Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authormichalprusa <git@michalprusa.cz>2016-07-22 16:28:01 +0300
committermichalprusa <git@michalprusa.cz>2016-07-22 16:28:01 +0300
commit30f0528aba00e5949496f4fe7adcbef5b5a18b5c (patch)
treec98a6b4a10e1293de42aebae8a8ac1eb551fdeb4 /Firmware/stepper.cpp
Initial commit
Diffstat (limited to 'Firmware/stepper.cpp')
-rwxr-xr-xFirmware/stepper.cpp1258
1 files changed, 1258 insertions, 0 deletions
diff --git a/Firmware/stepper.cpp b/Firmware/stepper.cpp
new file mode 100755
index 000000000..cce0b313b
--- /dev/null
+++ b/Firmware/stepper.cpp
@@ -0,0 +1,1258 @@
+/*
+ stepper.c - stepper motor driver: executes motion plans using stepper motors
+ Part of Grbl
+
+ Copyright (c) 2009-2011 Simen Svale Skogsrud
+
+ Grbl is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ Grbl is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Grbl. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
+ and Philipp Tiefenbacher. */
+
+#include "Marlin.h"
+#include "stepper.h"
+#include "planner.h"
+#include "temperature.h"
+#include "ultralcd.h"
+#include "language.h"
+#include "cardreader.h"
+#include "speed_lookuptable.h"
+#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+#include <SPI.h>
+#endif
+
+
+//===========================================================================
+//=============================public variables ============================
+//===========================================================================
+block_t *current_block; // A pointer to the block currently being traced
+
+
+//===========================================================================
+//=============================private variables ============================
+//===========================================================================
+//static makes it inpossible to be called from outside of this file by extern.!
+
+// Variables used by The Stepper Driver Interrupt
+static unsigned char out_bits; // The next stepping-bits to be output
+static long counter_x, // Counter variables for the bresenham line tracer
+ counter_y,
+ counter_z,
+ counter_e;
+volatile static unsigned long step_events_completed; // The number of step events executed in the current block
+#ifdef ADVANCE
+ static long advance_rate, advance, final_advance = 0;
+ static long old_advance = 0;
+ static long e_steps[3];
+#endif
+static long acceleration_time, deceleration_time;
+//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
+static unsigned short acc_step_rate; // needed for deccelaration start point
+static char step_loops;
+static unsigned short OCR1A_nominal;
+static unsigned short step_loops_nominal;
+
+volatile long endstops_trigsteps[3]={0,0,0};
+volatile long endstops_stepsTotal,endstops_stepsDone;
+static volatile bool endstop_x_hit=false;
+static volatile bool endstop_y_hit=false;
+static volatile bool endstop_z_hit=false;
+#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
+bool abort_on_endstop_hit = false;
+#endif
+#ifdef MOTOR_CURRENT_PWM_XY_PIN
+ int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
+ int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
+ int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
+#endif
+
+static bool old_x_min_endstop=false;
+static bool old_x_max_endstop=false;
+static bool old_y_min_endstop=false;
+static bool old_y_max_endstop=false;
+static bool old_z_min_endstop=false;
+static bool old_z_max_endstop=false;
+
+static bool check_endstops = true;
+static bool check_z_endstop = false;
+
+int8_t SilentMode;
+
+volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
+volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
+
+//===========================================================================
+//=============================functions ============================
+//===========================================================================
+
+#define CHECK_ENDSTOPS if(check_endstops)
+
+// intRes = intIn1 * intIn2 >> 16
+// uses:
+// r26 to store 0
+// r27 to store the byte 1 of the 24 bit result
+#define MultiU16X8toH16(intRes, charIn1, intIn2) \
+asm volatile ( \
+"clr r26 \n\t" \
+"mul %A1, %B2 \n\t" \
+"movw %A0, r0 \n\t" \
+"mul %A1, %A2 \n\t" \
+"add %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"lsr r0 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"clr r1 \n\t" \
+: \
+"=&r" (intRes) \
+: \
+"d" (charIn1), \
+"d" (intIn2) \
+: \
+"r26" \
+)
+
+// intRes = longIn1 * longIn2 >> 24
