Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Point.hpp « libslic3r « src « xs - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f2d3a6e65082e451f497057780c61d1096c136e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#ifndef slic3r_Point_hpp_
#define slic3r_Point_hpp_

#include "libslic3r.h"
#include <vector>
#include <math.h>
#include <string>
#include <sstream>
#include <unordered_map>

namespace Slic3r {

class Line;
class Linef;
class MultiPoint;
class Point;
class Pointf;
class Pointf3;
typedef Point Vector;
typedef Pointf Vectorf;
typedef Pointf3 Vectorf3;
typedef std::vector<Point> Points;
typedef std::vector<Point*> PointPtrs;
typedef std::vector<const Point*> PointConstPtrs;
typedef std::vector<Pointf> Pointfs;
typedef std::vector<Pointf3> Pointf3s;

class Point
{
public:
    typedef coord_t coord_type;
    coord_t x;
    coord_t y;
    Point(coord_t _x = 0, coord_t _y = 0): x(_x), y(_y) {};
    Point(int _x, int _y): x(_x), y(_y) {};
    Point(long long _x, long long _y): x(coord_t(_x)), y(coord_t(_y)) {};  // for Clipper
    Point(double x, double y);
    static Point new_scale(coordf_t x, coordf_t y) {
        return Point(scale_(x), scale_(y));
    };

    bool operator==(const Point& rhs) const { return this->x == rhs.x && this->y == rhs.y; }
    bool operator!=(const Point& rhs) const { return ! (*this == rhs); }
    bool operator<(const Point& rhs) const { return this->x < rhs.x || (this->x == rhs.x && this->y < rhs.y); }

    Point& operator+=(const Point& rhs) { this->x += rhs.x; this->y += rhs.y; return *this; }
    Point& operator-=(const Point& rhs) { this->x -= rhs.x; this->y -= rhs.y; return *this; }
    Point& operator*=(const coord_t& rhs) { this->x *= rhs; this->y *= rhs;   return *this; }

    std::string wkt() const;
    std::string dump_perl() const;
    void scale(double factor);
    void translate(double x, double y);
    void translate(const Vector &vector);
    void rotate(double angle);
    void rotate(double angle, const Point &center);
    Point rotated(double angle) const { Point res(*this); res.rotate(angle); return res; }
    Point rotated(double angle, const Point &center) const { Point res(*this); res.rotate(angle, center); return res; }
    bool coincides_with(const Point &point) const { return this->x == point.x && this->y == point.y; }
    bool coincides_with_epsilon(const Point &point) const;
    int nearest_point_index(const Points &points) const;
    int nearest_point_index(const PointConstPtrs &points) const;
    int nearest_point_index(const PointPtrs &points) const;
    bool nearest_point(const Points &points, Point* point) const;
    double distance_to(const Point &point) const { return sqrt(distance_to_sq(point)); }
    double distance_to_sq(const Point &point) const { double dx = double(point.x - this->x); double dy = double(point.y - this->y); return dx*dx + dy*dy; }
    double distance_to(const Line &line) const;
    double perp_distance_to(const Line &line) const;
    double ccw(const Point &p1, const Point &p2) const;
    double ccw(const Line &line) const;
    double ccw_angle(const Point &p1, const Point &p2) const;
    Point projection_onto(const MultiPoint &poly) const;
    Point projection_onto(const Line &line) const;
    Point negative() const;
    Vector vector_to(const Point &point) const;
};

inline Point operator+(const Point& point1, const Point& point2) { return Point(point1.x + point2.x, point1.y + point2.y); }
inline Point operator-(const Point& point1, const Point& point2) { return Point(point1.x - point2.x, point1.y - point2.y); }
inline Point operator*(double scalar, const Point& point2) { return Point(scalar * point2.x, scalar * point2.y); }
inline int64_t cross(const Point &v1, const Point &v2) { return int64_t(v1.x) * int64_t(v2.y) - int64_t(v1.y) * int64_t(v2.x); }
inline int64_t dot(const Point &v1, const Point &v2) { return int64_t(v1.x) * int64_t(v2.x) + int64_t(v1.y) * int64_t(v2.y); }

// To be used by std::unordered_map, std::unordered_multimap and friends.
struct PointHash {
    size_t operator()(const Point &pt) const {
        return std::hash<coord_t>()(pt.x) ^ std::hash<coord_t>()(pt.y);
    }
};

