Welcome to mirror list, hosted at ThFree Co, Russian Federation.

SupportMaterial.cpp « libslic3r « src « xs - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b99a50a9e42c5d57ec073c89683efb7053c5ede5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
#include "ClipperUtils.hpp"
#include "ExtrusionEntityCollection.hpp"
#include "PerimeterGenerator.hpp"
#include "Layer.hpp"
#include "Print.hpp"
#include "SupportMaterial.hpp"
#include "Fill/FillBase.hpp"
#include "EdgeGrid.hpp"

#include <cmath>
#include <memory>
#include <boost/log/trivial.hpp>
#include <unordered_set>

// #define SLIC3R_DEBUG

// Make assert active if SLIC3R_DEBUG
#ifdef SLIC3R_DEBUG
    #undef NDEBUG
    #include "SVG.hpp"
#endif

#include <cassert>

namespace Slic3r {

// Increment used to reach MARGIN in steps to avoid trespassing thin objects
#define NUM_MARGIN_STEPS 3

// Dimensions of a tree-like structure to save material
#define PILLAR_SIZE (2.5)
#define PILLAR_SPACING 10

//#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 3.
//#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 1.5
#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtSquare, 0.

#ifdef SLIC3R_DEBUG
const char* support_surface_type_to_color_name(const PrintObjectSupportMaterial::SupporLayerType surface_type)
{
    switch (surface_type) {
        case PrintObjectSupportMaterial::sltTopContact:     return "rgb(255,0,0)"; // "red";
        case PrintObjectSupportMaterial::sltTopInterface:   return "rgb(0,255,0)"; // "green";
        case PrintObjectSupportMaterial::sltBase:           return "rgb(0,0,255)"; // "blue";
        case PrintObjectSupportMaterial::sltBottomInterface:return "rgb(255,255,128)"; // yellow 
        case PrintObjectSupportMaterial::sltBottomContact:  return "rgb(255,0,255)"; // magenta
        case PrintObjectSupportMaterial::sltRaftInterface:  return "rgb(0,255,255)";
        case PrintObjectSupportMaterial::sltRaftBase:       return "rgb(128,128,128)";
        case PrintObjectSupportMaterial::sltUnknown:        return "rgb(128,0,0)"; // maroon
        default:                                            return "rgb(64,64,64)";
    };
}

Point export_support_surface_type_legend_to_svg_box_size()
{
    return Point(scale_(1.+10.*8.), scale_(3.)); 
}

void export_support_surface_type_legend_to_svg(SVG &svg, const Point &pos)
{
    // 1st row
    coord_t pos_x0 = pos.x + scale_(1.);
    coord_t pos_x = pos_x0;
    coord_t pos_y = pos.y + scale_(1.5);
    coord_t step_x = scale_(10.);
    svg.draw_legend(Point(pos_x, pos_y), "top contact"    , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltTopContact));
    pos_x += step_x;
    svg.draw_legend(Point(pos_x, pos_y), "top iface"      , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltTopInterface));
    pos_x += step_x;
    svg.draw_legend(Point(pos_x, pos_y), "base"           , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBase));
    pos_x += step_x;
    svg.draw_legend(Point(pos_x, pos_y), "bottom iface"   , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBottomInterface));
    pos_x += step_x;
    svg.draw_legend(Point(pos_x, pos_y), "bottom contact" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBottomContact));
    // 2nd row
    pos_x = pos_x0;
    pos_y = pos.y+scale_(2.8);
    svg.draw_legend(Point(pos_x, pos_y), "raft interface" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltRaftInterface));
    pos_x += step_x;
    svg.draw_legend(Point(pos_x, pos_y), "raft base"      , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltRaftBase));
    pos_x += step_x;
    svg.draw_legend(Point(pos_x, pos_y), "unknown"        , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltUnknown));
    pos_x += step_x;
    svg.draw_legend(Point(pos_x, pos_y), "intermediate"   , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltIntermediate));
}

void export_print_z_polygons_to_svg(const char *path, PrintObjectSupportMaterial::MyLayer ** const layers, size_t n_layers)
{
    BoundingBox bbox;
    for (int i = 0; i < n_layers; ++ i)
        bbox.merge(get_extents(layers[i]->polygons));
    Point legend_size = export_support_surface_type_legend_to_svg_box_size();
    Point legend_pos(bbox.min.x, bbox.max.y);
    bbox.merge(Point(std::max(bbox.min.x + legend_size.x, bbox.max.x), bbox.max.y + legend_size.y));
    SVG svg(path, bbox);
    const float transparency = 0.5f;
    for (int i = 0; i < n_layers; ++ i)
        svg.draw(union_ex(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type), transparency);
    for (int i = 0; i < n_layers; ++ i)
        svg.draw(to_lines(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type));
    export_support_surface_type_legend_to_svg(svg, legend_pos);
    svg.Close();
}
#endif /* SLIC3R_DEBUG */

PrintObjectSupportMaterial::PrintObjectSupportMaterial(const PrintObject *object, const SlicingParameters &slicing_params) :
    m_object                (object),
    m_print_config          (&object->print()->config),
    m_object_config         (&object->config),
    m_slicing_params        (slicing_params),

    m_first_layer_flow (Flow::new_from_config_width(
        frSupportMaterial,
        // The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution.
        (object->print()->config.first_layer_extrusion_width.value > 0) ? object->print()->config.first_layer_extrusion_width : object->config.support_material_extrusion_width,
        float(object->print()->config.nozzle_diameter.get_at(object->config.support_material_extruder-1)),
        float(slicing_params.first_print_layer_height),
        false)),
    m_support_material_flow (Flow::new_from_config_width(
        frSupportMaterial, 
        // The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution.
        (object->config.support_material_extrusion_width.value > 0) ? object->config.support_material_extrusion_width : object->config.extrusion_width,
        float(object->print()->config.nozzle_diameter.get_at(object->config.support_material_extruder-1)),
        float(slicing_params.layer_height),
        false)), 
    m_support_material_interface_flow(Flow::new_from_config_width(
        frSupportMaterialInterface,
        // The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution.
        (object->config.support_material_extrusion_width > 0) ? object->config.support_material_extrusion_width : object->config.extrusion_width,
        float(object->print()->config.nozzle_diameter.get_at(object->config.support_material_interface_extruder-1)),
        float(slicing_params.layer_height),
        false)),
 
    // 50 mirons layer
    m_support_layer_height_min  (0.05),
    m_support_layer_height_max  (0.)
{
    if (m_object_config->support_material_interface_layers.value == 0) {
        // No interface layers allowed, print everything with the base support pattern.
        m_support_material_interface_flow = m_support_material_flow;
    }

    // Evaluate the XY gap between the object outer perimeters and the support structures.
    coordf_t external_perimeter_width = 0.;
    for (std::map<size_t,std::vector<int>>::const_iterator it_region = object->region_volumes.begin(); it_region != object->region_volumes.end(); ++ it_region) {
        const PrintRegionConfig &config = object->print()->get_region(it_region->first)->config;
        coordf_t width = config.external_perimeter_extrusion_width.get_abs_value(slicing_params.layer_height);
        if (width <= 0.)
            width = m_print_config->nozzle_diameter.get_at(config.perimeter_extruder-1);
        external_perimeter_width = std::max(external_perimeter_width, width);
    }
    m_gap_xy = m_object_config->support_material_xy_spacing.get_abs_value(external_perimeter_width);
}

// Using the std::deque as an allocator.
inline PrintObjectSupportMaterial::MyLayer& layer_allocate(
    std::deque<PrintObjectSupportMaterial::MyLayer> &layer_storage, 
    PrintObjectSupportMaterial::SupporLayerType      layer_type)
{ 
    layer_storage.push_back(PrintObjectSupportMaterial::MyLayer());
    layer_storage.back().layer_type = layer_type;
    return layer_storage.back();
}

inline void layers_append(PrintObjectSupportMaterial::MyLayersPtr &dst, const PrintObjectSupportMaterial::MyLayersPtr &src)
{
    dst.insert(dst.end(), src.begin(), src.end());
}

// Compare layers lexicographically.
struct MyLayersPtrCompare
{
    bool operator()(const PrintObjectSupportMaterial::MyLayer* layer1, const PrintObjectSupportMaterial::MyLayer* layer2) const {
        return *layer1 < *layer2;
    }
};

void PrintObjectSupportMaterial::generate(PrintObject &object)
{
    BOOST_LOG_TRIVIAL(info) << "Support generator - Start";

    coordf_t max_object_layer_height = 0.;
    for (size_t i = 0; i < object.layer_count(); ++ i)
        max_object_layer_height = std::max(max_object_layer_height, object.layers[i]->height);

    if (m_support_layer_height_max == 0)
        m_support_layer_height_max = std::max(max_object_layer_height, 0.75 * m_support_material_flow.nozzle_diameter);
//  m_support_interface_layer_height_max = std::max(max_object_layer_height, 0.75 * m_support_material_interface_flow.nozzle_diameter);

    // Layer instances will be allocated by std::deque and they will be kept until the end of this function call.
    // The layers will be referenced by various LayersPtr (of type std::vector<Layer*>)
    MyLayerStorage layer_storage;

    BOOST_LOG_TRIVIAL(info) << "Support generator - Creating top contacts";

    // Determine the top contact surfaces of the support, defined as:
    // contact = overhangs - clearance + margin
    // This method is responsible for identifying what contact surfaces
    // should the support material expose to the object in order to guarantee
    // that it will be effective, regardless of how it's built below.
    // If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette without holes.
    MyLayersPtr top_contacts = this->top_contact_layers(object, layer_storage);
    if (top_contacts.empty())
        // Nothing is supported, no supports are generated.
        return;

#ifdef SLIC3R_DEBUG
    static int iRun = 0;
    iRun ++;
    for (MyLayersPtr::const_iterator it = top_contacts.begin(); it != top_contacts.end(); ++ it)
        Slic3r::SVG::export_expolygons(
            debug_out_path("support-top-contacts-%d-%lf.svg", iRun, (*it)->print_z), 
            union_ex((*it)->polygons, false));
#endif /* SLIC3R_DEBUG */

    BOOST_LOG_TRIVIAL(info) << "Support generator - Creating bottom contacts";

    // Determine the bottom contact surfaces of the supports over the top surfaces of the object.
    // Depending on whether the support is soluble or not, the contact layer thickness is decided.
    // layer_support_areas contains the per object layer support areas. These per object layer support areas
    // may get merged and trimmed by this->generate_base_layers() if the support layers are not synchronized with object layers.
    std::vector<Polygons> layer_support_areas;
    MyLayersPtr bottom_contacts = this->bottom_contact_layers_and_layer_support_areas(
        object, top_contacts, layer_storage,
        layer_support_areas);

#ifdef SLIC3R_DEBUG
    for (size_t layer_id = 0; layer_id < object.layers.size(); ++ layer_id)
        Slic3r::SVG::export_expolygons(
            debug_out_path("support-areas-%d-%lf.svg", iRun, object.layers[layer_id]->print_z), 
            union_ex(layer_support_areas[layer_id], false));
#endif /* SLIC3R_DEBUG */

    BOOST_LOG_TRIVIAL(info) << "Support generator - Trimming top contacts by bottom contacts";

    // Because the top and bottom contacts are thick slabs, they may overlap causing over extrusion 
    // and unwanted strong bonds to the object.
    // Rather trim the top contacts by their overlapping bottom contacts to leave a gap instead of over extruding
    // top contacts over the bottom contacts.
    this->trim_top_contacts_by_bottom_contacts(object, bottom_contacts, top_contacts);

    BOOST_LOG_TRIVIAL(info) << "Support generator - Creating intermediate layers - indices";