+// uses:
+// r26 to store 0
+// r27 to store the byte 1 of the 48bit result
+#define MultiU24X24toH16(intRes, longIn1, longIn2) \
+asm volatile ( \
+"clr r26 \n\t" \
+"mul %A1, %B2 \n\t" \
+"mov r27, r1 \n\t" \
+"mul %B1, %C2 \n\t" \
+"movw %A0, r0 \n\t" \
+"mul %C1, %C2 \n\t" \
+"add %B0, r0 \n\t" \
+"mul %C1, %B2 \n\t" \
+"add %A0, r0 \n\t" \
+"adc %B0, r1 \n\t" \
+"mul %A1, %C2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %B1, %B2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %C1, %A2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %B1, %A2 \n\t" \
+"add r27, r1 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"lsr r27 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"clr r1 \n\t" \
+: \
+"=&r" (intRes) \
+: \
+"d" (longIn1), \
+"d" (longIn2) \
+: \
+"r26" , "r27" \
+)
+
+// Some useful constants
+
+#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
+#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
+
+
+void checkHitEndstops()
+{
+ if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
+ SERIAL_ECHO_START;
+ SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
+ if(endstop_x_hit) {
+ SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
+ LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("X")));
+ }
+ if(endstop_y_hit) {
+ SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
+ LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("Y")));
+ }
+ if(endstop_z_hit) {
+ SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
+ LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT,PSTR("Z")));
+ }
+ SERIAL_ECHOLN("");
+ endstop_x_hit=false;
+ endstop_y_hit=false;
+ endstop_z_hit=false;
+#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
+ if (abort_on_endstop_hit)
+ {
+ card.sdprinting = false;
+ card.closefile();
+ quickStop();
+ setTargetHotend0(0);
+ setTargetHotend1(0);
+ setTargetHotend2(0);
+ }
+#endif
+ }
+}
+
+bool endstops_hit_on_purpose()
+{
+ bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
+ endstop_x_hit=false;
+ endstop_y_hit=false;
+ endstop_z_hit=false;
+ return hit;
+}
+
+bool endstop_z_hit_on_purpose()
+{
+ bool hit = endstop_z_hit;
+ endstop_z_hit=false;
+ return hit;
+}
+
+bool enable_endstops(bool check)
+{
+ bool old = check_endstops;
+ check_endstops = check;
+ return old;
+}
+
+bool enable_z_endstop(bool check)
+{
+ bool old = check_z_endstop;
+ check_z_endstop = check;
+ endstop_z_hit=false;
+ return old;
+}
+
+// __________________________
+// /| |\ _________________ ^
+// / | | \ /| |\ |
+// / | | \ / | | \ s
+// / | | | | | \ p
+// / | | | | | \ e
+// +-----+------------------------+---+--+---------------+----+ e
+// | BLOCK 1 | BLOCK 2 | d
+//
+// time ----->
+//
+// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
+// first block->accelerate_until step_events_completed, then keeps going at constant speed until
+// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
+// The slope of acceleration is calculated with the leib ramp alghorithm.
+
+void st_wake_up() {
+ // TCNT1 = 0;
+ ENABLE_STEPPER_DRIVER_INTERRUPT();
+}
+
+void step_wait(){
+ for(int8_t i=0; i < 6; i++){
+ }
+}
+
+
+FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
+ unsigned short timer;
+ if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
+
+ if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
+ step_rate = (step_rate >> 2)&0x3fff;
+ step_loops = 4;
+ }
+ else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
+ step_rate = (step_rate >> 1)&0x7fff;
+ step_loops = 2;
+ }
+ else {
+ step_loops = 1;
+ }
+
+ if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
+ step_rate -= (F_CPU/500000); // Correct for minimal speed
+ if(step_rate >= (8*256)){ // higher step rate
+ unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
+ unsigned char tmp_step_rate = (step_rate & 0x00ff);
+ unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
+ MultiU16X8toH16(timer, tmp_step_rate, gain);
+ timer = (unsigned short)pgm_read_word_near(table_address) - timer;
+ }
+ else { // lower step rates
+ unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
+ table_address += ((step_rate)>>1) & 0xfffc;
+ timer = (unsigned short)pgm_read_word_near(table_address);
+ timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
+ }
+ if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
+ return timer;
+}
+
+// Initializes the trapezoid generator from the current block. Called whenever a new
+// block begins.
