Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorbubnikv <bubnikv@gmail.com>2018-09-14 16:03:38 +0300
committerbubnikv <bubnikv@gmail.com>2018-09-14 16:03:38 +0300
commit7fc0b4375c43ebb8dcb8e198cc1babdd78da866e (patch)
tree5fd9da1f0b308ce5440d7a432d169d99bf7a8273 /xs/src/libslic3r
parenta0e2df5dbb26079e5220fdc6fce02f5200c1421e (diff)
parent1acee8900695b7060f2ee136b4da8e3778b407cb (diff)
Merge remote-tracking branch 'origin/parallel_arrange'
Diffstat (limited to 'xs/src/libslic3r')
-rw-r--r--xs/src/libslic3r/ModelArrange.hpp469
1 files changed, 332 insertions, 137 deletions
diff --git a/xs/src/libslic3r/ModelArrange.hpp b/xs/src/libslic3r/ModelArrange.hpp
index f2d399ac6..b1ccf4d13 100644
--- a/xs/src/libslic3r/ModelArrange.hpp
+++ b/xs/src/libslic3r/ModelArrange.hpp
@@ -99,54 +99,56 @@ namespace bgi = boost::geometry::index;
using SpatElement = std::pair<Box, unsigned>;
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
+using ItemGroup = std::vector<std::reference_wrapper<Item>>;
+template<class TBin>
+using TPacker = typename placers::_NofitPolyPlacer<PolygonImpl, TBin>;
+
+const double BIG_ITEM_TRESHOLD = 0.02;
+
+Box boundingBox(const Box& pilebb, const Box& ibb ) {
+ auto& pminc = pilebb.minCorner();
+ auto& pmaxc = pilebb.maxCorner();
+ auto& iminc = ibb.minCorner();
+ auto& imaxc = ibb.maxCorner();
+ PointImpl minc, maxc;
+
+ setX(minc, std::min(getX(pminc), getX(iminc)));
+ setY(minc, std::min(getY(pminc), getY(iminc)));
+
+ setX(maxc, std::max(getX(pmaxc), getX(imaxc)));
+ setY(maxc, std::max(getY(pmaxc), getY(imaxc)));
+ return Box(minc, maxc);
+}
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
objfunc(const PointImpl& bincenter,
- double /*bin_area*/,
- ShapeLike::Shapes<PolygonImpl>& pile, // The currently arranged pile
- double /*pile_area*/,
+ const shapelike::Shapes<PolygonImpl>& merged_pile,
+ const Box& pilebb,
+ const ItemGroup& items,
const Item &item,
+ double bin_area,
double norm, // A norming factor for physical dimensions
- std::vector<double>& areacache, // pile item areas will be cached
// a spatial index to quickly get neighbors of the candidate item
- SpatIndex& spatindex
+ const SpatIndex& spatindex,
+ const SpatIndex& smalls_spatindex,
+ const ItemGroup& remaining
)
{
- using pl = PointLike;
- using sl = ShapeLike;
+ using Coord = TCoord<PointImpl>;
- static const double BIG_ITEM_TRESHOLD = 0.2;
static const double ROUNDNESS_RATIO = 0.5;
static const double DENSITY_RATIO = 1.0 - ROUNDNESS_RATIO;
// We will treat big items (compared to the print bed) differently
- auto normarea = [norm](double area) { return std::sqrt(area)/norm; };
-
- // If a new bin has been created:
- if(pile.size() < areacache.size()) {
- areacache.clear();
- spatindex.clear();
- }
-
- // We must fill the caches:
- int idx = 0;
- for(auto& p : pile) {
- if(idx == areacache.size()) {
- areacache.emplace_back(sl::area(p));
- if(normarea(areacache[idx]) > BIG_ITEM_TRESHOLD)
- spatindex.insert({sl::boundingBox(p), idx});
- }
-
- idx++;
- }
+ auto isBig = [bin_area](double a) {
+ return a/bin_area > BIG_ITEM_TRESHOLD ;
+ };
// Candidate item bounding box
- auto ibb = item.boundingBox();
+ auto ibb = sl::boundingBox(item.transformedShape());
// Calculate the full bounding box of the pile with the candidate item
- pile.emplace_back(item.transformedShape());
- auto fullbb = ShapeLike::boundingBox(pile);
- pile.pop_back();
+ auto fullbb = boundingBox(pilebb, ibb);
// The bounding box of the big items (they will accumulate in the center
// of the pile
@@ -157,19 +159,11 @@ objfunc(const PointImpl& bincenter,
boost::geometry::convert(boostbb, bigbb);
}
- // The size indicator of the candidate item. This is not the area,
- // but almost...
