#include "Print.hpp" #include "BoundingBox.hpp" #include "ClipperUtils.hpp" #include "ElephantFootCompensation.hpp" #include "Geometry.hpp" #include "I18N.hpp" #include "Layer.hpp" #include "SupportMaterial.hpp" #include "Surface.hpp" #include "Slicing.hpp" #include "Utils.hpp" #include "AABBTreeIndirect.hpp" #include "Fill/FillAdaptive.hpp" #include #include #include #include #include #include //! macro used to mark string used at localization, //! return same string #define L(s) Slic3r::I18N::translate(s) #ifdef SLIC3R_DEBUG_SLICE_PROCESSING #define SLIC3R_DEBUG #endif // #define SLIC3R_DEBUG // Make assert active if SLIC3R_DEBUG #ifdef SLIC3R_DEBUG #undef NDEBUG #define DEBUG #define _DEBUG #include "SVG.hpp" #undef assert #include #endif namespace Slic3r { // Constructor is called from the main thread, therefore all Model / ModelObject / ModelIntance data are valid. PrintObject::PrintObject(Print* print, ModelObject* model_object, const Transform3d& trafo, PrintInstances&& instances) : PrintObjectBaseWithState(print, model_object), m_trafo(trafo) { // Compute centering offet to be applied to our meshes so that we work with smaller coordinates // requiring less bits to represent Clipper coordinates. // Snug bounding box of a rotated and scaled object by the 1st instantion, without the instance translation applied. // All the instances share the transformation matrix with the exception of translation in XY and rotation by Z, // therefore a bounding box from 1st instance of a ModelObject is good enough for calculating the object center, // snug height and an approximate bounding box in XY. BoundingBoxf3 bbox = model_object->raw_bounding_box(); Vec3d bbox_center = bbox.center(); // We may need to rotate the bbox / bbox_center from the original instance to the current instance. double z_diff = Geometry::rotation_diff_z(model_object->instances.front()->get_rotation(), instances.front().model_instance->get_rotation()); if (std::abs(z_diff) > EPSILON) { auto z_rot = Eigen::AngleAxisd(z_diff, Vec3d::UnitZ()); bbox = bbox.transformed(Transform3d(z_rot)); bbox_center = (z_rot * bbox_center).eval(); } // Center of the transformed mesh (without translation). m_center_offset = Point::new_scale(bbox_center.x(), bbox_center.y()); // Size of the transformed mesh. This bounding may not be snug in XY plane, but it is snug in Z. m_size = (bbox.size() * (1. / SCALING_FACTOR)).cast(); this->set_instances(std::move(instances)); } PrintBase::ApplyStatus PrintObject::set_instances(PrintInstances &&instances) { for (PrintInstance &i : instances) // Add the center offset, which will be subtracted from the mesh when slicing. i.shift += m_center_offset; // Invalidate and set copies. PrintBase::ApplyStatus status = PrintBase::APPLY_STATUS_UNCHANGED; bool equal_length = instances.size() == m_instances.size(); bool equal = equal_length && std::equal(instances.begin(), instances.end(), m_instances.begin(), [](const PrintInstance& lhs, const PrintInstance& rhs) { return lhs.model_instance == rhs.model_instance && lhs.shift == rhs.shift; }); if (! equal) { status = PrintBase::APPLY_STATUS_CHANGED; if (m_print->invalidate_steps({ psSkirt, psBrim, psGCodeExport }) || (! equal_length && m_print->invalidate_step(psWipeTower))) status = PrintBase::APPLY_STATUS_INVALIDATED; m_instances = std::move(instances); for (PrintInstance &i : m_instances) i.print_object = this; } return status; } // 1) Decides Z positions of the layers, // 2) Initializes layers and their regions // 3) Slices the object meshes // 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes // 5) Applies size compensation (offsets the slices in XY plane) // 6) Replaces bad slices by the slices reconstructed from the upper/lower layer // Resulting expolygons of layer regions are marked as Internal. // // this should be idempotent void PrintObject::slice() { if (! this->set_started(posSlice)) return; m_print->set_status(10, L("Processing triangulated mesh")); std::vector layer_height_profile; this->update_layer_height_profile(*this->model_object(), m_slicing_params, layer_height_profile); m_print->throw_if_canceled(); this->_slice(layer_height_profile); m_print->throw_if_canceled(); // Fix the model. //FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend. std::string warning = this->_fix_slicing_errors(); m_print->throw_if_canceled(); if (! warning.empty()) BOOST_LOG_TRIVIAL(info) << warning; // Simplify slices if required. if (m_print->config().resolution) this->simplify_slices(scale_(this->print()->config().resolution)); // Update bounding boxes tbb::parallel_for( tbb::blocked_range(0, m_layers.size()), [this](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); Layer &layer = *m_layers[layer_idx]; layer.lslices_bboxes.clear(); layer.lslices_bboxes.reserve(layer.lslices.size()); for (const ExPolygon &expoly : layer.lslices) layer.lslices_bboxes.emplace_back(get_extents(expoly)); } }); if (m_layers.empty()) throw std::runtime_error("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n"); this->set_done(posSlice); } // 1) Merges typed region slices into stInternal type. // 2) Increases an "extra perimeters" counter at region slices where needed. // 3) Generates perimeters, gap fills and fill regions (fill regions of type stInternal). void