+FORCE_INLINE void trapezoid_generator_reset() {
+ #ifdef ADVANCE
+ advance = current_block->initial_advance;
+ final_advance = current_block->final_advance;
+ // Do E steps + advance steps
+ e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
+ old_advance = advance >>8;
+ #endif
+ deceleration_time = 0;
+ // step_rate to timer interval
+ OCR1A_nominal = calc_timer(current_block->nominal_rate);
+ // make a note of the number of step loops required at nominal speed
+ step_loops_nominal = step_loops;
+ acc_step_rate = current_block->initial_rate;
+ acceleration_time = calc_timer(acc_step_rate);
+ OCR1A = acceleration_time;
+
+// SERIAL_ECHO_START;
+// SERIAL_ECHOPGM("advance :");
+// SERIAL_ECHO(current_block->advance/256.0);
+// SERIAL_ECHOPGM("advance rate :");
+// SERIAL_ECHO(current_block->advance_rate/256.0);
+// SERIAL_ECHOPGM("initial advance :");
+// SERIAL_ECHO(current_block->initial_advance/256.0);
+// SERIAL_ECHOPGM("final advance :");
+// SERIAL_ECHOLN(current_block->final_advance/256.0);
+
+}
+
+// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
+// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
+ISR(TIMER1_COMPA_vect)
+{
+ // If there is no current block, attempt to pop one from the buffer
+ if (current_block == NULL) {
+ // Anything in the buffer?
+ current_block = plan_get_current_block();
+ if (current_block != NULL) {
+ // The busy flag is set by the plan_get_current_block() call.
+ // current_block->busy = true;
+ trapezoid_generator_reset();
+ counter_x = -(current_block->step_event_count >> 1);
+ counter_y = counter_x;
+ counter_z = counter_x;
+ counter_e = counter_x;
+ step_events_completed = 0;
+
+ #ifdef Z_LATE_ENABLE
+ if(current_block->steps_z > 0) {
+ enable_z();
+ OCR1A = 2000; //1ms wait
+ return;
+ }
+ #endif
+
+// #ifdef ADVANCE
+// e_steps[current_block->active_extruder] = 0;
+// #endif
+ }
+ else {
+ OCR1A=2000; // 1kHz.
+ }
+ }
+
+ if (current_block != NULL) {
+ // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
+ out_bits = current_block->direction_bits;
+
+
+ // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
+ if((out_bits & (1<<X_AXIS))!=0){
+ WRITE(X_DIR_PIN, INVERT_X_DIR);
+ count_direction[X_AXIS]=-1;
+ }
+ else{
+ WRITE(X_DIR_PIN, !INVERT_X_DIR);
+ count_direction[X_AXIS]=1;
+ }
+ if((out_bits & (1<<Y_AXIS))!=0){
+ WRITE(Y_DIR_PIN, INVERT_Y_DIR);
+
+ #ifdef Y_DUAL_STEPPER_DRIVERS
+ WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
+ #endif
+
+ count_direction[Y_AXIS]=-1;
+ }
+ else{
+ WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
+
+ #ifdef Y_DUAL_STEPPER_DRIVERS
+ WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
+ #endif
+
+ count_direction[Y_AXIS]=1;
+ }
+
+ // Set direction en check limit switches
+ #ifndef COREXY
+ if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
+ #else
+ if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
+ #endif
+ CHECK_ENDSTOPS
+ {
+ {
+ #if defined(X_MIN_PIN) && X_MIN_PIN > -1
+ bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
+ if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
+ endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
+ endstop_x_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_x_min_endstop = x_min_endstop;
+ #endif
+ }
+ }
+ }
+ else { // +direction
+ CHECK_ENDSTOPS
+ {
+ {
+ #if defined(X_MAX_PIN) && X_MAX_PIN > -1
+ bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
+ if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
+ endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
+ endstop_x_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_x_max_endstop = x_max_endstop;
+ #endif
+ }
+ }
+ }
+
+ #ifndef COREXY
+ if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
+ #else
+ if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
+ #endif
+ CHECK_ENDSTOPS
+ {
+ #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
+ bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
+ if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
+ endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
+ endstop_y_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_y_min_endstop = y_min_endstop;
+ #endif
+ }
+ }
+ else { // +direction
+ CHECK_ENDSTOPS
+ {
+ #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
+ bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
+ if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
+ endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
+ endstop_y_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_y_max_endstop = y_max_endstop;
+ #endif
+ }
+ }
+
+ if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
+ WRITE(Z_DIR_PIN,INVERT_Z_DIR);
+
+ #ifdef Z_DUAL_STEPPER_DRIVERS
+ WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
+ #endif
+
+ count_direction[Z_AXIS]=-1;
+ if(check_endstops && ! check_z_endstop)
+ {
+ #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
+ bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
+ if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
+ endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
+ endstop_z_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_z_min_endstop = z_min_endstop;
+ #endif
+ }
+ }
+ else { // +direction
+ WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
+
+ #ifdef Z_DUAL_STEPPER_DRIVERS
+ WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
+ #endif
+
+ count_direction[Z_AXIS]=1;
+ CHECK_ENDSTOPS
+ {
+ #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
+ bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
+ if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
+ endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
+ endstop_z_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_z_max_endstop = z_max_endstop;
+ #endif
+ }
+ }
+
+ // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
+ #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
+ if(check_z_endstop) {
+ // Check the Z min end-stop no matter what.
