Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Polygon.cpp « libslic3r « src « xs - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 27f9a2ca1ee35348c0cc6c45119630dedff45abc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
#include "BoundingBox.hpp"
#include "ClipperUtils.hpp"
#include "Polygon.hpp"
#include "Polyline.hpp"

namespace Slic3r {

Polygon::operator Polygons() const
{
    Polygons pp;
    pp.push_back(*this);
    return pp;
}

Polygon::operator Polyline() const
{
    return this->split_at_first_point();
}

Point&
Polygon::operator[](Points::size_type idx)
{
    return this->points[idx];
}

const Point&
Polygon::operator[](Points::size_type idx) const
{
    return this->points[idx];
}

Point
Polygon::last_point() const
{
    return this->points.front();  // last point == first point for polygons
}

Lines Polygon::lines() const
{
    return to_lines(*this);
}

Polyline
Polygon::split_at_vertex(const Point &point) const
{
    // find index of point
    for (Points::const_iterator it = this->points.begin(); it != this->points.end(); ++it) {
        if (it->coincides_with(point)) {
            return this->split_at_index(it - this->points.begin());
        }
    }
    CONFESS("Point not found");
    return Polyline();
}

// Split a closed polygon into an open polyline, with the split point duplicated at both ends.
Polyline
Polygon::split_at_index(int index) const
{
    Polyline polyline;
    polyline.points.reserve(this->points.size() + 1);
    for (Points::const_iterator it = this->points.begin() + index; it != this->points.end(); ++it)
        polyline.points.push_back(*it);
    for (Points::const_iterator it = this->points.begin(); it != this->points.begin() + index + 1; ++it)
        polyline.points.push_back(*it);
    return polyline;
}

// Split a closed polygon into an open polyline, with the split point duplicated at both ends.
Polyline
Polygon::split_at_first_point() const
{
    return this->split_at_index(0);
}

Points
Polygon::equally_spaced_points(double distance) const
{
    return this->split_at_first_point().equally_spaced_points(distance);
}

/*
int64_t Polygon::area2x() const
{
    size_t n = poly.size();
    if (n < 3) 
        return 0;

    int64_t a = 0;
    for (size_t i = 0, j = n - 1; i < n; ++i)
        a += int64_t(poly[j].x + poly[i].x) * int64_t(poly[j].y - poly[i].y);
        j = i;
    }
    return -a * 0.5;
}
*/

double Polygon::area() const
{
    size_t n = points.size();
    if (n < 3) 
        return 0.;

    double a = 0.;
    for (size_t i = 0, j = n - 1; i < n; ++i) {
        a += double(points[j].x + points[i].x) * double(points[i].y - points[j].y);
        j = i;
    }
    return 0.5 * a;
}

bool
Polygon::is_counter_clockwise() const
{
    return ClipperLib::Orientation(Slic3rMultiPoint_to_ClipperPath(*this));
}

bool
Polygon::is_clockwise() const
{
    return !this->is_counter_clockwise();
}

bool
Polygon::make_counter_clockwise()
{
    if (!this->is_counter_clockwise()) {
        this->reverse();
        return true;
    }
    return false;
}

bool
Polygon::make_clockwise()
{
    if (this->is_counter_clockwise()) {
        this->reverse();
        return true;
    }
    return false;
}

bool
Polygon::is_valid() const
{
    return this->points.size() >= 3;
}

// Does an unoriented polygon contain a point?
// Tested by counting intersections along a horizontal line.
bool
Polygon::contains(const Point &point) const
{
    // http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
    bool result = false;
    Points::const_iterator i = this->points.begin();
    Points::const_iterator j = this->points.end() - 1;
    for (; i != this->points.end(); j = i++) {
        //FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point.y well.
        // Does the ray with y == point.y intersect this line segment?
#if 1
        if ( ((i->y > point.y) != (j->y > point.y))
            && ((double)point.x < (double)(j->x - i->x) * (double)(point.y - i->y) / (double)(j->y - i->y) + (double)i->x) )
            result = !result;
#else
        if ((i->y > point.y) != (j->y > point.y)) {
            // Orientation predicated relative to i-th point.
            double orient = (double)(point.x - i->x) * (double)(j->y - i->y) - (double)(point.y - i->y) * (double)(j->x - i->x);
            if ((i->y > j->y) ? (orient > 0.) : (orient < 0.))
                result = !result;
        }
#endif
    }
    return result;
}

// this only works on CCW polygons as CW will be ripped out by Clipper's simplify_polygons()
Polygons
Polygon::simplify(double tolerance) const
{
    // repeat first point at the end in order to apply Douglas-Peucker
    // on the whole polygon
    Points points = this->points;
    points.push_back(points.front());
    Polygon p(MultiPoint::_douglas_peucker(points, tolerance));
    p.points.pop_back();
    