    // Allocate empty layers between the top / bottom support contact layers
    // as placeholders for the base and intermediate support layers.
    // The layers may or may not be synchronized with the object layers, depending on the configuration.
    // For example, a single nozzle multi material printing will need to generate a waste tower, which in turn
    // wastes less material, if there are as little tool changes as possible.
    MyLayersPtr intermediate_layers = this->raft_and_intermediate_support_layers(
        object, bottom_contacts, top_contacts, layer_storage, max_object_layer_height);

    this->trim_support_layers_by_object(object, top_contacts, m_support_layer_height_min, 0., m_gap_xy);

    BOOST_LOG_TRIVIAL(info) << "Support generator - Creating base layers";

    // Fill in intermediate layers between the top / bottom support contact layers, trimm them by the object.
    this->generate_base_layers(object, bottom_contacts, top_contacts, intermediate_layers, layer_support_areas);

#ifdef SLIC3R_DEBUG
    for (MyLayersPtr::const_iterator it = intermediate_layers.begin(); it != intermediate_layers.end(); ++ it)
        Slic3r::SVG::export_expolygons(
            debug_out_path("support-base-layers-%d-%lf.svg", iRun, (*it)->print_z), 
            union_ex((*it)->polygons, false));
#endif /* SLIC3R_DEBUG */

    BOOST_LOG_TRIVIAL(info) << "Support generator - Creating raft";

    // If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette with holes filled.
    // There is also a 1st intermediate layer containing bases of support columns.
    // Inflate the bases of the support columns and create the raft base under the object.
    MyLayersPtr raft_layers = this->generate_raft_base(object, top_contacts, intermediate_layers, layer_storage);

/*
    // If we wanted to apply some special logic to the first support layers lying on
    // object's top surfaces this is the place to detect them
    LayersSet shape;
    if (m_objectconfig->support_material_pattern.value == smpPillars)
        shape = this->generate_pillars_shape(contact, support_z);
*/

    BOOST_LOG_TRIVIAL(info) << "Support generator - Creating interfaces";

    // Propagate top / bottom contact layers to generate interface layers.
    MyLayersPtr interface_layers = this->generate_interface_layers(
        object, bottom_contacts, top_contacts, intermediate_layers, layer_storage);

#ifdef SLIC3R_DEBUG
    for (MyLayersPtr::const_iterator it = interface_layers.begin(); it != interface_layers.end(); ++ it)
        Slic3r::SVG::export_expolygons(
            debug_out_path("support-interface-layers-%d-%lf.svg", iRun, (*it)->print_z), 
            union_ex((*it)->polygons, false));
#endif /* SLIC3R_DEBUG */

/*
    // Clip with the pillars.
    if (! shape.empty()) {
        this->clip_with_shape(interface, shape);
        this->clip_with_shape(base, shape);
    }
*/

    BOOST_LOG_TRIVIAL(info) << "Support generator - Creating layers";

//    raft_layers.clear();
//    bottom_contacts.clear();
//    top_contacts.clear();
//    intermediate_layers.clear();
//    interface_layers.clear();

    // Install support layers into the object.
    // A support layer installed on a PrintObject has a unique print_z.
    MyLayersPtr layers_sorted;
    layers_sorted.reserve(raft_layers.size() + bottom_contacts.size() + top_contacts.size() + intermediate_layers.size() + interface_layers.size());
    layers_append(layers_sorted, raft_layers);
    layers_append(layers_sorted, bottom_contacts);
    layers_append(layers_sorted, top_contacts);
    layers_append(layers_sorted, intermediate_layers);
    layers_append(layers_sorted, interface_layers);
    // Sort the layers lexicographically by a raising print_z and a decreasing height.
    std::sort(layers_sorted.begin(), layers_sorted.end(), MyLayersPtrCompare());
    int layer_id = 0;
    assert(object.support_layers.empty());
    for (int i = 0; i < int(layers_sorted.size());) {
        // Find the last layer with roughly the same print_z, find the minimum layer height of all.
		// Due to the floating point inaccuracies, the print_z may not be the same even if in theory they should.
        int j = i + 1;
		coordf_t zmax = layers_sorted[i]->print_z + EPSILON;
		for (; j < layers_sorted.size() && layers_sorted[j]->print_z <= zmax; ++j) ;
		// Assign an average print_z to the set of layers with nearly equal print_z.
		coordf_t zavg = 0.5 * (layers_sorted[i]->print_z + layers_sorted[j - 1]->print_z);
		coordf_t height_min = layers_sorted[i]->height;
		for (int u = i; u < j; ++u) {
			MyLayer &layer = *layers_sorted[u];
			layer.print_z = zavg;
			height_min = std::min(height_min, layer.height);
		}
		object.add_support_layer(layer_id, height_min, zavg);
        if (layer_id > 0) {
            // Inter-link the support layers into a linked list.
            SupportLayer *sl1 = object.support_layers[object.support_layer_count()-2];
            SupportLayer *sl2 = object.support_layers.back();
            sl1->upper_layer = sl2;
            sl2->lower_layer = sl1;
        }
#ifdef SLIC3R_DEBUG
        export_print_z_polygons_to_svg(debug_out_path("support-%d-%lf.svg", iRun, zavg).c_str(), layers_sorted.data() + i, j - i);
#endif
        i = j;
        ++ layer_id;
    }
    
    BOOST_LOG_TRIVIAL(info) << "Support generator - Generating tool paths";

    // Generate the actual toolpaths and save them into each layer.
    this->generate_toolpaths(object, raft_layers, bottom_contacts, top_contacts, intermediate_layers, interface_layers);

    BOOST_LOG_TRIVIAL(info) << "Support generator - End";
}

// Collect all polygons of all regions in a layer with a given surface type.
Polygons collect_region_slices_by_type(const Layer &layer, SurfaceType surface_type)
{
    // 1) Count the new polygons first.
    size_t n_polygons_new = 0;
    for (LayerRegionPtrs::const_iterator it_region = layer.regions.begin(); it_region != layer.regions.end(); ++ it_region) {
        const LayerRegion       &region = *(*it_region);
        const SurfaceCollection &slices = region.slices;
        for (Surfaces::const_iterator it = slices.surfaces.begin(); it != slices.surfaces.end(); ++ it) {
            const Surface &surface = *it;
            if (surface.surface_type == surface_type)
                n_polygons_new += surface.expolygon.holes.size() + 1;
        }
    }

    // 2) Collect the new polygons.
    Polygons out;
    out.reserve(n_polygons_new);
    for (LayerRegionPtrs::const_iterator it_region = layer.regions.begin(); it_region != layer.regions.end(); ++ it_region) {
        const LayerRegion       &region = *(*it_region);
        const SurfaceCollection &slices = region.slices;
        for (Surfaces::const_iterator it = slices.surfaces.begin(); it != slices.surfaces.end(); ++ it) {
            const Surface &surface = *it;
            if (surface.surface_type == surface_type)
                polygons_append(out, surface.expolygon);
        }
    }

    return out;
}

// Collect outer contours of all slices of this layer.
// This is useful for calculating the support base with holes filled.
Polygons collect_slices_outer(const Layer &layer)
{
    Polygons out;
    out.reserve(out.size() + layer.slices.expolygons.size());
    for (ExPolygons::const_iterator it = layer.slices.expolygons.begin(); it != layer.slices.expolygons.end(); ++ it)
        out.push_back(it->contour);
    return out;
}

// Generate top contact layers supporting overhangs.
// For a soluble interface material synchronize the layer heights with the object, otherwise leave the layer height undefined.
// If supports over bed surface only are requested, don't generate contact layers over an object.
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_layers(
    const PrintObject &object, MyLayerStorage &layer_storage) const
{
#ifdef SLIC3R_DEBUG
    static int iRun = 0;
    ++ iRun; 
#endif /* SLIC3R_DEBUG */

    // Output layers, sorted by top Z.
    MyLayersPtr contact_out;

    // If user specified a custom angle threshold, convert it to radians.
    // Zero means automatic overhang detection.
    double threshold_rad = (m_object_config->support_material_threshold.value > 0) ? 
        M_PI * double(m_object_config->support_material_threshold.value + 1) / 180. : // +1 makes the threshold inclusive
        0.;
    
    // Build support on a build plate only? If so, then collect top surfaces into buildplate_only_top_surfaces
    // and subtract buildplate_only_top_surfaces from the contact surfaces, so
    // there is no contact surface supported by a top surface.
    bool buildplate_only = this->build_plate_only();
    Polygons buildplate_only_top_surfaces;

    // Determine top contact areas.
    // If generating raft only (no support), only calculate top contact areas for the 0th layer.
    size_t num_layers = this->has_support() ? object.layer_count() : 1;
    // If having a raft, start with 0th layer, otherwise with 1st layer.
    // Note that layer_id < layer->id when raft_layers > 0 as the layer->id incorporates the raft layers.
    // So layer_id == 0 means first object layer and layer->id == 0 means first print layer if there are no explicit raft layers.
    for (size_t layer_id = this->has_raft() ? 0 : 1; layer_id < num_layers; ++ layer_id) 
    {
        const Layer &layer = *object.layers[layer_id];

        // Detect overhangs and contact areas needed to support them.
        // Collect overhangs and contacts of all regions of this layer supported by the layer immediately below.
        Polygons overhang_polygons;
        Polygons contact_polygons;
        Polygons slices_margin_cached;
        float    slices_margin_cached_offset = -1.;
        if (layer_id == 0) {
            // This is the first object layer, so the object is being printed on a raft and
            // we're here just to get the object footprint for the raft.
            // We only consider contours and discard holes to get a more continuous raft.
            overhang_polygons = collect_slices_outer(layer);
            // Extend by SUPPORT_MATERIAL_MARGIN, which is 1.5mm
            contact_polygons = offset(overhang_polygons, scale_(SUPPORT_MATERIAL_MARGIN));
        } else {
            // Generate overhang / contact_polygons for non-raft layers.
            const Layer &lower_layer = *object.layers[layer_id-1];
            if (buildplate_only) {
                // Merge the new slices with the preceding slices.
                // Apply the safety offset to the newly added polygons, so they will connect
                // with the polygons collected before,
                // but don't apply the safety offset during the union operation as it would
                // inflate the polygons over and over.
                polygons_append(buildplate_only_top_surfaces, offset(lower_layer.slices.expolygons, scale_(0.01)));
                buildplate_only_top_surfaces = union_(buildplate_only_top_surfaces, false); // don't apply the safety offset.
            }

            for (LayerRegionPtrs::const_iterator it_layerm = layer.regions.begin(); it_layerm != layer.regions.end(); ++ it_layerm) {
                const LayerRegion &layerm = *(*it_layerm);
                // Extrusion width accounts for the roundings of the extrudates.
                // It is the maximum widh of the extrudate.
                float fw = float(layerm.flow(frExternalPerimeter).scaled_width());
                float lower_layer_offset = 
                    (layer_id < m_object_config->support_material_enforce_layers.value) ? 
                        // Enforce a full possible support, ignore the overhang angle.
                        0.f :
                    (threshold_rad > 0. ? 
                        // Overhang defined by an angle.
                        float(scale_(lower_layer.height / tan(threshold_rad))) :
                        // Overhang defined by half the extrusion width.
                        0.5f * fw);
                // Overhang polygons for this layer and region.
                Polygons diff_polygons;
                Polygons layerm_polygons = to_polygons(layerm.slices);
                Polygons lower_layer_polygons = to_polygons(lower_layer.slices.expolygons);
                if (lower_layer_offset == 0.f) {
                    // Support everything.
                    diff_polygons = diff(layerm_polygons, lower_layer_polygons);
                } else {
                    // Get the regions needing a suport, collapse very tiny spots.
                    //FIXME cache the lower layer offset if this layer has multiple regions.
                    diff_polygons = offset2(
                        diff(layerm_polygons,
                             offset(lower_layer_polygons, lower_layer_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS)), 
                        -0.1f*fw, +0.1f*fw);
                    if (diff_polygons.empty())
                        continue;
                    // Offset the support regions back to a full overhang, restrict them to the full overhang.
                    diff_polygons = diff(
                        intersection(offset(diff_polygons, lower_layer_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS), layerm_polygons), 
                        lower_layer_polygons);
                }
                if (diff_polygons.empty())
                    continue;