+ // Good for searching for the center of an induction target.
+ bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
+ if(z_min_endstop && old_z_min_endstop) {
+ endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
+ endstop_z_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_z_min_endstop = z_min_endstop;
+ }
+ #endif
+
+ #ifndef ADVANCE
+ if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
+ REV_E_DIR();
+ count_direction[E_AXIS]=-1;
+ }
+ else { // +direction
+ NORM_E_DIR();
+ count_direction[E_AXIS]=1;
+ }
+ #endif //!ADVANCE
+
+
+
+ for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
+ #ifndef AT90USB
+ MSerial.checkRx(); // Check for serial chars.
+ #endif
+
+ #ifdef ADVANCE
+ counter_e += current_block->steps_e;
+ if (counter_e > 0) {
+ counter_e -= current_block->step_event_count;
+ if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
+ e_steps[current_block->active_extruder]--;
+ }
+ else {
+ e_steps[current_block->active_extruder]++;
+ }
+ }
+ #endif //ADVANCE
+
+ counter_x += current_block->steps_x;
+ if (counter_x > 0) {
+ WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
+ counter_x -= current_block->step_event_count;
+ count_position[X_AXIS]+=count_direction[X_AXIS];
+ WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
+ }
+
+ counter_y += current_block->steps_y;
+ if (counter_y > 0) {
+ WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
+
+ #ifdef Y_DUAL_STEPPER_DRIVERS
+ WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
+ #endif
+
+ counter_y -= current_block->step_event_count;
+ count_position[Y_AXIS]+=count_direction[Y_AXIS];
+ WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
+
+ #ifdef Y_DUAL_STEPPER_DRIVERS
+ WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
+ #endif
+ }
+
+ counter_z += current_block->steps_z;
+ if (counter_z > 0) {
+ WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
+
+ #ifdef Z_DUAL_STEPPER_DRIVERS
+ WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
+ #endif
+
+ counter_z -= current_block->step_event_count;
+ count_position[Z_AXIS]+=count_direction[Z_AXIS];
+ WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
+
+ #ifdef Z_DUAL_STEPPER_DRIVERS
+ WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
+ #endif
+ }
+
+ #ifndef ADVANCE
+ counter_e += current_block->steps_e;
+ if (counter_e > 0) {
+ WRITE_E_STEP(!INVERT_E_STEP_PIN);
+ counter_e -= current_block->step_event_count;
+ count_position[E_AXIS]+=count_direction[E_AXIS];
+ WRITE_E_STEP(INVERT_E_STEP_PIN);
+ }
+ #endif //!ADVANCE
+ step_events_completed += 1;
+ if(step_events_completed >= current_block->step_event_count) break;
+ }
+ // Calculare new timer value
+ unsigned short timer;
+ unsigned short step_rate;
+ if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
+
+ MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
+ acc_step_rate += current_block->initial_rate;
+
+ // upper limit
+ if(acc_step_rate > current_block->nominal_rate)
+ acc_step_rate = current_block->nominal_rate;
+
+ // step_rate to timer interval
+ timer = calc_timer(acc_step_rate);
+ OCR1A = timer;
+ acceleration_time += timer;
+ #ifdef ADVANCE
+ for(int8_t i=0; i < step_loops; i++) {
+ advance += advance_rate;
+ }
+ //if(advance > current_block->advance) advance = current_block->advance;
+ // Do E steps + advance steps
+ e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
+ old_advance = advance >>8;
+
+ #endif // ADVANCE
+ }
+ else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
+ MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
+
+ if(step_rate > acc_step_rate) { // Check step_rate stays positive