    Polygons pp;
    pp.push_back(p);
    return simplify_polygons(pp);
}

void
Polygon::simplify(double tolerance, Polygons &polygons) const
{
    Polygons pp = this->simplify(tolerance);
    polygons.reserve(polygons.size() + pp.size());
    polygons.insert(polygons.end(), pp.begin(), pp.end());
}

// Only call this on convex polygons or it will return invalid results
void
Polygon::triangulate_convex(Polygons* polygons) const
{
    for (Points::const_iterator it = this->points.begin() + 2; it != this->points.end(); ++it) {
        Polygon p;
        p.points.reserve(3);
        p.points.push_back(this->points.front());
        p.points.push_back(*(it-1));
        p.points.push_back(*it);
        
        // this should be replaced with a more efficient call to a merge_collinear_segments() method
        if (p.area() > 0) polygons->push_back(p);
    }
}

// center of mass
Point
Polygon::centroid() const
{
    double area_temp = this->area();
    double x_temp = 0;
    double y_temp = 0;
    
    Polyline polyline = this->split_at_first_point();
    for (Points::const_iterator point = polyline.points.begin(); point != polyline.points.end() - 1; ++point) {
        x_temp += (double)( point->x + (point+1)->x ) * ( (double)point->x*(point+1)->y - (double)(point+1)->x*point->y );
        y_temp += (double)( point->y + (point+1)->y ) * ( (double)point->x*(point+1)->y - (double)(point+1)->x*point->y );
    }
    
    return Point(x_temp/(6*area_temp), y_temp/(6*area_temp));
}

std::string
Polygon::wkt() const
{
    std::ostringstream wkt;
    wkt << "POLYGON((";
    for (Points::const_iterator p = this->points.begin(); p != this->points.end(); ++p) {
        wkt << p->x << " " << p->y;
        if (p != this->points.end()-1) wkt << ",";
    }
    wkt << "))";
    return wkt.str();
}

// find all concave vertices (i.e. having an internal angle greater than the supplied angle)
// (external = right side, thus we consider ccw orientation)
Points
Polygon::concave_points(double angle) const
{
    Points points;
    angle = 2*PI - angle;
    
    // check whether first point forms a concave angle
    if (this->points.front().ccw_angle(this->points.back(), *(this->points.begin()+1)) <= angle)
        points.push_back(this->points.front());
    
    // check whether points 1..(n-1) form concave angles
    for (Points::const_iterator p = this->points.begin()+1; p != this->points.end()-1; ++p) {
        if (p->ccw_angle(*(p-1), *(p+1)) <= angle) points.push_back(*p);
    }
    
    // check whether last point forms a concave angle
    if (this->points.back().ccw_angle(*(this->points.end()-2), this->points.front()) <= angle)
        points.push_back(this->points.back());
    
    return points;
}

// find all convex vertices (i.e. having an internal angle smaller than the supplied angle)
// (external = right side, thus we consider ccw orientation)
Points
Polygon::convex_points(double angle) const
{
    Points points;
    angle = 2*PI - angle;
    
    // check whether first point forms a convex angle
    if (this->points.front().ccw_angle(this->points.back(), *(this->points.begin()+1)) >= angle)
        points.push_back(this->points.front());
    
    // check whether points 1..(n-1) form convex angles
    for (Points::const_iterator p = this->points.begin()+1; p != this->points.end()-1; ++p) {
        if (p->ccw_angle(*(p-1), *(p+1)) >= angle) points.push_back(*p);
    }
    
    // check whether last point forms a convex angle
    if (this->points.back().ccw_angle(*(this->points.end()-2), this->points.front()) >= angle)
        points.push_back(this->points.back());
    
    return points;
}

// Projection of a point onto the polygon.
Point Polygon::point_projection(const Point &point) const
{
    Point proj = point;
    double dmin = std::numeric_limits<double>::max();
    if (! this->points.empty()) {
        for (size_t i = 0; i < this->points.size(); ++ i) {
            const Point &pt0 = this->points[i];
            const Point &pt1 = this->points[(i + 1 == this->points.size()) ? 0 : i + 1];
            double d = pt0.distance_to(point);
            if (d < dmin) {
                dmin = d;
                proj = pt0;
            }
            d = pt1.distance_to(point);
            if (d < dmin) {
                dmin = d;
                proj = pt1;
            }
            Pointf v1(coordf_t(pt1.x - pt0.x), coordf_t(pt1.y - pt0.y));
            coordf_t div = dot(v1);
            if (div > 0.) {
                Pointf v2(coordf_t(point.x - pt0.x), coordf_t(point.y - pt0.y));
                coordf_t t = dot(v1, v2) / div;
                if (t > 0. && t < 1.) {
                    Point foot(coord_t(floor(coordf_t(pt0.x) + t * v1.x + 0.5)), coord_t(floor(coordf_t(pt0.y) + t * v1.y + 0.5)));
                    d = foot.distance_to(point);
                    if (d < dmin) {
                        dmin = d;
                        proj = foot;
                    }
                }
            }
        }
    }
    return proj;
}