                #ifdef SLIC3R_DEBUG
                {
                    ::Slic3r::SVG svg(debug_out_path("support-top-contacts-raw-run%d-layer%d-region%d.svg", iRun, layer_id, it_layerm - layer.regions.begin()), get_extents(diff_polygons));
                    Slic3r::ExPolygons expolys = union_ex(diff_polygons, false);
                    svg.draw(expolys);
                }
                #endif /* SLIC3R_DEBUG */

                if (m_object_config->dont_support_bridges) {
                    // compute the area of bridging perimeters
                    // Note: this is duplicate code from GCode.pm, we need to refactor
                    if (true) {
                        Polygons bridged_perimeters;
                        {
                            Flow bridge_flow = layerm.flow(frPerimeter, true);
                            coordf_t nozzle_diameter = m_print_config->nozzle_diameter.get_at(layerm.region()->config.perimeter_extruder-1);
                            Polygons lower_grown_slices = offset(lower_layer_polygons, 0.5f*float(scale_(nozzle_diameter)), SUPPORT_SURFACES_OFFSET_PARAMETERS);
                            
                            // Collect perimeters of this layer.
                            // TODO: split_at_first_point() could split a bridge mid-way
                            Polylines overhang_perimeters;
                            for (ExtrusionEntitiesPtr::const_iterator it_island = layerm.perimeters.entities.begin(); it_island != layerm.perimeters.entities.end(); ++ it_island) {
                                const ExtrusionEntityCollection *island = dynamic_cast<ExtrusionEntityCollection*>(*it_island);
                                assert(island != NULL);
                                for (size_t i = 0; i < island->entities.size(); ++ i) {
                                    ExtrusionEntity *entity = island->entities[i];
                                    ExtrusionLoop *loop = dynamic_cast<Slic3r::ExtrusionLoop*>(entity);
                                    overhang_perimeters.push_back(loop ? 
                                        loop->as_polyline() :
                                        dynamic_cast<const Slic3r::ExtrusionPath*>(entity)->polyline);
                                }
                            }
                            
                            // workaround for Clipper bug, see Slic3r::Polygon::clip_as_polyline()
                            for (Polylines::iterator it = overhang_perimeters.begin(); it != overhang_perimeters.end(); ++ it)
                                it->points[0].x += 1;
                            // Trim the perimeters of this layer by the lower layer to get the unsupported pieces of perimeters.
                            overhang_perimeters = diff_pl(overhang_perimeters, lower_grown_slices);
                            
                            // only consider straight overhangs
                            // only consider overhangs having endpoints inside layer's slices
                            // convert bridging polylines into polygons by inflating them with their thickness
                            // since we're dealing with bridges, we can't assume width is larger than spacing,
                            // so we take the largest value and also apply safety offset to be ensure no gaps
                            // are left in between
                            float w = float(std::max(bridge_flow.scaled_width(), bridge_flow.scaled_spacing()));
                            for (Polylines::iterator it = overhang_perimeters.begin(); it != overhang_perimeters.end(); ++ it) {
                                if (it->is_straight()) {
                                    // This is a bridge 
                                    it->extend_start(fw);
                                    it->extend_end(fw);
                                    if (layer.slices.contains(it->first_point()) && layer.slices.contains(it->last_point()))
                                        // Offset a polyline into a polygon.
                                        polygons_append(bridged_perimeters, offset(*it, 0.5f * w + 10.f));
                                }
                            }
                            bridged_perimeters = union_(bridged_perimeters);
                        }
                        // remove the entire bridges and only support the unsupported edges
                        Polygons bridges;
                        for (Surfaces::const_iterator it = layerm.fill_surfaces.surfaces.begin(); it != layerm.fill_surfaces.surfaces.end(); ++ it)
                            if (it->surface_type == stBottomBridge && it->bridge_angle != -1)
                                polygons_append(bridges, it->expolygon);
                        diff_polygons = diff(diff_polygons, bridges, true);
                        polygons_append(bridges, bridged_perimeters);
                        polygons_append(diff_polygons, 
                            intersection(
                                // Offset unsupported edges into polygons.
                                offset(layerm.unsupported_bridge_edges.polylines, scale_(SUPPORT_MATERIAL_MARGIN), SUPPORT_SURFACES_OFFSET_PARAMETERS),
                                bridges));
                    } else {
                        // just remove bridged areas
                        diff_polygons = diff(diff_polygons, layerm.bridged, true);
                    }
                } // if (m_objconfig->dont_support_bridges)

                if (buildplate_only) {
                    // Don't support overhangs above the top surfaces.
                    // This step is done before the contact surface is calculated by growing the overhang region.
                    diff_polygons = diff(diff_polygons, buildplate_only_top_surfaces);
                }

                if (diff_polygons.empty())
                    continue;

                #ifdef SLIC3R_DEBUG
                Slic3r::SVG::export_expolygons(
                    debug_out_path("support-top-contacts-filtered-run%d-layer%d-region%d.svg", iRun, layer_id, it_layerm - layer.regions.begin()),
                    union_ex(diff_polygons, false));
                #endif /* SLIC3R_DEBUG */

                if (this->has_contact_loops())
                    polygons_append(overhang_polygons, diff_polygons);

                // Let's define the required contact area by using a max gap of half the upper 
                // extrusion width and extending the area according to the configured margin.
                // We increment the area in steps because we don't want our support to overflow
                // on the other side of the object (if it's very thin).
                {
                    //FIMXE 1) Make the offset configurable, 2) Make the Z span configurable.
                    float slices_margin_offset = float(0.5*fw);
                    if (slices_margin_cached_offset != slices_margin_offset) {
                        slices_margin_cached_offset = slices_margin_offset;
                        slices_margin_cached = offset(lower_layer.slices.expolygons, slices_margin_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS);
                        if (buildplate_only) {
                            // Trim the inflated contact surfaces by the top surfaces as well.
                            polygons_append(slices_margin_cached, buildplate_only_top_surfaces);
                            slices_margin_cached = union_(slices_margin_cached);
                        }
                    }
                    // Offset the contact polygons outside.
                    for (size_t i = 0; i < NUM_MARGIN_STEPS; ++ i) {
                        diff_polygons = diff(
                            offset(
                                diff_polygons,
                                SUPPORT_MATERIAL_MARGIN / NUM_MARGIN_STEPS,
                                ClipperLib::jtRound,
                                // round mitter limit
                                scale_(0.05)),
                            slices_margin_cached);
                    }
                }
                polygons_append(contact_polygons, diff_polygons);
            } // for each layer.region
        } // end of Generate overhang/contact_polygons for non-raft layers.
        
        // now apply the contact areas to the layer were they need to be made
        if (! contact_polygons.empty()) {
            // get the average nozzle diameter used on this layer
            MyLayer     &new_layer   = layer_allocate(layer_storage, sltTopContact);
            const Layer *layer_below = (layer_id > 0) ? object.layers[layer_id - 1] : NULL;
            new_layer.idx_object_layer_above = layer_id;
            if (m_slicing_params.soluble_interface) {
                // Align the contact surface height with a layer immediately below the supported layer.
                new_layer.height = layer_below ? 
                    // Interface layer will be synchronized with the object.
                    object.layers[layer_id-1]->height : 
                    // Don't know the thickness of the raft layer yet.
                    0.;
                new_layer.print_z = layer.print_z - layer.height;
                new_layer.bottom_z = new_layer.print_z - new_layer.height;
            } else {
                // Contact layer will be printed with a normal flow, but
                // it will support layers printed with a bridging flow.
                //FIXME Probably printing with the bridge flow? How about the unsupported perimeters? Are they printed with the bridging flow?
                // In the future we may switch to a normal extrusion flow for the supported bridges.
                // Get the average nozzle diameter used on this layer.
                coordf_t nozzle_dmr = 0.;
                size_t   n_nozzle_dmrs = 0;
                for (LayerRegionPtrs::const_iterator it_region_ptr = layer.regions.begin(); it_region_ptr != layer.regions.end(); ++ it_region_ptr) {
                    const PrintRegion &region = *(*it_region_ptr)->region();
                    nozzle_dmr += m_print_config->nozzle_diameter.get_at(region.config.perimeter_extruder.value - 1);
                    nozzle_dmr += m_print_config->nozzle_diameter.get_at(region.config.infill_extruder.value - 1);
                    nozzle_dmr += m_print_config->nozzle_diameter.get_at(region.config.solid_infill_extruder.value - 1);
                    n_nozzle_dmrs += 3;
                }
                nozzle_dmr /= coordf_t(n_nozzle_dmrs);
                new_layer.print_z  = layer.print_z - nozzle_dmr - m_object_config->support_material_contact_distance;
                new_layer.bottom_z = new_layer.print_z;
                new_layer.height   = 0.;
                if (this->synchronize_layers()) {
                    // Align bottom of this layer with a top of the closest object layer
                    // while not trespassing into the 1st layer and keeping the support layer thickness bounded.
                    int layer_id_below = int(layer_id) - 1;
                    for (; layer_id_below >= 0; -- layer_id_below) {
                        layer_below = object.layers[layer_id_below];
                        if (layer_below->print_z <= new_layer.print_z - m_support_layer_height_min) {
                            // This is a feasible support layer height.
                            new_layer.bottom_z = layer_below->print_z;
                            new_layer.height = new_layer.print_z - new_layer.bottom_z;
                            assert(new_layer.height <= m_support_layer_height_max);
                            break;
                        }                        
                    }
                    if (layer_id_below == -1) {
                        // Could not align with any of the top surfaces of object layers.
                        if (this->has_raft()) {
                            // If having a raft, all the other layers will be aligned one with the other.
                        } else {
                            // Give up, ignore this layer.
                            continue;
                        }
                    }
                } else {
                    // Don't know the height of the top contact layer yet. The top contact layer is printed with a normal flow and 
                    // its height will be set adaptively later on.
                }
            }

            // Ignore this contact area if it's too low.
            // Don't want to print a layer below the first layer height as it may not stick well.
            //FIXME there may be a need for a single layer support, then one may decide to print it either as a bottom contact or a top contact
            // and it may actually make sense to do it with a thinner layer than the first layer height.
            if (new_layer.print_z < this->first_layer_height() + m_support_layer_height_min)
                continue;

#if 1
            {
                // Create an EdgeGrid, initialize it with projection, initialize signed distance field.
                Slic3r::EdgeGrid::Grid grid;
                coordf_t support_spacing = m_object_config->support_material_spacing.value + m_support_material_flow.spacing();
                coord_t grid_resolution = scale_(support_spacing); // scale_(1.5f);
                BoundingBox bbox = get_extents(contact_polygons);
                bbox.offset(20);
                bbox.align_to_grid(grid_resolution);
                grid.set_bbox(bbox);
                grid.create(contact_polygons, grid_resolution);
                grid.calculate_sdf();
                // Extract a bounding contour from the grid, trim by the object.
                contact_polygons = diff(
                    grid.contours_simplified(m_support_material_flow.scaled_spacing()/2 + 5),
                    slices_margin_cached,
                    true);
            }
#endif

            new_layer.polygons = std::move(contact_polygons);
            // Store the overhang polygons as the aux_polygons.
            // The overhang polygons are used in the path generator for planning of the contact loops.
            // if (this->has_contact_loops())
            new_layer.aux_polygons = new Polygons(std::move(overhang_polygons));
            contact_out.push_back(&new_layer);

            if (0) { 
                // Slic3r::SVG::output("out\\contact_" . $contact_z . ".svg",
                //     green_expolygons => union_ex($buildplate_only_top_surfaces),
                //     blue_expolygons  => union_ex(\@contact),
                //     red_expolygons   => union_ex(\@overhang),
                // );
            }
        }
    }

    return contact_out;
}

// Generate bottom contact layers supporting the top contact layers.
// For a soluble interface material synchronize the layer heights with the object, 
// otherwise set the layer height to a bridging flow of a support interface nozzle.
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::bottom_contact_layers_and_layer_support_areas(
    const PrintObject &object, const MyLayersPtr &top_contacts, MyLayerStorage &layer_storage,
    std::vector<Polygons> &layer_support_areas) const
{
#ifdef SLIC3R_DEBUG
    static int iRun = 0;
    ++ iRun; 
#endif /* SLIC3R_DEBUG */