+ step_rate = current_block->final_rate;
+ }
+ else {
+ step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
+ }
+
+ // lower limit
+ if(step_rate < current_block->final_rate)
+ step_rate = current_block->final_rate;
+
+ // step_rate to timer interval
+ timer = calc_timer(step_rate);
+ OCR1A = timer;
+ deceleration_time += timer;
+ #ifdef ADVANCE
+ for(int8_t i=0; i < step_loops; i++) {
+ advance -= advance_rate;
+ }
+ if(advance < final_advance) advance = final_advance;
+ // Do E steps + advance steps
+ e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
+ old_advance = advance >>8;
+ #endif //ADVANCE
+ }
+ else {
+ OCR1A = OCR1A_nominal;
+ // ensure we're running at the correct step rate, even if we just came off an acceleration
+ step_loops = step_loops_nominal;
+ }
+
+ // If current block is finished, reset pointer
+ if (step_events_completed >= current_block->step_event_count) {
+ current_block = NULL;
+ plan_discard_current_block();
+ }
+ }
+}
+
+#ifdef ADVANCE
+ unsigned char old_OCR0A;
+ // Timer interrupt for E. e_steps is set in the main routine;
+ // Timer 0 is shared with millies
+ ISR(TIMER0_COMPA_vect)
+ {
+ old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
+ OCR0A = old_OCR0A;
+ // Set E direction (Depends on E direction + advance)
+ for(unsigned char i=0; i<4;i++) {
+ if (e_steps[0] != 0) {
+ WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
+ if (e_steps[0] < 0) {
+ WRITE(E0_DIR_PIN, INVERT_E0_DIR);
+ e_steps[0]++;
+ WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
+ }
+ else if (e_steps[0] > 0) {
+ WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
+ e_steps[0]--;
+ WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
+ }
+ }
+ #if EXTRUDERS > 1
+ if (e_steps[1] != 0) {
+ WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
+ if (e_steps[1] < 0) {
+ WRITE(E1_DIR_PIN, INVERT_E1_DIR);
+ e_steps[1]++;
+ WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
+ }
+ else if (e_steps[1] > 0) {
+ WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
+ e_steps[1]--;
+ WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
+ }
+ }
+ #endif
+ #if EXTRUDERS > 2
+ if (e_steps[2] != 0) {
+ WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
+ if (e_steps[2] < 0) {
+ WRITE(E2_DIR_PIN, INVERT_E2_DIR);
+ e_steps[2]++;
+ WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
+ }
+ else if (e_steps[2] > 0) {
+ WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
+ e_steps[2]--;
+ WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
+ }
+ }
+ #endif
+ }
+ }
+#endif // ADVANCE
+
+void st_init()
+{
+ digipot_init(); //Initialize Digipot Motor Current
+ microstep_init(); //Initialize Microstepping Pins
+
+ //Initialize Dir Pins
+ #if defined(X_DIR_PIN) && X_DIR_PIN > -1
+ SET_OUTPUT(X_DIR_PIN);
+ #endif
+ #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
+ SET_OUTPUT(X2_DIR_PIN);
+ #endif
+ #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
+ SET_OUTPUT(Y_DIR_PIN);
+
+ #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
+ SET_OUTPUT(Y2_DIR_PIN);
+ #endif
+ #endif
+ #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
+ SET_OUTPUT(Z_DIR_PIN);
+
+ #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
+ SET_OUTPUT(Z2_DIR_PIN);
+ #endif
+ #endif
+ #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
+ SET_OUTPUT(E0_DIR_PIN);
+ #endif
+ #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
+ SET_OUTPUT(E1_DIR_PIN);
+ #endif
+ #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
+ SET_OUTPUT(E2_DIR_PIN);
+ #endif
+
+ //Initialize Enable Pins - steppers default to disabled.