PrintObject::make_perimeters() { // prerequisites this->slice(); if (! this->set_started(posPerimeters)) return; m_print->set_status(20, L("Generating perimeters")); BOOST_LOG_TRIVIAL(info) << "Generating perimeters..." << log_memory_info(); // merge slices if they were split into types if (m_typed_slices) { for (Layer *layer : m_layers) { layer->merge_slices(); m_print->throw_if_canceled(); } m_typed_slices = false; } // compare each layer to the one below, and mark those slices needing // one additional inner perimeter, like the top of domed objects- // this algorithm makes sure that at least one perimeter is overlapping // but we don't generate any extra perimeter if fill density is zero, as they would be floating // inside the object - infill_only_where_needed should be the method of choice for printing // hollow objects for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) { const PrintRegion ®ion = *m_print->regions()[region_id]; if (! region.config().extra_perimeters || region.config().perimeters == 0 || region.config().fill_density == 0 || this->layer_count() < 2) continue; BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - start"; tbb::parallel_for( tbb::blocked_range(0, m_layers.size() - 1), [this, ®ion, region_id](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); LayerRegion &layerm = *m_layers[layer_idx]->m_regions[region_id]; const LayerRegion &upper_layerm = *m_layers[layer_idx+1]->m_regions[region_id]; const Polygons upper_layerm_polygons = upper_layerm.slices; // Filter upper layer polygons in intersection_ppl by their bounding boxes? // my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ]; const double total_loop_length = total_length(upper_layerm_polygons); const coord_t perimeter_spacing = layerm.flow(frPerimeter).scaled_spacing(); const Flow ext_perimeter_flow = layerm.flow(frExternalPerimeter); const coord_t ext_perimeter_width = ext_perimeter_flow.scaled_width(); const coord_t ext_perimeter_spacing = ext_perimeter_flow.scaled_spacing(); for (Surface &slice : layerm.slices.surfaces) { for (;;) { // compute the total thickness of perimeters const coord_t perimeters_thickness = ext_perimeter_width/2 + ext_perimeter_spacing/2 + (region.config().perimeters-1 + slice.extra_perimeters) * perimeter_spacing; // define a critical area where we don't want the upper slice to fall into // (it should either lay over our perimeters or outside this area) const coord_t critical_area_depth = coord_t(perimeter_spacing * 1.5); const Polygons critical_area = diff( offset(slice.expolygon, float(- perimeters_thickness)), offset(slice.expolygon, float(- perimeters_thickness - critical_area_depth)) ); // check whether a portion of the upper slices falls inside the critical area const Polylines intersection = intersection_pl(to_polylines(upper_layerm_polygons), critical_area); // only add an additional loop if at least 30% of the slice loop would benefit from it if (total_length(intersection) <= total_loop_length*0.3) break; /* if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output( "extra.svg", no_arrows => 1, expolygons => union_ex($critical_area), polylines => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ], ); } */ ++ slice.extra_perimeters; } #ifdef DEBUG if (slice.extra_perimeters > 0) printf(" adding %d more perimeter(s) at layer %zu\n", slice.extra_perimeters, layer_idx); #endif } } }); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - end"; } BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - start"; tbb::parallel_for( tbb::blocked_range(0, m_layers.size()), [this](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); m_layers[layer_idx]->make_perimeters(); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - end"; this->set_done(posPerimeters); } void PrintObject::prepare_infill() { if (! this->set_started(posPrepareInfill)) return; m_print->set_status(30, L("Preparing infill")); // This will assign a type (top/bottom/internal) to $layerm->slices. // Then the classifcation of $layerm->slices is transfered onto // the $layerm->fill_surfaces by clipping $layerm->fill_surfaces // by the cummulative area of the previous $layerm->fill_surfaces. this->detect_surfaces_type(); m_print->throw_if_canceled(); // Decide what surfaces are to be filled. // Here the stTop / stBottomBridge / stBottom infill is turned to just stInternal if zero top / bottom infill layers are configured. // Also tiny stInternal surfaces are turned to stInternalSolid. BOOST_LOG_TRIVIAL(info) << "Preparing fill surfaces..." << log_memory_info(); for (auto *layer : m_layers) for (auto *region : layer->m_regions) { region->prepare_fill_surfaces(); m_print->throw_if_canceled(); } // this will detect bridges and reverse bridges // and rearrange top/bottom/internal surfaces // It produces enlarged overlapping bridging areas. // // 1) stBottomBridge / stBottom infill is grown by 3mm and clipped by the total infill area. Bridges are detected. The areas may overlap. // 2) stTop is grown by 3mm and clipped by the grown bottom areas. The areas may overlap. // 3) Clip the internal surfaces by the grown top/bottom surfaces. // 4) Merge surfaces with the same style. This will mostly get rid of the overlaps. //FIXME This does not likely merge surfaces, which are supported by a material with different