    // Allocate empty surface areas, one per object layer.
    layer_support_areas.assign(object.total_layer_count(), Polygons());

    // find object top surfaces
    // we'll use them to clip our support and detect where does it stick
    MyLayersPtr bottom_contacts;

    if (! top_contacts.empty()) 
    {
        // There is some support to be built, if there are non-empty top surfaces detected.
        // Sum of unsupported contact areas above the current layer.print_z.
        Polygons  projection;
        // Last top contact layer visited when collecting the projection of contact areas.
        int       contact_idx = int(top_contacts.size()) - 1;
        for (int layer_id = int(object.total_layer_count()) - 2; layer_id >= 0; -- layer_id) {
            BOOST_LOG_TRIVIAL(trace) << "Support generator - bottom_contact_layers - layer " << layer_id;
            const Layer &layer = *object.get_layer(layer_id);
            // Top surfaces of this layer, to be used to stop the surface volume from growing down.
            Polygons top;
            if (! m_object_config->support_material_buildplate_only)
                top = collect_region_slices_by_type(layer, stTop);
            // Collect projections of all contact areas above or at the same level as this top surface.
            for (; contact_idx >= 0 && top_contacts[contact_idx]->print_z >= layer.print_z; -- contact_idx) {
                Polygons polygons_new;
                // Contact surfaces are expanded away from the object, trimmed by the object.
                // Use a slight positive offset to overlap the touching regions.
                polygons_append(polygons_new, offset(top_contacts[contact_idx]->polygons, SCALED_EPSILON));
                // These are the overhang surfaces. They are touching the object and they are not expanded away from the object.
                // Use a slight positive offset to overlap the touching regions.
                polygons_append(polygons_new, offset(*top_contacts[contact_idx]->aux_polygons, SCALED_EPSILON));
                polygons_append(projection, union_(polygons_new));
            }
            if (projection.empty())
                continue;
            projection = union_(projection);
    #ifdef SLIC3R_DEBUG
            {
                BoundingBox bbox = get_extents(projection);
                bbox.merge(get_extents(top));
                ::Slic3r::SVG svg(debug_out_path("support-bottom-layers-raw-%d-%lf.svg", iRun, layer.print_z), bbox);
                svg.draw(union_ex(top, false), "blue", 0.5f);
                svg.draw(union_ex(projection, true), "red", 0.5f);
                svg.draw_outline(union_ex(projection, true), "red", "blue", scale_(0.1f));
                svg.draw(layer.slices.expolygons, "green", 0.5f);
            }
    #endif /* SLIC3R_DEBUG */

            // Now find whether any projection of the contact surfaces above layer.print_z not yet supported by any 
            // top surfaces above layer.print_z falls onto this top surface. 
            // Touching are the contact surfaces supported exclusively by this top surfaces.
            // Don't use a safety offset as it has been applied during insertion of polygons.
            if (! top.empty()) {
                Polygons touching = intersection(top, projection, false);
                if (! touching.empty()) {
                    // Allocate a new bottom contact layer.
                    MyLayer &layer_new = layer_allocate(layer_storage, sltBottomContact);
                    bottom_contacts.push_back(&layer_new);
                    // Grow top surfaces so that interface and support generation are generated
                    // with some spacing from object - it looks we don't need the actual
                    // top shapes so this can be done here
                    layer_new.height  = m_slicing_params.soluble_interface ? 
                        // Align the interface layer with the object's layer height.
                        object.get_layer(layer_id + 1)->height :
                        // Place a bridge flow interface layer over the top surface.
                        m_support_material_interface_flow.nozzle_diameter;
                    layer_new.print_z = layer.print_z + layer_new.height + 
                        (m_slicing_params.soluble_interface ? 0. : m_object_config->support_material_contact_distance.value);
                    layer_new.bottom_z = layer.print_z;
                    layer_new.idx_object_layer_below = layer_id;
                    layer_new.bridging = ! m_slicing_params.soluble_interface;
                    //FIXME how much to inflate the top surface?
                    layer_new.polygons = offset(touching, float(m_support_material_flow.scaled_width()), SUPPORT_SURFACES_OFFSET_PARAMETERS);
        #ifdef SLIC3R_DEBUG
                    Slic3r::SVG::export_expolygons(
                        debug_out_path("support-bottom-contacts-%d-%lf.svg", iRun, layer_new.print_z), 
                        union_ex(layer_new.polygons, false));
        #endif /* SLIC3R_DEBUG */
                }
            } // ! top.empty()

            remove_sticks(projection);
            remove_degenerate(projection);

            // Create an EdgeGrid, initialize it with projection, initialize signed distance field.
            Slic3r::EdgeGrid::Grid grid;
            coordf_t support_spacing = m_object_config->support_material_spacing.value + m_support_material_flow.spacing();
            coord_t grid_resolution = scale_(support_spacing); // scale_(1.5f);
            BoundingBox bbox = get_extents(projection);
            bbox.offset(20);
            bbox.align_to_grid(grid_resolution);
			grid.set_bbox(bbox);
			grid.create(projection, grid_resolution);
            grid.calculate_sdf();

            // Extract a bounding contour from the grid.
            Polygons projection_simplified = grid.contours_simplified(-5);
#ifdef SLIC3R_DEBUG
            {
                BoundingBox bbox = get_extents(projection);
                bbox.merge(get_extents(projection_simplified));
                ::Slic3r::SVG svg(debug_out_path("support-bottom-contacts-simplified-%d-%d.svg", iRun, layer_id), bbox);
                svg.draw(union_ex(projection, false), "blue", 0.5);
                svg.draw(union_ex(projection_simplified, false), "red", 0.5);
    #ifdef SLIC3R_GUI
                bbox.min.x -= scale_(5.f);
                bbox.min.y -= scale_(5.f);
                bbox.max.x += scale_(5.f);
                bbox.max.y += scale_(5.f);
                EdgeGrid::save_png(grid, bbox, scale_(0.1f), debug_out_path("support-bottom-contacts-df-%d-%d.png", iRun, layer_id).c_str());
    #endif /* SLIC3R_GUI */
            }
#endif /* SLIC3R_DEBUG */
            // Cache the slice of a support volume. The support volume is expanded by 1/2 of support material flow spacing
            // to allow a placement of suppot zig-zag snake along the grid lines.
            layer_support_areas[layer_id] = diff(
                grid.contours_simplified(m_support_material_flow.scaled_spacing()/2 + 5), 
                to_polygons(layer.slices.expolygons),
                true);

            // Remove the areas that touched from the projection that will continue on next, lower, top surfaces.
            // projection = diff(projection, touching);
            projection = diff(projection_simplified, to_polygons(layer.slices.expolygons), true);
//            layer_support_areas[layer_id] = projection;
        }
        std::reverse(bottom_contacts.begin(), bottom_contacts.end());
    } // ! top_contacts.empty()

    trim_support_layers_by_object(object, bottom_contacts, m_support_layer_height_min, 0., m_gap_xy);

    return bottom_contacts;
}

// Trim the top_contacts layers with the bottom_contacts layers if they overlap, so there would not be enough vertical space for both of them.
void PrintObjectSupportMaterial::trim_top_contacts_by_bottom_contacts(
    const PrintObject &object, const MyLayersPtr &bottom_contacts, MyLayersPtr &top_contacts) const
{
    size_t idx_top_first = 0;
    // For all bottom contact layers:
    for (size_t idx_bottom = 0; idx_bottom < bottom_contacts.size() && idx_top_first < top_contacts.size(); ++ idx_bottom) {
        const MyLayer &layer_bottom = *bottom_contacts[idx_bottom];
        // Find the first top layer overlapping with layer_bottom.
        while (idx_top_first < top_contacts.size() && top_contacts[idx_top_first]->print_z <= layer_bottom.print_z - layer_bottom.height)
            ++ idx_top_first;
        // For all top contact layers overlapping with the thick bottom contact layer:
        for (size_t idx_top = idx_top_first; idx_top < top_contacts.size(); ++ idx_top) {
            MyLayer &layer_top = *top_contacts[idx_top];
            coordf_t interface_z = (layer_top.print_z == layer_top.bottom_z) ? 
                // Layer height has not been decided yet.
                (layer_top.bottom_z - m_support_layer_height_min) :
                // Layer height has already been assigned.
                (layer_top.bottom_z + EPSILON);
            if (interface_z < layer_bottom.print_z) {
                // Layers overlap. Trim layer_top with layer_bottom.
                layer_top.polygons = diff(layer_top.polygons, layer_bottom.polygons);
            } else
                break;
        }
    }
}

// A helper for sorting the top / bottom contact layers by their contact with the touching support layer:
// Top contact surfaces (those supporting overhangs) are sorted by their bottom print Z,
// bottom contact surfaces (those supported by top object surfaces) are sorted by their top print Z.
struct LayerExtreme
{
    LayerExtreme(PrintObjectSupportMaterial::MyLayer *alayer, bool ais_top) : layer(alayer), is_top(ais_top) {}
    PrintObjectSupportMaterial::MyLayer  *layer;
    // top or bottom extreme
    bool         is_top;

    coordf_t    z() const { return is_top ? layer->print_z : layer->print_z - layer->height; }

    bool operator<(const LayerExtreme &other) const { return z() < other.z(); }
};

PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::raft_and_intermediate_support_layers(
    const PrintObject   &object,
    const MyLayersPtr   &bottom_contacts,
    const MyLayersPtr   &top_contacts,
    MyLayerStorage      &layer_storage,
    const coordf_t       max_object_layer_height) const
{
    MyLayersPtr intermediate_layers;

    // Collect and sort the extremes (bottoms of the top contacts and tops of the bottom contacts).
    std::vector<LayerExtreme> extremes;
    extremes.reserve(top_contacts.size() + bottom_contacts.size());
    for (size_t i = 0; i < top_contacts.size(); ++ i)
        // Bottoms of the top contact layers. In case of non-soluble supports,
        // the top contact layer thickness is not known yet.
        extremes.push_back(LayerExtreme(top_contacts[i], false));
    for (size_t i = 0; i < bottom_contacts.size(); ++ i)
        // Tops of the bottom contact layers.
        extremes.push_back(LayerExtreme(bottom_contacts[i], true));
    if (extremes.empty())
        return intermediate_layers;
    std::sort(extremes.begin(), extremes.end());

	assert(extremes.front().z() > m_slicing_params.raft_interface_top_z && extremes.front().z() >= m_slicing_params.first_print_layer_height);

    bool synchronize = m_slicing_params.soluble_interface || this->synchronize_layers();