+
+ #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
+ SET_OUTPUT(X_ENABLE_PIN);
+ if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
+ #endif
+ #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
+ SET_OUTPUT(X2_ENABLE_PIN);
+ if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
+ #endif
+ #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
+ SET_OUTPUT(Y_ENABLE_PIN);
+ if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
+
+ #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
+ SET_OUTPUT(Y2_ENABLE_PIN);
+ if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
+ #endif
+ #endif
+ #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
+ SET_OUTPUT(Z_ENABLE_PIN);
+ if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
+
+ #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
+ SET_OUTPUT(Z2_ENABLE_PIN);
+ if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
+ #endif
+ #endif
+ #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
+ SET_OUTPUT(E0_ENABLE_PIN);
+ if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
+ #endif
+ #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
+ SET_OUTPUT(E1_ENABLE_PIN);
+ if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
+ #endif
+ #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
+ SET_OUTPUT(E2_ENABLE_PIN);
+ if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
+ #endif
+
+ //endstops and pullups
+
+ #if defined(X_MIN_PIN) && X_MIN_PIN > -1
+ SET_INPUT(X_MIN_PIN);
+ #ifdef ENDSTOPPULLUP_XMIN
+ WRITE(X_MIN_PIN,HIGH);
+ #endif
+ #endif
+
+ #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
+ SET_INPUT(Y_MIN_PIN);
+ #ifdef ENDSTOPPULLUP_YMIN
+ WRITE(Y_MIN_PIN,HIGH);
+ #endif
+ #endif
+
+ #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
+ SET_INPUT(Z_MIN_PIN);
+ #ifdef ENDSTOPPULLUP_ZMIN
+ WRITE(Z_MIN_PIN,HIGH);
+ #endif
+ #endif
+
+ #if defined(X_MAX_PIN) && X_MAX_PIN > -1
+ SET_INPUT(X_MAX_PIN);
+ #ifdef ENDSTOPPULLUP_XMAX
+ WRITE(X_MAX_PIN,HIGH);
+ #endif
+ #endif
+
+ #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
+ SET_INPUT(Y_MAX_PIN);
+ #ifdef ENDSTOPPULLUP_YMAX
+ WRITE(Y_MAX_PIN,HIGH);
+ #endif
+ #endif
+
+ #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
+ SET_INPUT(Z_MAX_PIN);
+ #ifdef ENDSTOPPULLUP_ZMAX
+ WRITE(Z_MAX_PIN,HIGH);
+ #endif
+ #endif
+
+
+ //Initialize Step Pins
+ #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
+ SET_OUTPUT(X_STEP_PIN);
+ WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
+ disable_x();
+ #endif
+ #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
+ SET_OUTPUT(X2_STEP_PIN);
+ WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
+ disable_x();
+ #endif
+ #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
+ SET_OUTPUT(Y_STEP_PIN);
+ WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
+ #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
+ SET_OUTPUT(Y2_STEP_PIN);
+ WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
+ #endif
+ disable_y();
+ #endif
+ #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
+ SET_OUTPUT(Z_STEP_PIN);
+ WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
+ #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
+ SET_OUTPUT(Z2_STEP_PIN);
+ WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
+ #endif
+ disable_z();
+ #endif
+ #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
+ SET_OUTPUT(E0_STEP_PIN);
+ WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
+ disable_e0();
+ #endif
+ #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
+ SET_OUTPUT(E1_STEP_PIN);
+ WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
+ disable_e1();
+ #endif
+ #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
+ SET_OUTPUT(E2_STEP_PIN);
+ WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
+ disable_e2();
+ #endif
+
+ // waveform generation = 0100 = CTC
+ TCCR1B &= ~(1<<WGM13);
+ TCCR1B |= (1<<WGM12);
+ TCCR1A &= ~(1<<WGM11);
+ TCCR1A &= ~(1<<WGM10);
+
+ // output mode = 00 (disconnected)
+ TCCR1A &= ~(3<<COM1A0);
+ TCCR1A &= ~(3<<COM1B0);
+
+ // Set the timer pre-scaler
+ // Generally we use a divider of 8, resulting in a 2MHz timer
+ // frequency on a 16MHz MCU. If you are going to change this, be
+ // sure to regenerate speed_lookuptable.h with
+ // create_speed_lookuptable.py
+ TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
+
+ OCR1A = 0x4000;
+ TCNT1 = 0;
+ ENABLE_STEPPER_DRIVER_INTERRUPT();
+
+ #ifdef ADVANCE
+ #if defined(TCCR0A) && defined(WGM01)
+ TCCR0A &= ~(1<<WGM01);
+ TCCR0A &= ~(1<<WGM00);
+ #endif
+ e_steps[0] = 0;
+ e_steps[1] = 0;
+ e_steps[2] = 0;
+ TIMSK0 |= (1<<OCIE0A);
+ #endif //ADVANCE
+
+ enable_endstops(true); // Start with endstops active. After homing they can be disabled
+ sei();
+}
+
+
+// Block until all buffered steps are executed
+void st_synchronize()
+{
+ while( blocks_queued()) {
+ manage_heater();
+ // Vojtech: Don't disable motors inside the planner!
