    double cur_x = (double)this->x;
    double cur_y = (double)this->y;
    this->x = (coord_t)round( (double)center.x + cos(angle) * (cur_x - (double)center.x) - sin(angle) * (cur_y - (double)center.y) );
    this->y = (coord_t)round( (double)center.y + cos(angle) * (cur_y - (double)center.y) + sin(angle) * (cur_x - (double)center.x) );
}

bool
Point::coincides_with(const Point &point) const
{
    return this->x == point.x && this->y == point.y;
}

int
Point::nearest_point_index(const Points &points) const
{
    PointConstPtrs p;
    p.reserve(points.size());
    for (Points::const_iterator it = points.begin(); it != points.end(); ++it)
        p.push_back(&*it);
    return this->nearest_point_index(p);
}

int
Point::nearest_point_index(const PointConstPtrs &points) const
{
    int idx = -1;
    double distance = -1;  // double because long is limited to 2147483647 on some platforms and it's not enough
    
    for (PointConstPtrs::const_iterator it = points.begin(); it != points.end(); ++it) {
        /* If the X distance of the candidate is > than the total distance of the
           best previous candidate, we know we don't want it */
        double d = pow(this->x - (*it)->x, 2);
        if (distance != -1 && d > distance) continue;
        
        /* If the Y distance of the candidate is > than the total distance of the
           best previous candidate, we know we don't want it */
        d += pow(this->y - (*it)->y, 2);
        if (distance != -1 && d > distance) continue;
        
        idx = it - points.begin();
        distance = d;
        
        if (distance < EPSILON) break;
    }
    
    return idx;
}

int
Point::nearest_point_index(const PointPtrs &points) const
{
    PointConstPtrs p;
    p.reserve(points.size());
    for (PointPtrs::const_iterator it = points.begin(); it != points.end(); ++it)
        p.push_back(*it);
    return this->nearest_point_index(p);
}

void
Point::nearest_point(const Points &points, Point* point) const
{
    *point = points.at(this->nearest_point_index(points));
}

double
Point::distance_to(const Point &point) const
{
    double dx = ((double)point.x - this->x);
    double dy = ((double)point.y - this->y);
    return sqrt(dx*dx + dy*dy);
}

double
Point::distance_to(const Line &line) const
{
    if (line.a.coincides_with(line.b)) return this->distance_to(line.a);
    
    double n = (double)(line.b.x - line.a.x) * (double)(line.a.y - this->y)
        - (double)(line.a.x - this->x) * (double)(line.b.y - line.a.y);
    
    return std::abs(n) / line.length();
}

/* Three points are a counter-clockwise turn if ccw > 0, clockwise if
 * ccw < 0, and collinear if ccw = 0 because ccw is a determinant that
 * gives the signed area of the triangle formed by p1, p2 and this point.
 * In other words it is the 2D cross product of p1-p2 and p1-this, i.e.
 * z-component of their 3D cross product.
 * We return double because it must be big enough to hold 2*max(|coordinate|)^2
 */
double
Point::ccw(const Point &p1, const Point &p2) const
{
    return (double)(p2.x - p1.x)*(double)(this->y - p1.y) - (double)(p2.y - p1.y)*(double)(this->x - p1.x);
}

double
Point::ccw(const Line &line) const
{
    return this->ccw(line.a, line.b);
}

#ifdef SLIC3RXS
SV*
Point::to_SV_ref() {
    SV* sv = newSV(0);
    sv_setref_pv( sv, "Slic3r::Point::Ref", (void*)this );
    return sv;
}

SV*
Point::to_SV_clone_ref() const {
    SV* sv = newSV(0);
    sv_setref_pv( sv, "Slic3r::Point", new Point(*this) );
    return sv;
}

SV*
Point::to_SV_pureperl() const {
    AV* av = newAV();
    av_fill(av, 1);
    av_store(av, 0, newSViv(this->x));
    av_store(av, 1, newSViv(this->y));
    return newRV_noinc((SV*)av);
}

void
Point::from_SV(SV* point_sv)
{
    AV* point_av = (AV*)SvRV(point_sv);
    // get a double from Perl and round it, otherwise
    // it would get truncated
    this->x = lrint(SvNV(*av_fetch(point_av, 0, 0)));
    this->y = lrint(SvNV(*av_fetch(point_av, 1, 0)));
}

void
Point::from_SV_check(SV* point_sv)
{
    if (sv_isobject(point_sv) && (SvTYPE(SvRV(point_sv)) == SVt_PVMG)) {
        if (!sv_isa(point_sv, "Slic3r::Point") && !sv_isa(point_sv, "Slic3r::Point::Ref"))
            CONFESS("Not a valid Slic3r::Point object");
        *this = *(Point*)SvIV((SV*)SvRV( point_sv ));
    } else {
        this->from_SV(point_sv);
    }
}

SV*
Pointf::to_SV_pureperl() const {
    AV* av = newAV();
    av_fill(av, 1);
    av_store(av, 0, newSVnv(this->x));
    av_store(av, 1, newSVnv(this->y));
    return newRV_noinc((SV*)av);
}

bool
Pointf::from_SV(SV* point_sv)
{
    AV* point_av = (AV*)SvRV(point_sv);
    SV* sv_x = *av_fetch(point_av, 0, 0);
    SV* sv_y = *av_fetch(point_av, 1, 0);
    if (!looks_like_number(sv_x) || !looks_like_number(sv_y)) return false;
    
    this->x = SvNV(sv_x);
    this->y = SvNV(sv_y);
    return true;
}
#endif

void
Pointf::scale(double factor)
{
    this->x *= factor;
    this->y *= factor;
}

void
Pointf::translate(double x, double y)
{
    this->x += x;
    this->y += y;
}

void
Pointf3::scale(double factor)
{
    Pointf::scale(factor);
    this->z *= factor;
}

void
Pointf3::translate(double x, double y, double z)
{
    Pointf::translate(x, y);
    this->z += z;
}

}