    // Generate intermediate layers.
    // The first intermediate layer is the same as the 1st layer if there is no raft,
    // or the bottom of the first intermediate layer is aligned with the bottom of the raft contact layer.
    // Intermediate layers are always printed with a normal etrusion flow (non-bridging).
    size_t idx_layer_object = 0;
    for (size_t idx_extreme = 0; idx_extreme < extremes.size(); ++ idx_extreme) {
        LayerExtreme *extr1  = (idx_extreme == 0) ? NULL : &extremes[idx_extreme-1];
        coordf_t      extr1z = (extr1 == NULL) ? m_slicing_params.raft_interface_top_z : extr1->z();
        LayerExtreme &extr2  = extremes[idx_extreme];
        coordf_t      extr2z = extr2.z();
        coordf_t      dist   = extr2z - extr1z;
        assert(dist >= 0.);
		if (dist == 0.)
			continue;
        // Insert intermediate layers.
        size_t        n_layers_extra = size_t(ceil(dist / m_support_layer_height_max));
        assert(n_layers_extra > 0);
        coordf_t      step   = dist / coordf_t(n_layers_extra);
        if (! synchronize && extr2.layer->layer_type == sltTopContact) {
            // This is a top interface layer, which does not have a height assigned yet. Do it now.
            assert(extr2.layer->height == 0.);
            extr2.layer->height = step;
            extr2.layer->bottom_z = extr2z = extr2.layer->print_z - step;
            -- n_layers_extra;
            if (extr2.layer->bottom_z < this->first_layer_height()) {
                // Split the span into two layers: the top layer up to the first layer height, 
                // and the new intermediate layer below.
                // 1) Adjust the bottom of this top layer.
                assert(n_layers_extra == 0);
                extr2.layer->bottom_z = extr2z = this->first_layer_height();
                extr2.layer->height = extr2.layer->print_z - extr2.layer->bottom_z;
                // 2) Insert a new intermediate layer.
                MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
                layer_new.bottom_z   = extr1z;
                layer_new.print_z    = this->first_layer_height();
                layer_new.height     = layer_new.print_z - layer_new.bottom_z;
                intermediate_layers.push_back(&layer_new);
                continue;
            }
        } else if (extr1z + step < this->first_layer_height()) {
            MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
            layer_new.bottom_z   = extr1z;
            layer_new.print_z    = extr1z = this->first_layer_height();
            layer_new.height     = layer_new.print_z - layer_new.bottom_z;
            intermediate_layers.push_back(&layer_new);
            dist = extr2z - extr1z;
            assert(dist >= 0.);
            n_layers_extra = size_t(ceil(dist / m_support_layer_height_max));
            step = dist / coordf_t(n_layers_extra);
        }
        coordf_t extr2z_large_steps = extr2z;
        if (synchronize) {
            // Synchronize support layers with the object layers.
            if (object.layers.front()->print_z - extr1z > m_support_layer_height_max) {
                // Generate the initial couple of layers before reaching the 1st object layer print_z level.
                extr2z_large_steps = object.layers.front()->print_z;
                dist = extr2z_large_steps - extr1z;
                assert(dist >= 0.);
                n_layers_extra = size_t(ceil(dist / m_support_layer_height_max));
                step = dist / coordf_t(n_layers_extra);
            }
        }
        // Take the largest allowed step in the Z axis until extr2z_large_steps is reached.
        for (size_t i = 0; i < n_layers_extra; ++ i) {
            MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
			if (i + 1 == n_layers_extra) {
				// Last intermediate layer added. Align the last entered layer with extr2z_large_steps exactly.
				layer_new.bottom_z = (i == 0) ? extr1z : intermediate_layers.back()->print_z;
				layer_new.print_z = extr2z_large_steps;
				layer_new.height = layer_new.print_z - layer_new.bottom_z;
			}
			else {
				// Intermediate layer, not the last added.
				layer_new.height = step;
				layer_new.bottom_z = extr1z + i * step;
				layer_new.print_z = layer_new.bottom_z + step;
			}
            intermediate_layers.push_back(&layer_new);
        }
        if (synchronize) {
            // Emit support layers synchronized with object layers.
            extr1z = extr2z_large_steps;
            while (extr1z < extr2z) {
                //while (idx_layer_object < object.layers.size() && object.layers[idx_layer_object].print_z < extr1z)
                // idx_layer_object
            }
        }
    }

#ifdef _DEBUG
	for (size_t i = 0; i < top_contacts.size(); ++i)
		assert(top_contacts[i]->height > 0.);
#endif /* _DEBUG */

    return intermediate_layers;
}

// At this stage there shall be intermediate_layers allocated between bottom_contacts and top_contacts, but they have no polygons assigned.
// Also the bottom/top_contacts shall have a layer thickness assigned already.
void PrintObjectSupportMaterial::generate_base_layers(
    const PrintObject   &object,
    const MyLayersPtr   &bottom_contacts,
    const MyLayersPtr   &top_contacts,
    MyLayersPtr         &intermediate_layers,
    std::vector<Polygons> &layer_support_areas) const
{
#ifdef SLIC3R_DEBUG
    static int iRun = 0;
#endif /* SLIC3R_DEBUG */

    if (top_contacts.empty())
        // No top contacts -> no intermediate layers will be produced.
        return;

    // coordf_t fillet_radius_scaled = scale_(m_object_config->support_material_spacing);
    int idx_top_contact_above = int(top_contacts.size()) - 1;
    int idx_bottom_contact_overlapping = int(bottom_contacts.size()) - 1;
    int idx_object_layer_above = int(object.total_layer_count()) - 1;
    for (int idx_intermediate = int(intermediate_layers.size()) - 1; idx_intermediate >= 0; -- idx_intermediate)
    {
        BOOST_LOG_TRIVIAL(trace) << "Support generator - generate_base_layers - creating layer " << 
            idx_intermediate << " of " << intermediate_layers.size();
        MyLayer &layer_intermediate = *intermediate_layers[idx_intermediate];

        // Find a top_contact layer touching the layer_intermediate from above, if any, and collect its polygons into polygons_new.
        while (idx_top_contact_above >= 0 && top_contacts[idx_top_contact_above]->bottom_z > layer_intermediate.print_z + EPSILON)
            -- idx_top_contact_above;

        // New polygons for layer_intermediate.
        Polygons polygons_new;

        // Use the precomputed layer_support_areas.
        while (idx_object_layer_above > 0 && object.get_layer(idx_object_layer_above - 1)->print_z > layer_intermediate.print_z - EPSILON)
            -- idx_object_layer_above;
        polygons_new = layer_support_areas[idx_object_layer_above];

        // Polygons to trim polygons_new.
        Polygons polygons_trimming; 

        // Find the first top_contact layer intersecting with this layer.
        int idx_top_contact_overlapping = idx_top_contact_above;
        while (idx_top_contact_overlapping >= 0 && 
               top_contacts[idx_top_contact_overlapping]->bottom_z > layer_intermediate.print_z - EPSILON)
            -- idx_top_contact_overlapping;
        // Collect all the top_contact layer intersecting with this layer.
        for (; idx_top_contact_overlapping >= 0; -- idx_top_contact_overlapping) {
			MyLayer &layer_top_overlapping = *top_contacts[idx_top_contact_overlapping];
            if (layer_top_overlapping.print_z < layer_intermediate.bottom_z + EPSILON)
                break;
            polygons_append(polygons_trimming, layer_top_overlapping.polygons);
        }

        // Find the first bottom_contact layer intersecting with this layer.
        while (idx_bottom_contact_overlapping >= 0 && 
            bottom_contacts[idx_bottom_contact_overlapping]->bottom_z > layer_intermediate.print_z - EPSILON)
            -- idx_bottom_contact_overlapping;
        // Collect all the top_contact layer intersecting with this layer.
        for (int i = idx_bottom_contact_overlapping; i >= 0; -- i) {
			MyLayer &layer_bottom_overlapping = *bottom_contacts[i];
            if (layer_bottom_overlapping.print_z < layer_intermediate.print_z - layer_intermediate.height + EPSILON)
                break; 
            polygons_append(polygons_trimming, layer_bottom_overlapping.polygons);
        }

#ifdef SLIC3R_DEBUG
        {
            BoundingBox bbox = get_extents(polygons_new);
            bbox.merge(get_extents(polygons_trimming));
            ::Slic3r::SVG svg(debug_out_path("support-intermediate-layers-raw-%d-%lf.svg", iRun, layer_intermediate.print_z), bbox);
            svg.draw(union_ex(polygons_new, false), "blue", 0.5f);
            svg.draw(union_ex(polygons_trimming, true), "red", 0.5f);
        }
#endif /* SLIC3R_DEBUG */

        // Trim the polygons, store them.
        if (polygons_trimming.empty())
            layer_intermediate.polygons = std::move(polygons_new);
        else
			layer_intermediate.polygons = diff(
                polygons_new,
                polygons_trimming,
                true); // safety offset to merge the touching source polygons
        layer_intermediate.layer_type = sltBase;

/*
        if (0) {
            // Fillet the base polygons and trim them again with the top, interface and contact layers.
            $base->{$i} = diff(
                offset2(
                    $base->{$i}, 
                    $fillet_radius_scaled, 
                    -$fillet_radius_scaled,
                    # Use a geometric offsetting for filleting.
                    JT_ROUND,
                    0.2*$fillet_radius_scaled),
                $trim_polygons,
                false); // don't apply the safety offset.
        }
*/
    }
 
#ifdef SLIC3R_DEBUG
	for (MyLayersPtr::const_iterator it = intermediate_layers.begin(); it != intermediate_layers.end(); ++it)
        ::Slic3r::SVG::export_expolygons(
            debug_out_path("support-intermediate-layers-untrimmed-%d-%lf.svg", iRun, (*it)->print_z),
            union_ex((*it)->polygons, false));
    ++ iRun;
#endif /* SLIC3R_DEBUG */

    trim_support_layers_by_object(object, intermediate_layers, m_support_layer_height_min, m_support_layer_height_min, m_gap_xy);
}

void PrintObjectSupportMaterial::trim_support_layers_by_object(
    const PrintObject   &object,
    MyLayersPtr         &support_layers,
    const coordf_t       gap_extra_above,
    const coordf_t       gap_extra_below,
    const coordf_t       gap_xy) const
{
    //FIXME This could be trivially parallelized.
    const coord_t  gap_xy_scaled = scale_(gap_xy);
    size_t idx_object_layer_overlapping = 0;
    // For all intermediate support layers:
    for (MyLayersPtr::iterator it_layer = support_layers.begin(); it_layer != support_layers.end(); ++ it_layer) {
        BOOST_LOG_TRIVIAL(trace) << "Support generator - trim_support_layers_by_object - trimmming layer " << 
            (it_layer - support_layers.begin()) << " of " << support_layers.size();

        MyLayer &support_layer = *(*it_layer);
        if (support_layer.polygons.empty())
            // Empty support layer, nothing to trim.
            continue;
        // Find the overlapping object layers including the extra above / below gap.
        while (idx_object_layer_overlapping < object.layer_count() && 
            object.get_layer(idx_object_layer_overlapping)->print_z < support_layer.print_z - support_layer.height - gap_extra_below + EPSILON)
            ++ idx_object_layer_overlapping;
        // Collect all the object layers intersecting with this layer.
        Polygons polygons_trimming;
        for (int i = idx_object_layer_overlapping; i < object.layer_count(); ++ i) {
            const Layer &object_layer = *object.get_layer(i);
            if (object_layer.print_z - object_layer.height > support_layer.print_z + gap_extra_above - EPSILON)
                break;
            polygons_append(polygons_trimming, (Polygons)object_layer.slices);
        }

        // $layer->slices contains the full shape of layer, thus including
        // perimeter's width. $support contains the full shape of support
        // material, thus including the width of its foremost extrusion.
        // We leave a gap equal to a full extrusion width.
        support_layer.polygons = diff(
            support_layer.polygons,
            offset(polygons_trimming, gap_xy_scaled, SUPPORT_SURFACES_OFFSET_PARAMETERS));
    }
}

PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_raft_base(
    const PrintObject   &object,
    const MyLayersPtr   &top_contacts,
    MyLayersPtr         &intermediate_layers,
    MyLayerStorage      &layer_storage) const
{
    // Areas covered by the raft, supporting the raft interface and the support columns.
    Polygons raft_polygons;
    // How much to inflate the support columns to be stable. This also applies to the 1st layer, if no raft layers are to be printed.
    const float inflate_factor = scale_(3.);
    MyLayer *contacts      = top_contacts.empty() ? nullptr : top_contacts.front();
    MyLayer *columns_base  = intermediate_layers.empty() ? nullptr : intermediate_layers.front();
	if (contacts != nullptr && contacts->print_z > m_slicing_params.raft_contact_top_z + EPSILON)
		// This is not the raft contact layer.
		contacts = nullptr;

	// Output vector.
    MyLayersPtr raft_layers;

    // Expand the 1st intermediate layer, which contains the bases of the support columns.
	Polygons base;
	if (columns_base != nullptr) {
		base = offset(columns_base->polygons, inflate_factor);
		// Modify the 1st intermediate layer with the expanded support columns.
		columns_base->polygons = diff(
			base,
			offset(m_object->layers.front()->slices.expolygons, scale_(m_gap_xy), SUPPORT_SURFACES_OFFSET_PARAMETERS));
		if (contacts != nullptr)
			columns_base->polygons = diff(columns_base->polygons, contacts->polygons);
	}
    if (m_slicing_params.has_raft() && contacts != nullptr) {
        // Merge the untrimmed columns base with the expanded raft interface, to be used for the support base and interface.
        base = union_(base, offset(contacts->polygons, inflate_factor, SUPPORT_SURFACES_OFFSET_PARAMETERS));
    }
	if (m_slicing_params.has_raft() && m_slicing_params.raft_layers() > 1 && ! base.empty()) {
        // Do not add the raft contact layer, only add the raft layers below the contact layer.
        // Insert the 1st layer.
        {
            MyLayer &new_layer = layer_allocate(layer_storage, (m_slicing_params.base_raft_layers > 0) ? sltRaftBase : sltRaftInterface);
            raft_layers.push_back(&new_layer);
            new_layer.print_z = m_slicing_params.first_print_layer_height;
            new_layer.height  = m_slicing_params.first_print_layer_height;
            new_layer.bottom_z = 0.;
			new_layer.polygons = base;
        }
        // Insert the base layers.
        for (size_t i = 1; i < m_slicing_params.base_raft_layers; ++ i) {
			coordf_t print_z = raft_layers.back()->print_z;
            MyLayer &new_layer  = layer_allocate(layer_storage, sltRaftBase);
            raft_layers.push_back(&new_layer);
			new_layer.print_z  = print_z + m_slicing_params.base_raft_layer_height;
            new_layer.height   = m_slicing_params.base_raft_layer_height;
			new_layer.bottom_z = print_z;
			new_layer.polygons = base;
		}
        // Insert the interface layers.
        for (size_t i = 1; i < m_slicing_params.interface_raft_layers; ++ i) {
			coordf_t print_z = raft_layers.back()->print_z;
			MyLayer &new_layer = layer_allocate(layer_storage, sltRaftInterface);
            raft_layers.push_back(&new_layer);
			new_layer.print_z = print_z + m_slicing_params.interface_raft_layer_height;
            new_layer.height  = m_slicing_params.interface_raft_layer_height;
			new_layer.bottom_z = print_z;
			new_layer.polygons = base;
		}
    }

    return raft_layers;
}

// Convert some of the intermediate layers into top/bottom interface layers.
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_interface_layers(
    const PrintObject   &object,
    const MyLayersPtr   &bottom_contacts,
    const MyLayersPtr   &top_contacts,
    MyLayersPtr         &intermediate_layers,
    MyLayerStorage      &layer_storage) const
{
    // Old comment:
    // Compute interface area on this layer as diff of upper contact area
    // (or upper interface area) and layer slices.
    // This diff is responsible of the contact between support material and
    // the top surfaces of the object. We should probably offset the top 
    // surfaces vertically before performing the diff, but this needs 
    // investigation.

//    my $area_threshold = $self->interface_flow->scaled_spacing ** 2;

    MyLayersPtr interface_layers;
    // Contact layer is considered an interface layer, therefore run the following block only if support_material_interface_layers > 1.
    if (! intermediate_layers.empty() && m_object_config->support_material_interface_layers.value > 1) {
        // Index of the first top contact layer intersecting the current intermediate layer.
        size_t idx_top_contact_first = 0;
        // Index of the first bottom contact layer intersecting the current intermediate layer.
        size_t idx_bottom_contact_first = 0;
        // For all intermediate layers, collect top contact surfaces, which are not further than support_material_interface_layers.
        //FIXME this could be parallelized.
        for (size_t idx_intermediate_layer = 0; idx_intermediate_layer < intermediate_layers.size(); ++ idx_intermediate_layer) {
            MyLayer &intermediate_layer = *intermediate_layers[idx_intermediate_layer];
            // Top / bottom Z coordinate of a slab, over which we are collecting the top / bottom contact surfaces.
            coordf_t top_z    = intermediate_layers[std::min<int>(intermediate_layers.size()-1, idx_intermediate_layer + m_object_config->support_material_interface_layers - 1)]->print_z;
            coordf_t bottom_z = intermediate_layers[std::max<int>(0, int(idx_intermediate_layer) - int(m_object_config->support_material_interface_layers) + 1)]->bottom_z;
            // Move idx_top_contact_first up until above the current print_z.
            while (idx_top_contact_first < top_contacts.size() && top_contacts[idx_top_contact_first]->print_z < intermediate_layer.print_z)
                ++ idx_top_contact_first;
            // Collect the top contact areas above this intermediate layer, below top_z.
            Polygons polygons_top_contact_projected;
            for (size_t idx_top_contact = idx_top_contact_first; idx_top_contact < top_contacts.size(); ++ idx_top_contact) {
                const MyLayer &top_contact_layer = *top_contacts[idx_top_contact];
                if (top_contact_layer.bottom_z - EPSILON > top_z)
                    break;
                polygons_append(polygons_top_contact_projected, top_contact_layer.polygons);
            }
            // Move idx_bottom_contact_first up until touching bottom_z.
            while (idx_bottom_contact_first < bottom_contacts.size() && bottom_contacts[idx_bottom_contact_first]->print_z + EPSILON < bottom_z)
                ++ idx_bottom_contact_first;
            // Collect the top contact areas above this intermediate layer, below top_z.
            Polygons polygons_bottom_contact_projected;
            for (size_t idx_bottom_contact = idx_bottom_contact_first; idx_bottom_contact < bottom_contacts.size(); ++ idx_bottom_contact) {
                const MyLayer &bottom_contact_layer = *bottom_contacts[idx_bottom_contact];
                if (bottom_contact_layer.print_z - EPSILON > intermediate_layer.bottom_z)
                    break;
                polygons_append(polygons_bottom_contact_projected, bottom_contact_layer.polygons);
            }

            if (polygons_top_contact_projected.empty() && polygons_bottom_contact_projected.empty())
                continue;

            // Insert a new layer into top_interface_layers.
            MyLayer &layer_new = layer_allocate(layer_storage, 
                polygons_top_contact_projected.empty() ? sltBottomInterface : sltTopInterface);
            layer_new.print_z    = intermediate_layer.print_z;
            layer_new.bottom_z   = intermediate_layer.bottom_z;
            layer_new.height     = intermediate_layer.height;
            layer_new.bridging   = intermediate_layer.bridging;
            interface_layers.push_back(&layer_new);

            polygons_append(polygons_top_contact_projected, polygons_bottom_contact_projected);
            polygons_top_contact_projected = union_(polygons_top_contact_projected, true);
            layer_new.polygons = intersection(intermediate_layer.polygons, polygons_top_contact_projected);
            //FIXME filter layer_new.polygons islands by a minimum area?
//                $interface_area = [ grep abs($_->area) >= $area_threshold, @$interface_area ];
            intermediate_layer.polygons = diff(intermediate_layer.polygons, polygons_top_contact_projected, false);
        }
    }
    
    return interface_layers;
}

static inline void fill_expolygons_generate_paths(
    ExtrusionEntitiesPtr    &dst, 
    const ExPolygons        &expolygons,
    Fill                    *filler,
    float                    density,
    ExtrusionRole            role, 
    const Flow              &flow)
{
    FillParams fill_params;
    fill_params.density = density;
    fill_params.complete = true;
    fill_params.dont_adjust = true;
    for (ExPolygons::const_iterator it_expolygon = expolygons.begin(); it_expolygon != expolygons.end(); ++ it_expolygon) {
        Surface surface(stInternal, *it_expolygon);
        extrusion_entities_append_paths(
            dst,
            filler->fill_surface(&surface, fill_params),
            role, 
            flow.mm3_per_mm(), flow.width, flow.height);
    }
}

static inline void fill_expolygons_generate_paths(
    ExtrusionEntitiesPtr    &dst,
    ExPolygons             &&expolygons,
    Fill                    *filler,
    float                    density,
    ExtrusionRole            role,
    const Flow              &flow)
{
    FillParams fill_params;
    fill_params.density = density;
    fill_params.complete = true;
    fill_params.dont_adjust = true;
    for (ExPolygons::iterator it_expolygon = expolygons.begin(); it_expolygon != expolygons.end(); ++ it_expolygon) {
        Surface surface(stInternal, std::move(*it_expolygon));
        extrusion_entities_append_paths(
            dst,
            filler->fill_surface(&surface, fill_params),
            role,
            flow.mm3_per_mm(), flow.width, flow.height);
    }
}

// Support layers, partially processed.
struct MyLayerExtruded
{
    MyLayerExtruded() : layer(nullptr) {}

    bool empty() const {
        return layer == nullptr || layer->polygons.empty();
    }

    bool could_merge(const MyLayerExtruded &other) const {
        return ! this->empty() && ! other.empty() &&
            this->layer->height == other.layer->height &&
            this->layer->bridging == other.layer->bridging;
    }

    // Merge regions, perform boolean union over the merged polygons.
    void merge(MyLayerExtruded &&other) {
        assert(could_merge(other));
        Slic3r::polygons_append(layer->polygons, std::move(other.layer->polygons));
        layer->polygons = union_(layer->polygons, true);
        other.layer->polygons.clear();
    }

    void polygons_append(Polygons &dst) const {
        if (layer != NULL && ! layer->polygons.empty())
            Slic3r::polygons_append(dst, layer->polygons);
    }

    // The source layer. It carries the height and extrusion type (bridging / non bridging, extrusion height).
    PrintObjectSupportMaterial::MyLayer *layer;
    // Collect extrusions. They will be exported sorted by the bottom height.
    ExtrusionEntitiesPtr                 extrusions;
};

typedef std::vector<MyLayerExtruded*> MyLayerExtrudedPtrs;

struct LoopInterfaceProcessor
{
    LoopInterfaceProcessor(coordf_t circle_r) :
        n_contact_loops(0),
        circle_radius(circle_r),
        circle_distance(circle_r * 3.)
    {
        // Shape of the top contact area.
        circle.points.reserve(6);
        for (size_t i = 0; i < 6; ++ i) {
            double angle = double(i) * M_PI / 3.;
            circle.points.push_back(Point(circle_radius * cos(angle), circle_radius * sin(angle)));
        }
    }

    // Generate loop contacts at the top_contact_layer,
    // trim the top_contact_layer->polygons with the areas covered by the loops.
    void generate(MyLayerExtruded &top_contact_layer, const Flow &interface_flow_src);

    int         n_contact_loops;
    coordf_t    circle_radius;
    coordf_t    circle_distance;
    Polygon     circle;
};

void LoopInterfaceProcessor::generate(MyLayerExtruded &top_contact_layer, const Flow &interface_flow_src)
{
    if (n_contact_loops == 0 || top_contact_layer.empty())
        return;