+ manage_inactivity(true);
+ lcd_update();
+ }
+}
+
+void st_set_position(const long &x, const long &y, const long &z, const long &e)
+{
+ CRITICAL_SECTION_START;
+ count_position[X_AXIS] = x;
+ count_position[Y_AXIS] = y;
+ count_position[Z_AXIS] = z;
+ count_position[E_AXIS] = e;
+ CRITICAL_SECTION_END;
+}
+
+void st_set_e_position(const long &e)
+{
+ CRITICAL_SECTION_START;
+ count_position[E_AXIS] = e;
+ CRITICAL_SECTION_END;
+}
+
+long st_get_position(uint8_t axis)
+{
+ long count_pos;
+ CRITICAL_SECTION_START;
+ count_pos = count_position[axis];
+ CRITICAL_SECTION_END;
+ return count_pos;
+}
+
+
+float st_get_position_mm(uint8_t axis)
+{
+ float steper_position_in_steps = st_get_position(axis);
+ return steper_position_in_steps / axis_steps_per_unit[axis];
+}
+
+
+void finishAndDisableSteppers()
+{
+ st_synchronize();
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e0();
+ disable_e1();
+ disable_e2();
+}
+
+void quickStop()
+{
+ DISABLE_STEPPER_DRIVER_INTERRUPT();
+ while (blocks_queued()) plan_discard_current_block();
+ current_block = NULL;
+ ENABLE_STEPPER_DRIVER_INTERRUPT();
+}
+
+#ifdef BABYSTEPPING
+
+
+void babystep(const uint8_t axis,const bool direction)
+{
+ //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
+ //store initial pin states
+ switch(axis)
+ {
+ case X_AXIS:
+ {
+ enable_x();
+ uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
+
+ //setup new step
+ WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
+
+ //perform step
+ WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
+ {
+ float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
+ }
+ WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
+
+ //get old pin state back.
+ WRITE(X_DIR_PIN,old_x_dir_pin);
+ }
+ break;
+ case Y_AXIS:
+ {
+ enable_y();
+ uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
+
+ //setup new step
+ WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
+
+ //perform step
+ WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
+ {
+ float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
+ }
+ WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
+
+ //get old pin state back.
+ WRITE(Y_DIR_PIN,old_y_dir_pin);
+
+ }
+ break;
+
+ case Z_AXIS:
+ {
+ enable_z();
+ uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
+ //setup new step
+ WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
+ #ifdef Z_DUAL_STEPPER_DRIVERS
+ WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
+ #endif
+ //perform step
+ WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
+ #ifdef Z_DUAL_STEPPER_DRIVERS
+ WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
+ #endif
+ //wait a tiny bit
+ {
+ float x=1./float(axis+1); //absolutely useless
+ }
+ WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
+ #ifdef Z_DUAL_STEPPER_DRIVERS
+ WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
+ #endif
+
+ //get old pin state back.