// A generic class to search for a closest Point in a given radius.
// It uses std::unordered_multimap to implement an efficient 2D spatial hashing.
// The PointAccessor has to return const Point*.
// If a nullptr is returned, it is ignored by the query.
template<typename ValueType, typename PointAccessor> class ClosestPointInRadiusLookup
{
public:
    ClosestPointInRadiusLookup(coord_t search_radius, PointAccessor point_accessor = PointAccessor()) : 
		m_search_radius(search_radius), m_point_accessor(point_accessor), m_grid_log2(0)
    {
        // Resolution of a grid, twice the search radius + some epsilon.
		coord_t gridres = 2 * m_search_radius + 4;
        m_grid_resolution = gridres;
        assert(m_grid_resolution > 0);
        assert(m_grid_resolution < (coord_t(1) << 30));
		// Compute m_grid_log2 = log2(m_grid_resolution)
		if (m_grid_resolution > 32767) {
			m_grid_resolution >>= 16;
			m_grid_log2 += 16;
		}
		if (m_grid_resolution > 127) {
			m_grid_resolution >>= 8;
			m_grid_log2 += 8;
		}
		if (m_grid_resolution > 7) {
			m_grid_resolution >>= 4;
			m_grid_log2 += 4;
		}
		if (m_grid_resolution > 1) {
			m_grid_resolution >>= 2;
			m_grid_log2 += 2;
		}
		if (m_grid_resolution > 0)
			++ m_grid_log2;
		m_grid_resolution = 1 << m_grid_log2;
		assert(m_grid_resolution >= gridres);
		assert(gridres > m_grid_resolution / 2);
    }

    void insert(const ValueType &value) {
        const Point *pt = m_point_accessor(value);
        if (pt != nullptr)
            m_map.emplace(std::make_pair(Point(pt->x>>m_grid_log2, pt->y>>m_grid_log2), value));
    }

    void insert(ValueType &&value) {
        const Point *pt = m_point_accessor(value);
        if (pt != nullptr)
            m_map.emplace(std::make_pair(Point(pt->x>>m_grid_log2, pt->y>>m_grid_log2), std::move(value)));
    }

    // Return a pair of <ValueType*, distance_squared>
    std::pair<const ValueType*, double> find(const Point &pt) {
        // Iterate over 4 closest grid cells around pt,
        // find the closest start point inside these cells to pt.
        const ValueType *value_min = nullptr;
        double           dist_min = std::numeric_limits<double>::max();
        // Round pt to a closest grid_cell corner.
        Point            grid_corner((pt.x+(m_grid_resolution>>1))>>m_grid_log2, (pt.y+(m_grid_resolution>>1))>>m_grid_log2);
        // For four neighbors of grid_corner:
        for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
            for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
                // Range of fragment starts around grid_corner, close to pt.
                auto range = m_map.equal_range(Point(grid_corner.x + neighbor_x, grid_corner.y + neighbor_y));
                // Find the map entry closest to pt.
                for (auto it = range.first; it != range.second; ++it) {
                    const ValueType &value = it->second;
                    const Point *pt2 = m_point_accessor(value);
                    if (pt2 != nullptr) {
                        const double d2 = pt.distance_to_sq(*pt2);
                        if (d2 < dist_min) {
                            dist_min = d2;
                            value_min = &value;
                        }
                    }
                }
            }
        }
        return (value_min != nullptr && dist_min < coordf_t(m_search_radius * m_search_radius)) ? 
            std::make_pair(value_min, dist_min) : 
            std::make_pair(nullptr, std::numeric_limits<double>::max());
    }

private:
    typedef typename std::unordered_multimap<Point, ValueType, PointHash> map_type;
    PointAccessor m_point_accessor;
    map_type m_map;
    coord_t  m_search_radius;
    coord_t  m_grid_resolution;
    coord_t  m_grid_log2;
};

class Point3 : public Point
{
    public:
    coord_t z;
    explicit Point3(coord_t _x = 0, coord_t _y = 0, coord_t _z = 0): Point(_x, _y), z(_z) {};
};

std::ostream& operator<<(std::ostream &stm, const Pointf &pointf);

class Pointf
{
public:
    typedef coordf_t coord_type;
    coordf_t x;
    coordf_t y;
    explicit Pointf(coordf_t _x = 0, coordf_t _y = 0): x(_x), y(_y) {};
    static Pointf new_unscale(coord_t x, coord_t y) {
        return Pointf(unscale(x), unscale(y));
    };
    static Pointf new_unscale(const Point &p) {
        return Pointf(unscale(p.x), unscale(p.y));
    };
    std::string wkt() const;
    std::string dump_perl() const;
    void scale(double factor);
    void translate(double x, double y);
    void translate(const Vectorf &vector);
    void rotate(double angle);
    void rotate(double angle, const Pointf &center);
    Pointf negative() const;
    Vectorf vector_to(const Pointf &point) const;
    