    Flow flow = interface_flow_src;
    flow.height = float(top_contact_layer.layer->height);

    Polygons overhang_polygons;
    // if (top_contact_layer.layer->aux_polygons != nullptr)
        overhang_polygons = std::move(*top_contact_layer.layer->aux_polygons);

    // Generate the outermost loop.
    // Find centerline of the external loop (or any other kind of extrusions should the loop be skipped)
    Polygons top_contact_polygons = offset(top_contact_layer.layer->polygons, - 0.5f * flow.scaled_width());
    
    Polygons loops0;
    {
        // find centerline of the external loop of the contours
        // only consider the loops facing the overhang
        Polygons external_loops;
        // Positions of the loop centers.
        Polygons circles;
        Polygons overhang_with_margin = offset(overhang_polygons, 0.5f * flow.scaled_width());
        for (Polygons::const_iterator it_contact = top_contact_polygons.begin(); it_contact != top_contact_polygons.end(); ++ it_contact)
            if (! intersection_pl(it_contact->split_at_first_point(), overhang_with_margin).empty()) {
                external_loops.push_back(*it_contact);
                Points positions_new = it_contact->equally_spaced_points(circle_distance);
                for (Points::const_iterator it_center = positions_new.begin(); it_center != positions_new.end(); ++ it_center) {
                    circles.push_back(circle);
                    Polygon &circle_new = circles.back();
                    for (size_t i = 0; i < circle_new.points.size(); ++ i)
                        circle_new.points[i].translate(*it_center);
                }
            }
        // Apply a pattern to the loop.
        loops0 = diff(external_loops, circles);
    }

    Polylines loop_lines;
    {
        // make more loops
        Polygons loop_polygons = loops0;
        for (size_t i = 1; i < n_contact_loops; ++ i)
            polygons_append(loop_polygons, 
                offset2(
                    loops0, 
                    - int(i) * flow.scaled_spacing() - 0.5f * flow.scaled_spacing(), 
                    0.5f * flow.scaled_spacing()));
        // clip such loops to the side oriented towards the object
        loop_lines.reserve(loop_polygons.size());
        for (Polygons::const_iterator it = loop_polygons.begin(); it != loop_polygons.end(); ++ it)
            loop_lines.push_back(it->split_at_first_point());
        loop_lines = intersection_pl(loop_lines, offset(overhang_polygons, scale_(SUPPORT_MATERIAL_MARGIN)));
    }
    
    // add the contact infill area to the interface area
    // note that growing loops by $circle_radius ensures no tiny
    // extrusions are left inside the circles; however it creates
    // a very large gap between loops and contact_infill_polygons, so maybe another
    // solution should be found to achieve both goals
    top_contact_layer.layer->polygons = diff(top_contact_layer.layer->polygons, offset(loop_lines, float(circle_radius * 1.1)));

    // Transform loops into ExtrusionPath objects.
    extrusion_entities_append_paths(
        top_contact_layer.extrusions,
        STDMOVE(loop_lines),
        erSupportMaterialInterface, flow.mm3_per_mm(), flow.width, flow.height);
}

void PrintObjectSupportMaterial::generate_toolpaths(
    const PrintObject   &object,
    const MyLayersPtr   &raft_layers,
    const MyLayersPtr   &bottom_contacts,
    const MyLayersPtr   &top_contacts,
    const MyLayersPtr   &intermediate_layers,
    const MyLayersPtr   &interface_layers) const
{
//    Slic3r::debugf "Generating patterns\n";
    // loop_interface_processor with a given circle radius.
    LoopInterfaceProcessor loop_interface_processor(1.5 * m_support_material_interface_flow.scaled_width());

    // Prepare fillers.
    SupportMaterialPattern  support_pattern = m_object_config->support_material_pattern;
    bool                    with_sheath     = m_object_config->support_material_with_sheath;
    InfillPattern           infill_pattern;
    std::vector<double>     angles;
    angles.push_back(m_object_config->support_material_angle);
    switch (support_pattern) {
    case smpRectilinearGrid:
        angles.push_back(angles[0] + 90.);
        // fall through
    case smpRectilinear:
        infill_pattern = ipRectilinear;
        break;
    case smpHoneycomb:
    case smpPillars:
        infill_pattern = ipHoneycomb;
        break;
    }
    std::unique_ptr<Fill> filler_interface = std::unique_ptr<Fill>(Fill::new_from_type(ipRectilinear));
    std::unique_ptr<Fill> filler_support   = std::unique_ptr<Fill>(Fill::new_from_type(infill_pattern));
    {
//        BoundingBox bbox_object = object.bounding_box();
        BoundingBox bbox_object(Point(-scale_(1.), -scale_(1.0)), Point(scale_(1.), scale_(1.)));
        filler_interface->set_bounding_box(bbox_object);
        filler_support->set_bounding_box(bbox_object);
    }

    coordf_t interface_angle    = m_object_config->support_material_angle + 90.;
    coordf_t interface_spacing  = m_object_config->support_material_interface_spacing.value + m_support_material_interface_flow.spacing();
    coordf_t interface_density  = std::min(1., m_support_material_interface_flow.spacing() / interface_spacing);
    coordf_t support_spacing    = m_object_config->support_material_spacing.value + m_support_material_flow.spacing();
    coordf_t support_density    = std::min(1., m_support_material_flow.spacing() / support_spacing);
    if (m_object_config->support_material_interface_layers.value == 0) {
        // No interface layers allowed, print everything with the base support pattern.
        interface_spacing = support_spacing;
        interface_density = support_density;
    }

    //FIXME Parallelize the support generator:
    /*
    Slic3r::parallelize(
        threads => $self->print_config->threads,
        items => [ 0 .. n_$object.support_layers} ],
        thread_cb => sub {
            my $q = shift;
            while (defined (my $layer_id = $q->dequeue)) {
                $process_layer->($layer_id);
            }
        },
        no_threads_cb => sub {
            $process_layer->($_) for 0 .. n_{$object.support_layers};
        },
    );
    */
    // Insert the raft base layers.
    size_t support_layer_id = 0;
    for (; support_layer_id < size_t(std::max(0, int(m_slicing_params.raft_layers()) - 1)); ++ support_layer_id) {
        assert(support_layer_id < raft_layers.size());
        SupportLayer &support_layer = *object.support_layers[support_layer_id];
        assert(support_layer.support_fills.entities.empty());
        assert(support_layer.support_interface_fills.entities.empty());
        assert(support_layer.support_islands.expolygons.empty());
        MyLayer      &raft_layer    = *raft_layers[support_layer_id];
        //FIXME When paralellizing, each thread shall have its own copy of the fillers.
        Fill *filler = filler_support.get();
        filler->angle = 0.;
        // We don't use $base_flow->spacing because we need a constant spacing
        // value that guarantees that all layers are correctly aligned.
        Flow flow(m_support_material_flow.width, raft_layer.height, m_support_material_flow.nozzle_diameter, raft_layer.bridging);
        filler->spacing = m_support_material_flow.spacing();
        float density = support_density;
        // find centerline of the external loop/extrusions
        ExPolygons to_infill = (support_layer_id == 0 || ! with_sheath) ?
            // union_ex(base_polygons, true) :
            offset2_ex(raft_layer.polygons, SCALED_EPSILON, - SCALED_EPSILON) :
            offset2_ex(raft_layer.polygons, SCALED_EPSILON, - SCALED_EPSILON - 0.5*flow.scaled_width());
        if (support_layer_id == 0) {
            // Base flange.
            filler = filler_interface.get();
            filler->angle = m_object_config->support_material_angle + 90.;
            density = 0.5f;
            flow = m_first_layer_flow;
            // use the proper spacing for first layer as we don't need to align
            // its pattern to the other layers
            //FIXME When paralellizing, each thread shall have its own copy of the fillers.
            filler->spacing = flow.spacing();
        } else if (with_sheath) {
            // Draw a perimeter all around the support infill. This makes the support stable, but difficult to remove.
            // TODO: use brim ordering algorithm
            Polygons to_infill_polygons = to_polygons(to_infill);
            // TODO: use offset2_ex()
            to_infill = offset_ex(to_infill, - flow.scaled_spacing());
            extrusion_entities_append_paths(
                support_layer.support_fills.entities, 
                to_polylines(STDMOVE(to_infill_polygons)),
                erSupportMaterial, flow.mm3_per_mm(), flow.width, flow.height);
        }
        fill_expolygons_generate_paths(
            // Destination
            support_layer.support_fills.entities, 
            // Regions to fill
            STDMOVE(to_infill), 
            // Filler and its parameters
            filler, density,
            // Extrusion parameters
            erSupportMaterial, flow);

    }

    // Indices of the 1st layer in their respective container at the support layer height.
    size_t idx_layer_bottom_contact   = 0;
    size_t idx_layer_top_contact      = 0;
    size_t idx_layer_intermediate     = 0;
    size_t idx_layer_inteface         = 0;
    for (; support_layer_id < object.support_layers.size(); ++ support_layer_id) 
    {
        SupportLayer &support_layer = *object.support_layers[support_layer_id];

        // Find polygons with the same print_z.
        MyLayerExtruded bottom_contact_layer;
        MyLayerExtruded top_contact_layer;
        MyLayerExtruded base_layer;
        MyLayerExtruded interface_layer;
        MyLayerExtrudedPtrs mylayers;

        // Increment the layer indices to find a layer at support_layer.print_z.
        for (; idx_layer_bottom_contact < bottom_contacts    .size() && bottom_contacts    [idx_layer_bottom_contact]->print_z < support_layer.print_z - EPSILON; ++ idx_layer_bottom_contact) ;
        for (; idx_layer_top_contact    < top_contacts       .size() && top_contacts       [idx_layer_top_contact   ]->print_z < support_layer.print_z - EPSILON; ++ idx_layer_top_contact   ) ;
        for (; idx_layer_intermediate   < intermediate_layers.size() && intermediate_layers[idx_layer_intermediate  ]->print_z < support_layer.print_z - EPSILON; ++ idx_layer_intermediate  ) ;
        for (; idx_layer_inteface       < interface_layers   .size() && interface_layers   [idx_layer_inteface      ]->print_z < support_layer.print_z - EPSILON; ++ idx_layer_inteface      ) ;
        // Copy polygons from the layers.
        mylayers.reserve(4);
        if (idx_layer_bottom_contact < bottom_contacts.size() && bottom_contacts[idx_layer_bottom_contact]->print_z < support_layer.print_z + EPSILON) {
            bottom_contact_layer.layer = bottom_contacts[idx_layer_bottom_contact];
            mylayers.push_back(&bottom_contact_layer);
        }
        if (idx_layer_top_contact < top_contacts.size() && top_contacts[idx_layer_top_contact]->print_z < support_layer.print_z + EPSILON) {
            top_contact_layer.layer = top_contacts[idx_layer_top_contact];
            mylayers.push_back(&top_contact_layer);
        }
        if (idx_layer_inteface < interface_layers.size() && interface_layers[idx_layer_inteface]->print_z < support_layer.print_z + EPSILON) {
            interface_layer.layer = interface_layers[idx_layer_inteface];
            mylayers.push_back(&interface_layer);
        }
        if (idx_layer_intermediate < intermediate_layers.size() && intermediate_layers[idx_layer_intermediate]->print_z < support_layer.print_z + EPSILON) {
            base_layer.layer = intermediate_layers[idx_layer_intermediate];
            mylayers.push_back(&base_layer);
        }
        // Sort the layers with the same print_z coordinate by their heights, thickest first.
        std::sort(mylayers.begin(), mylayers.end(), [](const MyLayerExtruded *p1, const MyLayerExtruded *p2) { return p1->layer->height > p2->layer->height; });