+ WRITE(Z_DIR_PIN,old_z_dir_pin);
+ #ifdef Z_DUAL_STEPPER_DRIVERS
+ WRITE(Z2_DIR_PIN,old_z_dir_pin);
+ #endif
+
+ }
+ break;
+
+ default: break;
+ }
+}
+#endif //BABYSTEPPING
+
+void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
+{
+ #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+ digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
+ SPI.transfer(address); // send in the address and value via SPI:
+ SPI.transfer(value);
+ digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
+ //delay(10);
+ #endif
+}
+
+void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
+{
+ do
+ {
+ *value = eeprom_read_byte((unsigned char*)pos);
+ pos++;
+ value++;
+ }while(--size);
+}
+
+
+void digipot_init() //Initialize Digipot Motor Current
+{
+
+ EEPROM_read_st(EEPROM_SILENT,(uint8_t*)&SilentMode,sizeof(SilentMode));
+
+ #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+ if(SilentMode == 0){
+ const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT_LOUD;
+ }else{
+ const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
+ }
+ SPI.begin();
+ pinMode(DIGIPOTSS_PIN, OUTPUT);
+ for(int i=0;i<=4;i++)
+ //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
+ digipot_current(i,digipot_motor_current[i]);
+ #endif
+ #ifdef MOTOR_CURRENT_PWM_XY_PIN
+ pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
+ pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
+ pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
+ if(SilentMode == 0){
+
+ motor_current_setting[0] = motor_current_setting_loud[0];
+ motor_current_setting[1] = motor_current_setting_loud[1];
+ motor_current_setting[2] = motor_current_setting_loud[2];
+
+ }else{
+
+ motor_current_setting[0] = motor_current_setting_silent[0];
+ motor_current_setting[1] = motor_current_setting_silent[1];
+ motor_current_setting[2] = motor_current_setting_silent[2];
+
+ }
+ digipot_current(0, motor_current_setting[0]);
+ digipot_current(1, motor_current_setting[1]);
+ digipot_current(2, motor_current_setting[2]);
+ //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
+ TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
+ #endif
+}
+
+
+
+
+void digipot_current(uint8_t driver, int current)
+{
+ #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
+ const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
+ digitalPotWrite(digipot_ch[driver], current);
+ #endif
+ #ifdef MOTOR_CURRENT_PWM_XY_PIN
+ if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
+ if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
+ if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
+ #endif
+}
+
+void microstep_init()
+{
+ const uint8_t microstep_modes[] = MICROSTEP_MODES;
+
+ #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
+ pinMode(E1_MS1_PIN,OUTPUT);
+ pinMode(E1_MS2_PIN,OUTPUT);
+ #endif
+
+ #if defined(X_MS1_PIN) && X_MS1_PIN > -1
+ pinMode(X_MS1_PIN,OUTPUT);
+ pinMode(X_MS2_PIN,OUTPUT);
+ pinMode(Y_MS1_PIN,OUTPUT);
+ pinMode(Y_MS2_PIN,OUTPUT);
+ pinMode(Z_MS1_PIN,OUTPUT);
+ pinMode(Z_MS2_PIN,OUTPUT);
+ pinMode(E0_MS1_PIN,OUTPUT);
+ pinMode(E0_MS2_PIN,OUTPUT);
+ for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
+ #endif
+}
+
+void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
+{
+ if(ms1 > -1) switch(driver)
+ {
+ case 0: digitalWrite( X_MS1_PIN,ms1); break;
+ case 1: digitalWrite( Y_MS1_PIN,ms1); break;
+ case 2: digitalWrite( Z_MS1_PIN,ms1); break;
+ case 3: digitalWrite(E0_MS1_PIN,ms1); break;
+ #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
+ case 4: digitalWrite(E1_MS1_PIN,ms1); break;
+ #endif
+ }
+ if(ms2 > -1) switch(driver)
+ {
+ case 0: digitalWrite( X_MS2_PIN,ms2); break;
+ case 1: digitalWrite( Y_MS2_PIN,ms2); break;
+ case 2: digitalWrite( Z_MS2_PIN,ms2); break;
+ case 3: digitalWrite(E0_MS2_PIN,ms2); break;
+ #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
+ case 4: digitalWrite(E1_MS2_PIN,ms2); break;
+ #endif
+ }
+}
+
+void microstep_mode(uint8_t driver, uint8_t stepping_mode)
+{
+ switch(stepping_mode)
+ {
+ case 1: microstep_ms(driver,MICROSTEP1); break;
+ case 2: microstep_ms(driver,MICROSTEP2); break;
+ case 4: microstep_ms(driver,MICROSTEP4); break;
+ case 8: microstep_ms(driver,MICROSTEP8); break;
+ case 16: microstep_ms(driver,MICROSTEP16); break;
+ }
+}
+
+void microstep_readings()
+{
+ SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
+ SERIAL_PROTOCOLPGM("X: ");
+ SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
+ SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
+ SERIAL_PROTOCOLPGM("Y: ");
+ SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
+ SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
+ SERIAL_PROTOCOLPGM("Z: ");
+ SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
+ SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
+ SERIAL_PROTOCOLPGM("E0: ");
+ SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
+ SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
+ #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
+ SERIAL_PROTOCOLPGM("E1: ");
+ SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
+ SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
+ #endif
+}
+