BoundingBox get_extents(const Polygon &poly) 
{ 
    return poly.bounding_box();
}

BoundingBox get_extents(const Polygons &polygons)
{
    BoundingBox bb;
    if (! polygons.empty()) {
        bb = get_extents(polygons.front());
        for (size_t i = 1; i < polygons.size(); ++ i)
            bb.merge(get_extents(polygons[i]));
    }
    return bb;
}

BoundingBox get_extents_rotated(const Polygon &poly, double angle) 
{ 
    return get_extents_rotated(poly.points, angle);
}

BoundingBox get_extents_rotated(const Polygons &polygons, double angle)
{
    BoundingBox bb;
    if (! polygons.empty()) {
        bb = get_extents_rotated(polygons.front().points, angle);
        for (size_t i = 1; i < polygons.size(); ++ i)
            bb.merge(get_extents_rotated(polygons[i].points, angle));
    }
    return bb;
}

extern std::vector<BoundingBox> get_extents_vector(const Polygons &polygons)
{
    std::vector<BoundingBox> out;
    out.reserve(polygons.size());
    for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++ it)
        out.push_back(get_extents(*it));
    return out;
}

static inline bool is_stick(const Point &p1, const Point &p2, const Point &p3)
{
    Point v1 = p2 - p1;
    Point v2 = p3 - p2;
    int64_t dir = int64_t(v1.x) * int64_t(v2.x) + int64_t(v1.y) * int64_t(v2.y);
    if (dir > 0)
        // p3 does not turn back to p1. Do not remove p2.
        return false;
    double l2_1 = double(v1.x) * double(v1.x) + double(v1.y) * double(v1.y);
    double l2_2 = double(v2.x) * double(v2.x) + double(v2.y) * double(v2.y);
    if (dir == 0)
        // p1, p2, p3 may make a perpendicular corner, or there is a zero edge length.
        // Remove p2 if it is coincident with p1 or p2.
        return l2_1 == 0 || l2_2 == 0;
    // p3 turns back to p1 after p2. Are p1, p2, p3 collinear?
    // Calculate distance from p3 to a segment (p1, p2) or from p1 to a segment(p2, p3),
    // whichever segment is longer
    double cross = double(v1.x) * double(v2.y) - double(v2.x) * double(v1.y);
    double dist2 = cross * cross / std::max(l2_1, l2_2);
    return dist2 < EPSILON * EPSILON;
}

bool remove_sticks(Polygon &poly)
{
    bool modified = false;
    size_t j = 1;
    for (size_t i = 1; i + 1 < poly.points.size(); ++ i) {
        if (! is_stick(poly[j-1], poly[i], poly[i+1])) {
            // Keep the point.
            if (j < i)
                poly.points[j] = poly.points[i];
            ++ j;
        }
    }
    if (++ j < poly.points.size()) {
        poly.points[j-1] = poly.points.back();
        poly.points.erase(poly.points.begin() + j, poly.points.end());
        modified = true;
    }
    while (poly.points.size() >= 3 && is_stick(poly.points[poly.points.size()-2], poly.points.back(), poly.points.front())) {
        poly.points.pop_back();
        modified = true;
    }
    while (poly.points.size() >= 3 && is_stick(poly.points.back(), poly.points.front(), poly.points[1]))
        poly.points.erase(poly.points.begin());
    return modified;
}

bool remove_sticks(Polygons &polys)
{
    bool modified = false;
    size_t j = 0;
    for (size_t i = 0; i < polys.size(); ++ i) {
        modified |= remove_sticks(polys[i]);
        if (polys[i].points.size() >= 3) {
            if (j < i) 
                std::swap(polys[i].points, polys[j].points);
            ++ j;
        }
    }
    if (j < polys.size())
        polys.erase(polys.begin() + j, polys.end());
    return modified;
}

bool remove_degenerate(Polygons &polys)
{
    bool modified = false;
    size_t j = 0;
    for (size_t i = 0; i < polys.size(); ++ i) {
        if (polys[i].points.size() >= 3) {
            if (j < i) 
                std::swap(polys[i].points, polys[j].points);
            ++ j;
        } else
            modified = true;
    }
    if (j < polys.size())
        polys.erase(polys.begin() + j, polys.end());
    return modified;
}

bool remove_small(Polygons &polys, double min_area)
{
    bool modified = false;
    size_t j = 0;
    for (size_t i = 0; i < polys.size(); ++ i) {
        if (std::abs(polys[i].area()) >= min_area) {
            if (j < i) 
                std::swap(polys[i].points, polys[j].points);
            ++ j;
        } else
            modified = true;
    }
    if (j < polys.size())
        polys.erase(polys.begin() + j, polys.end());
    return modified;
}

}