    Pointf& operator+=(const Pointf& rhs) { this->x += rhs.x; this->y += rhs.y; return *this; }
    Pointf& operator-=(const Pointf& rhs) { this->x -= rhs.x; this->y -= rhs.y; return *this; }
    Pointf& operator*=(const coordf_t& rhs) { this->x *= rhs; this->y *= rhs;   return *this; }
};

inline Pointf operator+(const Pointf& point1, const Pointf& point2) { return Pointf(point1.x + point2.x, point1.y + point2.y); }
inline Pointf operator-(const Pointf& point1, const Pointf& point2) { return Pointf(point1.x - point2.x, point1.y - point2.y); }
inline Pointf operator*(double scalar, const Pointf& point2) { return Pointf(scalar * point2.x, scalar * point2.y); }
inline Pointf operator*(const Pointf& point2, double scalar) { return Pointf(scalar * point2.x, scalar * point2.y); }
inline coordf_t cross(const Pointf &v1, const Pointf &v2) { return v1.x * v2.y - v1.y * v2.x; }
inline coordf_t dot(const Pointf &v1, const Pointf &v2) { return v1.x * v2.x + v1.y * v2.y; }
inline coordf_t dot(const Pointf &v) { return v.x * v.x + v.y * v.y; }
inline double length(const Vectorf &v) { return sqrt(dot(v)); }
inline double l2(const Vectorf &v) { return dot(v); }

class Pointf3 : public Pointf
{
    public:
    coordf_t z;
    explicit Pointf3(coordf_t _x = 0, coordf_t _y = 0, coordf_t _z = 0): Pointf(_x, _y), z(_z) {};
    static Pointf3 new_unscale(coord_t x, coord_t y, coord_t z) {
        return Pointf3(unscale(x), unscale(y), unscale(z));
    };
    void scale(double factor);
    void translate(const Vectorf3 &vector);
    void translate(double x, double y, double z);
    double distance_to(const Pointf3 &point) const;
    Pointf3 negative() const;
    Vectorf3 vector_to(const Pointf3 &point) const;
};

template<typename TO> inline TO convert_to(const Point &src) { return TO(typename TO::coord_type(src.x), typename TO::coord_type(src.y)); }
template<typename TO> inline TO convert_to(const Pointf &src) { return TO(typename TO::coord_type(src.x), typename TO::coord_type(src.y)); }
template<typename TO> inline TO convert_to(const Point3 &src) { return TO(typename TO::coord_type(src.x), typename TO::coord_type(src.y), typename TO::coord_type(src.z)); }
template<typename TO> inline TO convert_to(const Pointf3 &src) { return TO(typename TO::coord_type(src.x), typename TO::coord_type(src.y), typename TO::coord_type(src.z)); }

} // namespace Slic3r

// start Boost
#include <boost/version.hpp>
#include <boost/polygon/polygon.hpp>
namespace boost { namespace polygon {
    template <>
    struct geometry_concept<coord_t> { typedef coordinate_concept type; };
    
/* Boost.Polygon already defines a specialization for coordinate_traits<long> as of 1.60:
   https://github.com/boostorg/polygon/commit/0ac7230dd1f8f34cb12b86c8bb121ae86d3d9b97 */
#if BOOST_VERSION < 106000
    template <>
    struct coordinate_traits<coord_t> {
        typedef coord_t coordinate_type;
        typedef long double area_type;
        typedef long long manhattan_area_type;
        typedef unsigned long long unsigned_area_type;
        typedef long long coordinate_difference;
        typedef long double coordinate_distance;
    };
#endif

    template <>
    struct geometry_concept<Slic3r::Point> { typedef point_concept type; };
   
    template <>
    struct point_traits<Slic3r::Point> {
        typedef coord_t coordinate_type;
    
        static inline coordinate_type get(const Slic3r::Point& point, orientation_2d orient) {
            return (orient == HORIZONTAL) ? point.x : point.y;
        }
    };
    
    template <>
    struct point_mutable_traits<Slic3r::Point> {
        typedef coord_t coordinate_type;
        static inline void set(Slic3r::Point& point, orientation_2d orient, coord_t value) {
            if (orient == HORIZONTAL)
                point.x = value;
            else
                point.y = value;
        }
        static inline Slic3r::Point construct(coord_t x_value, coord_t y_value) {
            Slic3r::Point retval;
            retval.x = x_value;
            retval.y = y_value; 
            return retval;
        }
    };
} }
// end Boost

#endif