- double item_normarea = normarea(item.area());
-
// Will hold the resulting score
double score = 0;
- if(item_normarea > BIG_ITEM_TRESHOLD) {
+ if(isBig(item.area()) || spatindex.empty()) {
// This branch is for the bigger items..
- // Here we will use the closest point of the item bounding box to
- // the already arranged pile. So not the bb center nor the a choosen
- // corner but whichever is the closest to the center. This will
- // prevent some unwanted strange arrangements.
auto minc = ibb.minCorner(); // bottom left corner
auto maxc = ibb.maxCorner(); // top right corner
@@ -190,48 +184,68 @@ objfunc(const PointImpl& bincenter,
// The smalles distance from the arranged pile center:
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
+ auto bindist = pl::distance(ibb.center(), bincenter) / norm;
+ dist = 0.8*dist + 0.2*bindist;
// Density is the pack density: how big is the arranged pile
- auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
-
- // Prepare a variable for the alignment score.
- // This will indicate: how well is the candidate item aligned with
- // its neighbors. We will check the aligment with all neighbors and
- // return the score for the best alignment. So it is enough for the
- // candidate to be aligned with only one item.
- auto alignment_score = std::numeric_limits<double>::max();
-
- auto& trsh = item.transformedShape();
-
- auto querybb = item.boundingBox();
+ double density = 0;
+
+ if(remaining.empty()) {
+
+ auto mp = merged_pile;
+ mp.emplace_back(item.transformedShape());
+ auto chull = sl::convexHull(mp);
+
+ placers::EdgeCache<PolygonImpl> ec(chull);
+
+ double circ = ec.circumference() / norm;
+ double bcirc = 2.0*(fullbb.width() + fullbb.height()) / norm;
+ score = 0.5*circ + 0.5*bcirc;
+
+ } else {
+ // Prepare a variable for the alignment score.
+ // This will indicate: how well is the candidate item aligned with
+ // its neighbors. We will check the alignment with all neighbors and
+ // return the score for the best alignment. So it is enough for the
+ // candidate to be aligned with only one item.
+ auto alignment_score = 1.0;
+
+ density = std::sqrt((fullbb.width() / norm )*
+ (fullbb.height() / norm));
+ auto querybb = item.boundingBox();
+
+ // Query the spatial index for the neighbors
+ std::vector<SpatElement> result;
+ result.reserve(spatindex.size());
+ if(isBig(item.area())) {
+ spatindex.query(bgi::intersects(querybb),
+ std::back_inserter(result));
+ } else {
+ smalls_spatindex.query(bgi::intersects(querybb),
+ std::back_inserter(result));
+ }
- // Query the spatial index for the neigbours
- std::vector<SpatElement> result;
- spatindex.query(bgi::intersects(querybb), std::back_inserter(result));
+ for(auto& e : result) { // now get the score for the best alignment
+ auto idx = e.second;
+ Item& p = items[idx];
+ auto parea = p.area();
+ if(std::abs(1.0 - parea/item.area()) < 1e-6) {
+ auto bb = boundingBox(p.boundingBox(), ibb);
+ auto bbarea = bb.area();
+ auto ascore = 1.0 - (item.area() + parea)/bbarea;
- for(auto& e : result) { // now get the score for the best alignment
- auto idx = e.second;
- auto& p = pile[idx];
- auto parea = areacache[idx];
- auto bb = sl::boundingBox(sl::Shapes<PolygonImpl>{p, trsh});
- auto bbarea = bb.area();
- auto ascore = 1.0 - (item.area() + parea)/bbarea;
+ if(ascore < alignment_score) alignment_score = ascore;
+ }
+ }
- if(ascore < alignment_score) alignment_score = ascore;
+ // The final mix of the score is the balance between the distance
+ // from the full pile center, the pack density and the
+ // alignment with the neighbors
+ if(result.empty())
+ score = 0.5 * dist + 0.5 * density;
+ else
+ score = 0.40 * dist + 0.40 * density + 0.2 * alignment_score;
}
-
- // The final mix of the score is the balance between the distance
- // from the full pile center, the pack density and the
- // alignment with the neigbours
- auto C = 0.33;
- score = C * dist + C * density + C * alignment_score;
-
- } else if( item_normarea < BIG_ITEM_TRESHOLD && spatindex.empty()) {
- // If there are no big items, only small, we should consider the
- // density here as well to not get silly results
- auto bindist = pl::distance(ibb.center(), bincenter) / norm;
- auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
- score = ROUNDNESS_RATIO * bindist + DENSITY_RATIO * density;
} else {
// Here there are the small items that should be placed around the
// already processed bigger items.