        /* {
            require "Slic3r/SVG.pm";
            Slic3r::SVG::output("out\\layer_" . $z . ".svg",
                blue_expolygons     => union_ex($base),
                red_expolygons      => union_ex($contact),
                green_expolygons    => union_ex($interface),
            );
        } */
        
        if (m_object_config->support_material_interface_layers == 0) {
            // If no interface layers were requested, we treat the contact layer exactly as a generic base layer.
			if (base_layer.could_merge(top_contact_layer)) 
				base_layer.merge(std::move(top_contact_layer));
			else if (base_layer.empty() && !top_contact_layer.empty() && !top_contact_layer.layer->bridging)
				std::swap(base_layer, top_contact_layer);
            if (base_layer.could_merge(bottom_contact_layer))
                base_layer.merge(std::move(bottom_contact_layer));
            else if (base_layer.empty() && !bottom_contact_layer.empty() && !bottom_contact_layer.layer->bridging)
                std::swap(base_layer, bottom_contact_layer);
        } else {
            loop_interface_processor.generate(top_contact_layer, m_support_material_interface_flow);
            // If no loops are allowed, we treat the contact layer exactly as a generic interface layer.
            if (interface_layer.could_merge(top_contact_layer))
                interface_layer.merge(std::move(top_contact_layer));
        } 

        if (! interface_layer.empty() && ! base_layer.empty()) {
            // turn base support into interface when it's contained in our holes
            // (this way we get wider interface anchoring)
            //FIXME one wants to fill in the inner most holes of the interfaces, not all the holes.
            Polygons islands = top_level_islands(interface_layer.layer->polygons);
            polygons_append(interface_layer.layer->polygons, intersection(base_layer.layer->polygons, islands));
            base_layer.layer->polygons = diff(base_layer.layer->polygons, islands);
        }

		// interface and contact infill
		if (! top_contact_layer.empty()) {
			//FIXME When paralellizing, each thread shall have its own copy of the fillers.
			Flow interface_flow(
				top_contact_layer.layer->bridging ? top_contact_layer.layer->height : m_support_material_interface_flow.width,
				top_contact_layer.layer->height,
				m_support_material_interface_flow.nozzle_diameter,
				top_contact_layer.layer->bridging);
			filler_interface->angle = interface_angle;
			filler_interface->spacing = m_support_material_interface_flow.spacing();
			fill_expolygons_generate_paths(
				// Destination
				support_layer.support_fills.entities,
				// Regions to fill
				union_ex(top_contact_layer.layer->polygons, true),
				// Filler and its parameters
				filler_interface.get(), interface_density,
				// Extrusion parameters
				erSupportMaterialInterface, interface_flow);
		}

        // interface and contact infill
        if (! interface_layer.empty()) {
            //FIXME When paralellizing, each thread shall have its own copy of the fillers.
            Flow interface_flow(
                interface_layer.layer->bridging ? interface_layer.layer->height : m_support_material_interface_flow.width, 
                interface_layer.layer->height,
                m_support_material_interface_flow.nozzle_diameter,
                interface_layer.layer->bridging);
            filler_interface->angle   = interface_angle;
            filler_interface->spacing = m_support_material_interface_flow.spacing();
            fill_expolygons_generate_paths(
                // Destination
                support_layer.support_fills.entities, 
                // Regions to fill
                union_ex(interface_layer.layer->polygons, true), 
                // Filler and its parameters
                filler_interface.get(), interface_density,
                // Extrusion parameters
                erSupportMaterialInterface, interface_flow);
        }

        // support or flange
        if (! base_layer.empty()) {
            //FIXME When paralellizing, each thread shall have its own copy of the fillers.
            Fill *filler = filler_support.get();
            filler->angle = angles[support_layer_id % angles.size()];
            // We don't use $base_flow->spacing because we need a constant spacing
            // value that guarantees that all layers are correctly aligned.
            Flow flow(m_support_material_flow.width, base_layer.layer->height, m_support_material_flow.nozzle_diameter, base_layer.layer->bridging);
            filler->spacing = m_support_material_flow.spacing();
            float density = support_density;
            // find centerline of the external loop/extrusions
            ExPolygons to_infill = (support_layer_id == 0 || ! with_sheath) ?
                // union_ex(base_polygons, true) :
                offset2_ex(base_layer.layer->polygons, SCALED_EPSILON, - SCALED_EPSILON) :
                offset2_ex(base_layer.layer->polygons, SCALED_EPSILON, - SCALED_EPSILON - 0.5*flow.scaled_width());
            /* {
                require "Slic3r/SVG.pm";
                Slic3r::SVG::output("out\\to_infill_base" . $z . ".svg",
                    red_expolygons      => union_ex($contact),
                    green_expolygons    => union_ex($interface),
                    blue_expolygons     => $to_infill,
                );
            } */
            if (base_layer.layer->bottom_z < EPSILON) {
                // Base flange.
                filler = filler_interface.get();
                filler->angle = m_object_config->support_material_angle + 90.;
                density = 0.5f;
                flow = m_first_layer_flow;
                // use the proper spacing for first layer as we don't need to align
                // its pattern to the other layers
                //FIXME When paralellizing, each thread shall have its own copy of the fillers.
                filler->spacing = flow.spacing();
            } else if (with_sheath) {
                // Draw a perimeter all around the support infill. This makes the support stable, but difficult to remove.
                // TODO: use brim ordering algorithm
                Polygons to_infill_polygons = to_polygons(to_infill);
                // TODO: use offset2_ex()
                to_infill = offset_ex(to_infill, - flow.scaled_spacing());
                extrusion_entities_append_paths(
                    support_layer.support_fills.entities, 
                    to_polylines(STDMOVE(to_infill_polygons)),
                    erSupportMaterial, flow.mm3_per_mm(), flow.width, flow.height);
            }
            fill_expolygons_generate_paths(
                // Destination
                support_layer.support_fills.entities, 
                // Regions to fill
                STDMOVE(to_infill), 
                // Filler and its parameters
                filler, density,
                // Extrusion parameters
                erSupportMaterial, flow);
        }

        // support or flange
        if (! bottom_contact_layer.empty()) {
            //FIXME When paralellizing, each thread shall have its own copy of the fillers.
            Flow interface_flow(
                bottom_contact_layer.layer->bridging ? bottom_contact_layer.layer->height : m_support_material_interface_flow.width, 
                bottom_contact_layer.layer->height,
                m_support_material_interface_flow.nozzle_diameter,
                bottom_contact_layer.layer->bridging);
            filler_interface->angle = (m_object_config->support_material_interface_layers.value == 0) ?
                    // If zero interface layers are configured, use the same angle as for the base layers.
                    angles[support_layer_id % angles.size()] :
                    // Use interface angle for the interface layers.
                    interface_angle;
            filler_interface->spacing = m_support_material_interface_flow.spacing();
            fill_expolygons_generate_paths(
                // Destination
                support_layer.support_fills.entities, 
                // Regions to fill
                union_ex(bottom_contact_layer.layer->polygons, true), 
                // Filler and its parameters
                filler_interface.get(), interface_density,
                // Extrusion parameters
                erSupportMaterial, interface_flow);
        }

        // Collect the support areas with this print_z into islands, as there is no need
        // for retraction over these islands.
        Polygons polys;
        // Collect the extrusions, sorted by the bottom extrusion height.
        for (MyLayerExtrudedPtrs::iterator it = mylayers.begin(); it != mylayers.end(); ++ it) {
            (*it)->polygons_append(polys);
            std::move(std::begin((*it)->extrusions), std::end((*it)->extrusions), 
                std::back_inserter(support_layer.support_fills.entities));
        }
        if (! polys.empty())
            expolygons_append(support_layer.support_islands.expolygons, union_ex(polys));
        /* {
            require "Slic3r/SVG.pm";
            Slic3r::SVG::output("islands_" . $z . ".svg",
                red_expolygons      => union_ex($contact),
                green_expolygons    => union_ex($interface),
                green_polylines     => [ map $_->unpack->polyline, @{$layer->support_contact_fills} ],
                polylines           => [ map $_->unpack->polyline, @{$layer->support_fills} ],
            );
        } */
    } // for each support_layer_id
}

/*
void PrintObjectSupportMaterial::clip_by_pillars(
    const PrintObject   &object,
    LayersPtr           &bottom_contacts,
    LayersPtr           &top_contacts,
    LayersPtr           &intermediate_contacts);

{
    // this prevents supplying an empty point set to BoundingBox constructor
    if (top_contacts.empty())
        return;

    coord_t pillar_size    = scale_(PILLAR_SIZE);
    coord_t pillar_spacing = scale_(PILLAR_SPACING);
    
    // A regular grid of pillars, filling the 2D bounding box.
    Polygons grid;
    {
        // Rectangle with a side of 2.5x2.5mm.
        Polygon pillar;
        pillar.points.push_back(Point(0, 0));
        pillar.points.push_back(Point(pillar_size, 0));
        pillar.points.push_back(Point(pillar_size, pillar_size));
        pillar.points.push_back(Point(0, pillar_size));
        
        // 2D bounding box of the projection of all contact polygons.
        BoundingBox bbox;
        for (LayersPtr::const_iterator it = top_contacts.begin(); it != top_contacts.end(); ++ it)
            bbox.merge(get_extents((*it)->polygons));
        grid.reserve(size_t(ceil(bb.size().x / pillar_spacing)) * size_t(ceil(bb.size().y / pillar_spacing)));
        for (coord_t x = bb.min.x; x <= bb.max.x - pillar_size; x += pillar_spacing) {
            for (coord_t y = bb.min.y; y <= bb.max.y - pillar_size; y += pillar_spacing) {
                grid.push_back(pillar);
                for (size_t i = 0; i < pillar.points.size(); ++ i)
                    grid.back().points[i].translate(Point(x, y));
            }
        }
    }
    
    // add pillars to every layer
    for my $i (0..n_support_z) {
        $shape->[$i] = [ @$grid ];
    }
    
    // build capitals
    for my $i (0..n_support_z) {
        my $z = $support_z->[$i];
        
        my $capitals = intersection(
            $grid,
            $contact->{$z} // [],
        );
        
        // work on one pillar at time (if any) to prevent the capitals from being merged
        // but store the contact area supported by the capital because we need to make 
        // sure nothing is left
        my $contact_supported_by_capitals = [];
        foreach my $capital (@$capitals) {
            // enlarge capital tops
            $capital = offset([$capital], +($pillar_spacing - $pillar_size)/2);
            push @$contact_supported_by_capitals, @$capital;
            
            for (my $j = $i-1; $j >= 0; $j--) {
                my $jz = $support_z->[$j];
                $capital = offset($capital, -$self->interface_flow->scaled_width/2);
                last if !@$capitals;
                push @{ $shape->[$j] }, @$capital;
            }
        }
        
        // Capitals will not generally cover the whole contact area because there will be
        // remainders. For now we handle this situation by projecting such unsupported
        // areas to the ground, just like we would do with a normal support.
        my $contact_not_supported_by_capitals = diff(
            $contact->{$z} // [],
            $contact_supported_by_capitals,
        );
        if (@$contact_not_supported_by_capitals) {
            for (my $j = $i-1; $j >= 0; $j--) {
                push @{ $shape->[$j] }, @$contact_not_supported_by_capitals;
            }
        }
    }
}

sub clip_with_shape {
    my ($self, $support, $shape) = @_;
    
    foreach my $i (keys %$support) {
        // don't clip bottom layer with shape so that we 
        // can generate a continuous base flange
        // also don't clip raft layers
        next if $i == 0;
        next if $i < $self->object_config->raft_layers;
        $support->{$i} = intersection(
            $support->{$i},
            $shape->[$i],
        );
    }
}
*/

} // namespace Slic3r