@@ -259,7 +273,9 @@ void fillConfig(PConf& pcfg) {
// The accuracy of optimization.
// Goes from 0.0 to 1.0 and scales performance as well
- pcfg.accuracy = 0.6f;
+ pcfg.accuracy = 0.65f;
+
+ pcfg.parallel = true;
}
template<class TBin>
@@ -268,31 +284,65 @@ class AutoArranger {};
template<class TBin>
class _ArrBase {
protected:
- using Placer = strategies::_NofitPolyPlacer<PolygonImpl, TBin>;
+
+ using Placer = TPacker<TBin>;
using Selector = FirstFitSelection;
- using Packer = Arranger<Placer, Selector>;
+ using Packer = Nester<Placer, Selector>;
using PConfig = typename Packer::PlacementConfig;
using Distance = TCoord<PointImpl>;
- using Pile = ShapeLike::Shapes<PolygonImpl>;
+ using Pile = sl::Shapes<PolygonImpl>;
Packer pck_;
PConfig pconf_; // Placement configuration
double bin_area_;
- std::vector<double> areacache_;
SpatIndex rtree_;
+ SpatIndex smallsrtree_;
+ double norm_;
+ Pile merged_pile_;
+ Box pilebb_;
+ ItemGroup remaining_;
+ ItemGroup items_;
public:
_ArrBase(const TBin& bin, Distance dist,
std::function<void(unsigned)> progressind):
- pck_(bin, dist), bin_area_(ShapeLike::area<PolygonImpl>(bin))
+ pck_(bin, dist), bin_area_(sl::area(bin)),
+ norm_(std::sqrt(sl::area(bin)))
{
fillConfig(pconf_);
+
+ pconf_.before_packing =
+ [this](const Pile& merged_pile, // merged pile
+ const ItemGroup& items, // packed items
+ const ItemGroup& remaining) // future items to be packed
+ {
+ items_ = items;
+ merged_pile_ = merged_pile;
+ remaining_ = remaining;
+
+ pilebb_ = sl::boundingBox(merged_pile);
+
+ rtree_.clear();
+ smallsrtree_.clear();
+
+ // We will treat big items (compared to the print bed) differently
+ auto isBig = [this](double a) {
+ return a/bin_area_ > BIG_ITEM_TRESHOLD ;
+ };
+
+ for(unsigned idx = 0; idx < items.size(); ++idx) {
+ Item& itm = items[idx];
+ if(isBig(itm.area())) rtree_.insert({itm.boundingBox(), idx});
+ smallsrtree_.insert({itm.boundingBox(), idx});
+ }
+ };
+
pck_.progressIndicator(progressind);
}
template<class...Args> inline IndexedPackGroup operator()(Args&&...args) {
- areacache_.clear();
- return pck_.arrangeIndexed(std::forward<Args>(args)...);
+ rtree_.clear();
+ return pck_.executeIndexed(std::forward<Args>(args)...);
}
};
@@ -304,22 +354,71 @@ public:
std::function<void(unsigned)> progressind):
_ArrBase<Box>(bin, dist, progressind)
{
- pconf_.object_function = [this, bin] (
- Pile& pile,
- const Item &item,
- double pile_area,
- double norm,
- double /*penality*/) {
-
- auto result = objfunc(bin.center(), bin_area_, pile,
- pile_area, item, norm, areacache_, rtree_);
+
+ pconf_.object_function = [this, bin] (const Item &item) {
+
+ auto result = objfunc(bin.center(),
+ merged_pile_,
+ pilebb_,
+ items_,
+ item,
+ bin_area_,
+ norm_,
+ rtree_,
+ smallsrtree_,
+ remaining_);
+
double score = std::get<0>(result);
auto& fullbb = std::get<1>(result);
- auto wdiff = fullbb.width() - bin.width();
- auto hdiff = fullbb.height() - bin.height();
- if(wdiff > 0) score += std::pow(wdiff, 2) / norm;
- if(hdiff > 0) score += std::pow(hdiff, 2) / norm;
+ double miss = Placer::overfit(fullbb, bin);
+ miss = miss > 0? miss : 0;
+ score += miss*miss;
+
+ return score;
+ };
+
+ pck_.configure(pconf_);
+ }
+};
+
+using lnCircle = libnest2d::_Circle<libnest2d::PointImpl>;
+
+template<>
+class AutoArranger<lnCircle>: public _ArrBase<lnCircle> {
+public:
+
+ AutoArranger(const lnCircle& bin, Distance dist,
+ std::function<void(unsigned)> progressind):
+ _ArrBase<lnCircle>(bin, dist, progressind) {
+
+ pconf_.object_function = [this, &bin] (const Item &item) {
+
+ auto result = objfunc(bin.center(),
+ merged_pile_,
+ pilebb_,
+ items_,
+ item,
+ bin_area_,
+ norm_,
+ rtree_,
+ smallsrtree_,
+ remaining_);
+
+ double score = std::get<0>(result);
+
+ auto isBig = [this](const Item& itm) {
+ return itm.area()/bin_area_ > BIG_ITEM_TRESHOLD ;
+ };
+
+ if(isBig(item)) {
+ auto mp = merged_pile_;
+ mp.push_back(item.transformedShape());
+ auto chull = sl::convexHull(mp);
+ double miss = Placer::overfit(chull, bin);
+ if(miss < 0) miss = 0;
+ score += miss*miss;
+ }
return score;
};
@@ -335,27 +434,21 @@ public:
std::function<void(unsigned)> progressind):
_ArrBase<PolygonImpl>(bin, dist, progressind)
{
- pconf_.object_function = [this, &bin] (
- Pile& pile,
- const Item &item,
- double pile_area,
- double norm,
- double /*penality*/) {
-
- auto binbb = ShapeLike::boundingBox(bin);
- auto result = objfunc(binbb.center(), bin_area_, pile,
- pile_area, item, norm, areacache_, rtree_);
+ pconf_.object_function = [this, &bin] (const Item &item) {
+
+ auto binbb = sl::boundingBox(bin);
+ auto result = objfunc(binbb.center(),
+ merged_pile_,
+ pilebb_,
+ items_,
+ item,
+ bin_area_,
+ norm_,
+ rtree_,
+ smallsrtree_,
+ remaining_);
double score = std::get<0>(result);
- pile.emplace_back(item.transformedShape());
- auto chull = ShapeLike::convexHull(pile);
- pile.pop_back();
-
- // If it does not fit into the print bed we will beat it with a
- // large penality. If we would not do this, there would be only one
- // big pile that doesn't care whether it fits onto the print bed.
- if(!Placer::wouldFit(chull, bin)) score += norm;
-
return score;
};
@@ -370,15 +463,18 @@ public:
AutoArranger(Distance dist, std::function<void(unsigned)> progressind):
_ArrBase<Box>(Box(0, 0), dist, progressind)
{
- this->pconf_.object_function = [this] (
- Pile& pile,
- const Item &item,
- double pile_area,
- double norm,
- double /*penality*/) {
-
- auto result = objfunc({0, 0}, 0, pile, pile_area,
- item, norm, areacache_, rtree_);
+ this->pconf_.object_function = [this] (const Item &item) {
+
+ auto result = objfunc({0, 0},
+ merged_pile_,
+ pilebb_,
+ items_,
+ item,
+ 0,
+ norm_,
+ rtree_,
+ smallsrtree_,
+ remaining_);
return std::get<0>(result);
};
@@ -440,16 +536,104 @@ ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
return ret;
}
-enum BedShapeHint {
+class Circle {
+ Point center_;
+ double radius_;
+public:
+
+ inline Circle(): center_(0, 0), radius_(std::nan("")) {}
+ inline Circle(const Point& c, double r): center_(c), radius_(r) {}
+
+ inline double radius() const { return radius_; }
+ inline const Point& center() const { return center_; }
+ inline operator bool() { return !std::isnan(radius_); }
+};
+
+enum class BedShapeType {
BOX,
CIRCLE,
IRREGULAR,
WHO_KNOWS
};
-BedShapeHint bedShape(const Slic3r::Polyline& /*bed*/) {
+struct BedShapeHint {
+ BedShapeType type;
+ /*union*/ struct { // I know but who cares...
+ Circle circ;
+ BoundingBox box;
+ Polyline polygon;
+ } shape;
+};
+
+BedShapeHint bedShape(const Polyline& bed) {
+ static const double E = 10/SCALING_FACTOR;
+
+ BedShapeHint ret;
+
+ auto width = [](const BoundingBox& box) {
+ return box.max.x - box.min.x;
+ };
+
+ auto height = [](const BoundingBox& box) {
+ return box.max.y - box.min.y;
+ };
+
+ auto area = [&width, &height](const BoundingBox& box) {
+ double w = width(box);
+ double h = height(box);
+ return w*h;
+ };
+
+ auto poly_area = [](Polyline p) {
+ Polygon pp; pp.points.reserve(p.points.size() + 1);
+ pp.points = std::move(p.points);
+ pp.points.emplace_back(pp.points.front());
+ return std::abs(pp.area());
+ };
+
+
+ auto bb = bed.bounding_box();
+
+ auto isCircle = [bb](const Polyline& polygon) {
+ auto center = bb.center();
+ std::vector<double> vertex_distances;
+ double avg_dist = 0;
+ for (auto pt: polygon.points)
+ {
+ double distance = center.distance_to(pt);
+ vertex_distances.push_back(distance);
+ avg_dist += distance;
+ }
+
+ avg_dist /= vertex_distances.size();
+
+ Circle ret(center, avg_dist);
+ for (auto el: vertex_distances)
+ {
+ if (abs(el - avg_dist) > 10 * SCALED_EPSILON)
+ ret = Circle();
+ break;
+ }
+
+ return ret;
+ };
+
+ auto parea = poly_area(bed);
+
+ if( (1.0 - parea/area(bb)) < 1e-3 ) {
+ ret.type = BedShapeType::BOX;
+ ret.shape.box = bb;
+ }
+ else if(auto c = isCircle(bed)) {
+ ret.type = BedShapeType::CIRCLE;
+ ret.shape.circ = c;
+ } else {
+ ret.type = BedShapeType::IRREGULAR;
+ ret.shape.polygon = bed;
+ }
+
// Determine the bed shape by hand
- return BOX;
+ return ret;
}
void applyResult(
@@ -525,7 +709,10 @@ bool arrange(Model &model, coordf_t min_obj_distance,
});
IndexedPackGroup result;
- BoundingBox bbb(bed.points);
+
+ if(bedhint.type == BedShapeType::WHO_KNOWS) bedhint = bedShape(bed);
+
+ BoundingBox bbb(bed);
auto binbb = Box({
static_cast<libnest2d::Coord>(bbb.min.x),
@@ -536,8 +723,8 @@ bool arrange(Model &model, coordf_t min_obj_distance,
static_cast<libnest2d::Coord>(bbb.max.y)
});
- switch(bedhint) {
- case BOX: {
+ switch(bedhint.type) {
+ case BedShapeType::BOX: {
// Create the arranger for the box shaped bed
AutoArranger<Box> arrange(binbb, min_obj_distance, progressind);
@@ -547,16 +734,22 @@ bool arrange(Model &model, coordf_t min_obj_distance,
result = arrange(shapes.begin(), shapes.end());
break;
}
- case CIRCLE:
+ case BedShapeType::CIRCLE: {
+
+ auto c = bedhint.shape.circ;
+ auto cc = lnCircle({c.center().x, c.center().y} , c.radius());
+
+ AutoArranger<lnCircle> arrange(cc, min_obj_distance, progressind);
+ result = arrange(shapes.begin(), shapes.end());
break;
- case IRREGULAR:
- case WHO_KNOWS: {
+ }
+ case BedShapeType::IRREGULAR:
+ case BedShapeType::WHO_KNOWS: {
+
using P = libnest2d::PolygonImpl;
auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
- P irrbed = ShapeLike::create<PolygonImpl>(std::move(ctour));
-
-// std::cout << ShapeLike::toString(irrbed) << std::endl;
+ P irrbed = sl::create<PolygonImpl>(std::move(ctour));
AutoArranger<P> arrange(irrbed, min_obj_distance, progressind);
@@ -567,6 +760,8 @@ bool arrange(Model &model, coordf_t min_obj_distance,
}
};
+ if(result.empty()) return false;
+
if(first_bin_only) {
applyResult(result.front(), 0, shapemap);
} else {