colors, but same properties. this->process_external_surfaces(); m_print->throw_if_canceled(); // Add solid fills to ensure the shell vertical thickness. this->discover_vertical_shells(); m_print->throw_if_canceled(); // Debugging output. #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) { for (const Layer *layer : m_layers) { LayerRegion *layerm = layer->m_regions[region_id]; layerm->export_region_slices_to_svg_debug("6_discover_vertical_shells-final"); layerm->export_region_fill_surfaces_to_svg_debug("6_discover_vertical_shells-final"); } // for each layer } // for each region #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Detect, which fill surfaces are near external layers. // They will be split in internal and internal-solid surfaces. // The purpose is to add a configurable number of solid layers to support the TOP surfaces // and to add a configurable number of solid layers above the BOTTOM / BOTTOMBRIDGE surfaces // to close these surfaces reliably. //FIXME Vojtech: Is this a good place to add supporting infills below sloping perimeters? this->discover_horizontal_shells(); m_print->throw_if_canceled(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) { for (const Layer *layer : m_layers) { LayerRegion *layerm = layer->m_regions[region_id]; layerm->export_region_slices_to_svg_debug("7_discover_horizontal_shells-final"); layerm->export_region_fill_surfaces_to_svg_debug("7_discover_horizontal_shells-final"); } // for each layer } // for each region #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Only active if config->infill_only_where_needed. This step trims the sparse infill, // so it acts as an internal support. It maintains all other infill types intact. // Here the internal surfaces and perimeters have to be supported by the sparse infill. //FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support. // Likely the sparse infill will not be anchored correctly, so it will not work as intended. // Also one wishes the perimeters to be supported by a full infill. this->clip_fill_surfaces(); m_print->throw_if_canceled(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) { for (const Layer *layer : m_layers) { LayerRegion *layerm = layer->m_regions[region_id]; layerm->export_region_slices_to_svg_debug("8_clip_surfaces-final"); layerm->export_region_fill_surfaces_to_svg_debug("8_clip_surfaces-final"); } // for each layer } // for each region #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // the following step needs to be done before combination because it may need // to remove only half of the combined infill this->bridge_over_infill(); m_print->throw_if_canceled(); // combine fill surfaces to honor the "infill every N layers" option this->combine_infill(); m_print->throw_if_canceled(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) { for (const Layer *layer : m_layers) { LayerRegion *layerm = layer->m_regions[region_id]; layerm->export_region_slices_to_svg_debug("9_prepare_infill-final"); layerm->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final"); } // for each layer } // for each region for (const Layer *layer : m_layers) { layer->export_region_slices_to_svg_debug("9_prepare_infill-final"); layer->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final"); } // for each layer #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ this->set_done(posPrepareInfill); } void PrintObject::infill() { // prerequisites this->prepare_infill(); if (this->set_started(posInfill)) { std::unique_ptr octree = this->prepare_adaptive_infill_data(); BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - start"; tbb::parallel_for( tbb::blocked_range(0, m_layers.size()), [this, &octree](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); m_layers[layer_idx]->make_fills(octree.get()); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - end"; /* we could free memory now, but this would make this step not idempotent ### $_->fill_surfaces->clear for map @{$_->regions}, @{$object->layers}; */ this->set_done(posInfill); } } void PrintObject::ironing() { if (this->set_started(posIroning)) { BOOST_LOG_TRIVIAL(debug) << "Ironing in parallel - start"; tbb::parallel_for( tbb::blocked_range(1, m_layers.size()), [this](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); m_layers[layer_idx]->make_ironing(); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Ironing in parallel - end"; this->set_done(posIroning); } } void PrintObject::generate_support_material() { if (this->set_started(posSupportMaterial)) { this->clear_support_layers(); if ((m_config.support_material || m_config.raft_layers > 0) && m_layers.size() > 1) { m_print->set_status(85, L("Generating support material")); this->_generate_support_material(); m_print->throw_if_canceled(); } else { #if 0 // Printing without supports. Empty layer means some objects or object parts are levitating, // therefore they cannot be printed without supports. for (const Layer *layer : m_layers) if (layer->empty()) throw std::runtime_error("Levitating objects cannot be printed without supports."); #endif } this->set_done(posSupportMaterial); } } std::unique_ptr PrintObject::prepare_adaptive_infill_data() { auto [adaptive_line_spacing, support_line_spacing] = adaptive_fill_line_spacing(*this); if (adaptive_line_spacing == 0.) return std::unique_ptr{}; TriangleMesh mesh = this->model_object()->raw_mesh(); mesh.transform(m_trafo, true); // Apply XY shift mesh.translate(- unscale(m_center_offset.x()), - unscale(m_center_offset.y()), 0); // Center of the first cube in octree Vec3d mesh_origin = mesh.bounding_box().center(); return FillAdaptive::build_octree(mesh, adaptive_line_spacing, mesh_origin); } void PrintObject::clear_layers() { for (Layer *l : m_layers) delete l; m_layers.clear(); } Layer* PrintObject::add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z) { m_layers.emplace_back(new Layer(id, this, height, print_z, slice_z)); return m_layers.back(); } void PrintObject::clear_support_layers() { for (Layer *l : m_support_layers) delete l; m_support_layers.clear(); } SupportLayer* PrintObject::add_support_layer(int id, coordf_t height, coordf_t print_z) { m_support_layers.emplace_back(new SupportLayer(id, this, height, print_z, -1)); return m_support_layers.back(); } SupportLayerPtrs::const_iterator PrintObject::insert_support_layer(SupportLayerPtrs::const_iterator pos, size_t id, coordf_t height, coordf_t print_z, coordf_t slice_z) { return m_support_layers.insert(pos, new SupportLayer(id, this, height, print_z, slice_z)); } // Called by Print::apply(). // This method only accepts PrintObjectConfig and PrintRegionConfig option keys. bool PrintObject::invalidate_state_by_config_options(const std::vector &opt_keys) { if (opt_keys.empty()) return false; std::vector steps; bool invalidated = false; for (const t_config_option_key &opt_key : opt_keys) { if ( opt_key == "perimeters" || opt_key == "extra_perimeters" || opt_key == "gap_fill_speed" || opt_key == "overhangs" || opt_key == "first_layer_extrusion_width" || opt_key == "perimeter_extrusion_width" || opt_key == "infill_overlap" || opt_key == "thin_walls" || opt_key == "external_perimeters_first") { steps.emplace_back(posPerimeters); } else if ( opt_key == "layer_height" || opt_key == "first_layer_height" || opt_key == "raft_layers" || opt_key == "slice_closing_radius") { steps.emplace_back(posSlice); } else if ( opt_key == "clip_multipart_objects" || opt_key == "elefant_foot_compensation" || opt_key == "support_material_contact_distance" || opt_key == "xy_size_compensation") { steps.emplace_back(posSlice); } else if (opt_key == "support_material") { steps.emplace_back(posSupportMaterial); if (m_config.support_material_contact_distance == 0.) { // Enabling / disabling supports while soluble support interface is enabled. // This changes the bridging logic (bridging enabled without supports, disabled with supports). // Reset everything. // See GH #1482 for details. steps.emplace_back(posSlice); } } else if ( opt_key == "support_material_auto" || opt_key == "support_material_angle" || opt_key == "support_material_buildplate_only" || opt_key == "support_material_enforce_layers" || opt_key == "support_material_extruder" || opt_key == "support_material_extrusion_width" || opt_key == "support_material_interface_layers" || opt_key == "support_material_interface_contact_loops" || opt_key == "support_material_interface_extruder" || opt_key == "support_material_interface_spacing" || opt_key == "support_material_pattern" || opt_key == "support_material_xy_spacing" || opt_key == "support_material_spacing" || opt_key == "support_material_synchronize_layers" || opt_key == "support_material_threshold" || opt_key == "support_material_with_sheath" || opt_key == "dont_support_bridges" || opt_key == "first_layer_extrusion_width") { steps.emplace_back(posSupportMaterial); } else if ( opt_key == "interface_shells" || opt_key == "infill_only_where_needed" || opt_key == "infill_every_layers" || opt_key == "solid_infill_every_layers" || opt_key == "bottom_solid_layers" || opt_key == "bottom_solid_min_thickness" || opt_key == "top_solid_layers" || opt_key == "top_solid_min_thickness" || opt_key == "solid_infill_below_area" || opt_key == "infill_extruder" || opt_key == "solid_infill_extruder" || opt_key == "infill_extrusion_width" || opt_key == "ensure_vertical_shell_thickness" || opt_key == "bridge_angle") { steps.emplace_back(posPrepareInfill); } else if ( opt_key == "top_fill_pattern" || opt_key == "bottom_fill_pattern" || opt_key == "external_fill_link_max_length" || opt_key == "fill_angle" || opt_key == "fill_pattern" || opt_key == "fill_link_max_length" || opt_key == "top_infill_extrusion_width" || opt_key == "first_layer_extrusion_width") { steps.emplace_back(posInfill); } else if ( opt_key == "fill_density" || opt_key == "solid_infill_extrusion_width") { steps.emplace_back(posPerimeters); steps.emplace_back(posPrepareInfill); } else if ( opt_key == "external_perimeter_extrusion_width" || opt_key == "perimeter_extruder") { steps.emplace_back(posPerimeters); steps.emplace_back(posSupportMaterial); } else if (opt_key == "bridge_flow_ratio") { if (m_config.support_material_contact_distance > 0.) { // Only invalidate due to bridging if bridging is enabled. // If later "support_material_contact_distance" is modified, the complete PrintObject is invalidated anyway. steps.emplace_back(posPerimeters); steps.emplace_back(posInfill); steps.emplace_back(posSupportMaterial); } } else if ( opt_key == "seam_position" || opt_key == "seam_preferred_direction" || opt_key == "seam_preferred_direction_jitter" || opt_key == "support_material_speed" || opt_key == "support_material_interface_speed" || opt_key == "bridge_speed" || opt_key == "external_perimeter_speed" || opt_key == "infill_speed" || opt_key == "perimeter_speed" || opt_key == "small_perimeter_speed" || opt_key == "solid_infill_speed" || opt_key == "top_solid_infill_speed") { invalidated |= m_print->invalidate_step(psGCodeExport); } else if ( opt_key == "wipe_into_infill" || opt_key == "wipe_into_objects") { invalidated |= m_print->invalidate_step(psWipeTower); invalidated |= m_print->invalidate_step(psGCodeExport); } else { // for legacy, if we can't handle this option let's invalidate all steps this->invalidate_all_steps(); invalidated = true; } } sort_remove_duplicates(steps); for (PrintObjectStep step : steps) invalidated |= this->invalidate_step(step); return invalidated; } bool PrintObject::invalidate_step(PrintObjectStep step) { bool invalidated = Inherited::invalidate_step(step); // propagate to dependent steps if (step == posPerimeters) { invalidated |= this->invalidate_steps({ posPrepareInfill, posInfill }); invalidated |= m_print->invalidate_steps({ psSkirt, psBrim }); } else if (step == posPrepareInfill) { invalidated |= this->invalidate_step(posInfill); } else if (step == posInfill) { invalidated |= m_print->invalidate_steps({ psSkirt, psBrim }); } else if (step == posSlice) { invalidated |= this->invalidate_steps({ posPerimeters, posPrepareInfill, posInfill, posSupportMaterial }); invalidated |= m_print->invalidate_steps({ psSkirt, psBrim }); this->m_slicing_params.valid = false; } else if (step == posSupportMaterial) { invalidated |= m_print->invalidate_steps({ psSkirt, psBrim }); this->m_slicing_params.valid = false; } // Wipe tower depends on the ordering of extruders, which in turn depends on everything. // It also decides about what the wipe_into_infill / wipe_into_object features will do, // and that too depends on many of the settings. invalidated |= m_print->invalidate_step(psWipeTower); // Invalidate G-code export in any case. invalidated |= m_print->invalidate_step(psGCodeExport); return invalidated; } bool PrintObject::invalidate_all_steps() { // First call the "invalidate" functions, which may cancel background processing. bool result = Inherited::invalidate_all_steps() | m_print->invalidate_all_steps(); // Then reset some of the depending values. this->m_slicing_params.valid = false; this->region_volumes.clear(); return result; } bool PrintObject::has_support_material() const { return m_config.support_material || m_config.raft_layers > 0 || m_config.support_material_enforce_layers > 0; } static const PrintRegion* first_printing_region(const PrintObject &print_object) { for (size_t idx_region = 0; idx_region < print_object.region_volumes.size(); ++ idx_region) if (!print_object.region_volumes.empty()) return print_object.print()->regions()[idx_region]; return nullptr; } // This function analyzes slices of a region (SurfaceCollection slices). // Each region slice (instance of Surface) is analyzed, whether it is supported or whether it is the top surface. // Initially all slices are of type stInternal. // Slices are compared against the top / bottom slices and regions and classified to the following groups: // stTop - Part of a region, which is not covered by any upper layer. This surface will be filled with a top solid infill. // stBottomBridge - Part of a region, which is not fully supported, but it hangs in the air, or it hangs losely on a support or a raft. // stBottom - Part of a region, which is not supported by the same region, but it is supported either by another region, or by a soluble interface layer. // stInternal - Part of a region, which is supported by the same region type. // If a part of a region is of stBottom and stTop, the stBottom wins. void PrintObject::detect_surfaces_type() { BOOST_LOG_TRIVIAL(info) << "Detecting solid surfaces..." << log_memory_info(); // Interface shells: the intersecting parts are treated as self standing objects supporting each other. // Each of the objects will have a full number of top / bottom layers, even if these top / bottom layers // are completely hidden inside a collective body of intersecting parts. // This is useful if one of the parts is to be dissolved, or if it is transparent and the internal shells // should be visible. bool spiral_vase = this->print()->config().spiral_vase.value; bool interface_shells = ! spiral_vase && m_config.interface_shells.value; size_t num_layers = spiral_vase ? first_printing_region(*this)->config().bottom_solid_layers : m_layers.size(); for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region) { BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " in parallel - start"; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (Layer *layer : m_layers) layer->m_regions[idx_region]->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-initial"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // If interface shells are allowed, the region->surfaces cannot be overwritten as they may be used by other threads. // Cache the result of the following parallel_loop. std::vector surfaces_new; if (interface_shells) surfaces_new.assign(num_layers, Surfaces()); tbb::parallel_for( tbb::blocked_range(0, spiral_vase ? // In spiral vase mode, reserve the last layer for the top surface if more than 1 layer is planned for the vase bottom. ((num_layers > 1) ? num_layers - 1 : num_layers) : // In non-spiral vase mode, go over all layers. m_layers.size()), [this, idx_region, interface_shells, &surfaces_new](const tbb::blocked_range& range) { // If we have raft layers, consider bottom layer as a bridge just like any other bottom surface lying on the void. SurfaceType surface_type_bottom_1st = (m_config.raft_layers.value > 0 && m_config.support_material_contact_distance.value > 0) ? stBottomBridge : stBottom; // If we have soluble support material, don't bridge. The overhang will be squished against a soluble layer separating // the support from the print. SurfaceType surface_type_bottom_other = (m_config.support_material.value && m_config.support_material_contact_distance.value == 0) ? stBottom : stBottomBridge; for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { m_print->throw_if_canceled(); // BOOST_LOG_TRIVIAL(trace) << "Detecting solid surfaces for region " << idx_region << " and layer " << layer->print_z; Layer *layer = m_layers[idx_layer]; LayerRegion *layerm = layer->m_regions[idx_region]; // comparison happens against the *full* slices (considering all regions) // unless internal shells are requested Layer *upper_layer = (idx_layer + 1 < this->layer_count()) ? m_layers[idx_layer + 1] : nullptr; Layer *lower_layer = (idx_layer > 0) ? m_layers[idx_layer - 1] : nullptr; // collapse very narrow parts (using the safety offset in the diff is not enough) float offset = layerm->flow(frExternalPerimeter).scaled_width() / 10.f; Polygons layerm_slices_surfaces = to_polygons(layerm->slices.surfaces); // find top surfaces (difference between current surfaces // of current layer and upper one) Surfaces top; if (upper_layer) { Polygons upper_slices = interface_shells ? to_polygons(upper_layer->m_regions[idx_region]->slices.surfaces) : to_polygons(upper_layer->lslices); surfaces_append(top, //FIXME implement offset2_ex working over ExPolygons, that should be a bit more efficient than calling offset_ex twice. offset_ex(offset_ex(diff_ex(layerm_slices_surfaces, upper_slices, true), -offset), offset), stTop); } else { // if no upper layer, all surfaces of this one are solid // we clone surfaces because we're going to clear the slices collection top = layerm->slices.surfaces; for (Surface &surface : top) surface.surface_type = stTop; } // Find bottom surfaces (difference between current surfaces of current layer and lower one). Surfaces bottom; if (lower_layer) { #if 0 //FIXME Why is this branch failing t\multi.t ? Polygons lower_slices = interface_shells ? to_polygons(lower_layer->get_region(idx_region)->slices.surfaces) : to_polygons(lower_layer->slices); surfaces_append(bottom, offset2_ex(diff(layerm_slices_surfaces, lower_slices, true), -offset, offset), surface_type_bottom_other); #else // Any surface lying on the void is a true bottom bridge (an overhang) surfaces_append( bottom, offset2_ex( diff(layerm_slices_surfaces, to_polygons(lower_layer->lslices), true), -offset, offset), surface_type_bottom_other); // if user requested internal shells, we need to identify surfaces // lying on other slices not belonging to this region if (interface_shells) { // non-bridging bottom surfaces: any part of this layer lying // on something else, excluding those lying on our own region surfaces_append( bottom, offset2_ex( diff( intersection(layerm_slices_surfaces, to_polygons(lower_layer->lslices)), // supported to_polygons(lower_layer->m_regions[idx_region]->slices.surfaces), true), -offset, offset), stBottom); } #endif } else { // if no lower layer, all surfaces of this one are solid // we clone surfaces because we're going to clear the slices collection bottom = layerm->slices.surfaces; for (Surface &surface : bottom) surface.surface_type = surface_type_bottom_1st; } // now, if the object contained a thin membrane, we could have overlapping bottom // and top surfaces; let's do an intersection to discover them and consider them // as bottom surfaces (to allow for bridge detection) if (! top.empty() && ! bottom.empty()) { // Polygons overlapping = intersection(to_polygons(top), to_polygons(bottom)); // Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->layer->id, scalar(@$overlapping) // if $Slic3r::debug; Polygons top_polygons = to_polygons(std::move(top)); top.clear(); surfaces_append(top, diff_ex(top_polygons, to_polygons(bottom), false), stTop); } #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { static int iRun = 0; std::vector> expolygons_with_attributes; expolygons_with_attributes.emplace_back(std::make_pair(union_ex(top), SVG::ExPolygonAttributes("green"))); expolygons_with_attributes.emplace_back(std::make_pair(union_ex(bottom), SVG::ExPolygonAttributes("brown"))); expolygons_with_attributes.emplace_back(std::make_pair(to_expolygons(layerm->slices.surfaces), SVG::ExPolygonAttributes("black"))); SVG::export_expolygons(debug_out_path("1_detect_surfaces_type_%d_region%d-layer_%f.svg", iRun ++, idx_region, layer->print_z).c_str(), expolygons_with_attributes); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // save surfaces to layer Surfaces &surfaces_out = interface_shells ? surfaces_new[idx_layer] : layerm->slices.surfaces; surfaces_out.clear(); // find internal surfaces (difference between top/bottom surfaces and others) { Polygons topbottom = to_polygons(top); polygons_append(topbottom, to_polygons(bottom)); surfaces_append(surfaces_out, diff_ex(layerm_slices_surfaces, topbottom, false), stInternal); } surfaces_append(surfaces_out, std::move(top)); surfaces_append(surfaces_out, std::move(bottom)); // Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n", // $layerm->layer->id, scalar(@bottom), scalar(@top), scalar(@internal) if $Slic3r::debug; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_slices_to_svg_debug("detect_surfaces_type-final"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } } ); // for each layer of a region m_print->throw_if_canceled(); if (interface_shells) { // Move surfaces_new to layerm->slices.surfaces for (size_t idx_layer = 0; idx_layer < num_layers; ++ idx_layer) m_layers[idx_layer]->m_regions[idx_region]->slices.surfaces = std::move(surfaces_new[idx_layer]); } if (spiral_vase) { if (num_layers > 1) // Turn the last bottom layer infill to a top infill, so it will be extruded with a proper pattern. m_layers[num_layers - 1]->m_regions[idx_region]->slices.set_type(stTop); for (size_t i = num_layers; i < m_layers.size(); ++ i) m_layers[i]->m_regions[idx_region]->slices.set_type(stInternal); } BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " - clipping in parallel - start"; // Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces. tbb::parallel_for( tbb::blocked_range(0, m_layers.size()), [this, idx_region, interface_shells](const tbb::blocked_range& range) { for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { m_print->throw_if_canceled(); LayerRegion *layerm = m_layers[idx_layer]->m_regions[idx_region]; layerm->slices_to_fill_surfaces_clipped(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-final"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } // for each layer of a region }); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " - clipping in parallel - end"; } // for each this->print->region_count // Mark the object to have the region slices classified (typed, which also means they are split based on whether they are supported, bridging, top layers etc.) m_typed_slices = true; } void PrintObject::process_external_surfaces() { BOOST_LOG_TRIVIAL(info) << "Processing external surfaces..." << log_memory_info(); // Cached surfaces covered by some extrusion, defining regions, over which the from the surfaces one layer higher are allowed to expand. std::vector surfaces_covered; // Is there any printing region, that has zero infill? If so, then we don't want the expansion to be performed over the complete voids, but only // over voids, which are supported by the layer below. bool has_voids = false; for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) if (! this->region_volumes.empty() && this->print()->regions()[region_id]->config().fill_density == 0) { has_voids = true; break; } if (has_voids && m_layers.size() > 1) { // All but stInternal fill surfaces will get expanded and possibly trimmed. std::vector layer_expansions_and_voids(m_layers.size(), false); for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) { const Layer *layer = m_layers[layer_idx]; bool expansions = false; bool voids = false; for (const LayerRegion *layerm : layer->regions()) { for (const Surface &surface : layerm->fill_surfaces.surfaces) { if (surface.surface_type == stInternal) voids = true; else expansions = true; if (voids && expansions) { layer_expansions_and_voids[layer_idx] = true; goto end; } } } end:; } BOOST_LOG_TRIVIAL(debug) << "Collecting surfaces covered with extrusions in parallel - start"; surfaces_covered.resize(m_layers.size() - 1, Polygons()); auto unsupported_width = - float(scale_(0.3 * EXTERNAL_INFILL_MARGIN)); tbb::parallel_for( tbb::blocked_range(0, m_layers.size() - 1), [this, &surfaces_covered, &layer_expansions_and_voids, unsupported_width](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) if (layer_expansions_and_voids[layer_idx + 1]) { m_print->throw_if_canceled(); Polygons voids; for (const LayerRegion *layerm : m_layers[layer_idx]->regions()) { if (layerm->region()->config().fill_density.value == 0.) for (const Surface &surface : layerm->fill_surfaces.surfaces) // Shrink the holes, let the layer above expand slightly inside the unsupported areas. polygons_append(voids, offset(surface.expolygon, unsupported_width)); } surfaces_covered[layer_idx] = diff(to_polygons(this->m_layers[layer_idx]->lslices), voids); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Collecting surfaces covered with extrusions in parallel - end"; } for (size_t region_id = 0; region_id < this->region_volumes.size(); ++region_id) { BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - start"; tbb::parallel_for( tbb::blocked_range(0, m_layers.size()), [this, &surfaces_covered, region_id](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); // BOOST_LOG_TRIVIAL(trace) << "Processing external surface, layer" << m_layers[layer_idx]->print_z; m_layers[layer_idx]->get_region((int)region_id)->process_external_surfaces( (layer_idx == 0) ? nullptr : m_layers[layer_idx - 1], (layer_idx == 0 || surfaces_covered.empty() || surfaces_covered[layer_idx - 1].empty()) ? nullptr : &surfaces_covered[layer_idx - 1]); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - end"; } } void PrintObject::discover_vertical_shells() { PROFILE_FUNC(); BOOST_LOG_TRIVIAL(info) << "Discovering vertical shells..." << log_memory_info(); struct DiscoverVerticalShellsCacheEntry { // Collected polygons, offsetted Polygons top_surfaces; Polygons bottom_surfaces; Polygons holes; }; bool spiral_vase = this->print()->config().spiral_vase.value; size_t num_layers = spiral_vase ? first_printing_region(*this)->config().bottom_solid_layers : m_layers.size(); coordf_t min_layer_height = this->slicing_parameters().min_layer_height; // Does this region possibly produce more than 1 top or bottom layer? auto has_extra_layers_fn = [min_layer_height](const PrintRegionConfig &config) { auto num_extra_layers = [min_layer_height](int num_solid_layers, coordf_t min_shell_thickness) { if (num_solid_layers == 0) return 0; int n = num_solid_layers - 1; int n2 = int(ceil(min_shell_thickness / min_layer_height)); return std::max(n, n2 - 1); }; return num_extra_layers(config.top_solid_layers, config.top_solid_min_thickness) + num_extra_layers(config.bottom_solid_layers, config.bottom_solid_min_thickness) > 0; }; std::vector cache_top_botom_regions(num_layers, DiscoverVerticalShellsCacheEntry()); bool top_bottom_surfaces_all_regions = this->region_volumes.size() > 1 && ! m_config.interface_shells.value; if (top_bottom_surfaces_all_regions) { // This is a multi-material print and interface_shells are disabled, meaning that the vertical shell thickness // is calculated over all materials. // Is the "ensure vertical wall thickness" applicable to any region? bool has_extra_layers = false; for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++idx_region) { const PrintRegionConfig &config = m_print->get_region(idx_region)->config(); if (config.ensure_vertical_shell_thickness.value && has_extra_layers_fn(config)) { has_extra_layers = true; break; } } if (! has_extra_layers) // The "ensure vertical wall thickness" feature is not applicable to any of the regions. Quit. return; BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - start : cache top / bottom"; //FIXME Improve the heuristics for a grain size. size_t grain_size = std::max(num_layers / 16, size_t(1)); tbb::parallel_for( tbb::blocked_range(0, num_layers, grain_size), [this, &cache_top_botom_regions](const tbb::blocked_range& range) { const SurfaceType surfaces_bottom[2] = { stBottom, stBottomBridge }; const size_t num_regions = this->region_volumes.size(); for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { m_print->throw_if_canceled(); const Layer &layer = *m_layers[idx_layer]; DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[idx_layer]; // Simulate single set of perimeters over all merged regions. float perimeter_offset = 0.f; float perimeter_min_spacing = FLT_MAX; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING static size_t debug_idx = 0; ++ debug_idx; #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ for (size_t idx_region = 0; idx_region < num_regions; ++ idx_region) { LayerRegion &layerm = *layer.m_regions[idx_region]; float min_perimeter_infill_spacing = float(layerm.flow(frSolidInfill).scaled_spacing()) * 1.05f; // Top surfaces. append(cache.top_surfaces, offset(to_expolygons(layerm.slices.filter_by_type(stTop)), min_perimeter_infill_spacing)); append(cache.top_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_type(stTop)), min_perimeter_infill_spacing)); // Bottom surfaces. append(cache.bottom_surfaces, offset(to_expolygons(layerm.slices.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing)); append(cache.bottom_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing)); // Calculate the maximum perimeter offset as if the slice was extruded with a single extruder only. // First find the maxium number of perimeters per region slice. unsigned int perimeters = 0; for (Surface &s : layerm.slices.surfaces) perimeters = std::max(perimeters, s.extra_perimeters); perimeters += layerm.region()->config().perimeters.value; // Then calculate the infill offset. if (perimeters > 0) { Flow extflow = layerm.flow(frExternalPerimeter); Flow flow = layerm.flow(frPerimeter); perimeter_offset = std::max(perimeter_offset, 0.5f * float(extflow.scaled_width() + extflow.scaled_spacing()) + (float(perimeters) - 1.f) * flow.scaled_spacing()); perimeter_min_spacing = std::min(perimeter_min_spacing, float(std::min(extflow.scaled_spacing(), flow.scaled_spacing()))); } polygons_append(cache.holes, to_polygons(layerm.fill_expolygons)); } // Save some computing time by reducing the number of polygons. cache.top_surfaces = union_(cache.top_surfaces, false); cache.bottom_surfaces = union_(cache.bottom_surfaces, false); // For a multi-material print, simulate perimeter / infill split as if only a single extruder has been used for the whole print. if (perimeter_offset > 0.) { // The layer.lslices are forced to merge by expanding them first. polygons_append(cache.holes, offset(offset_ex(layer.lslices, 0.3f * perimeter_min_spacing), - perimeter_offset - 0.3f * perimeter_min_spacing)); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-extra-holes-%d.svg", debug_idx), get_extents(layer.lslices)); svg.draw(layer.lslices, "blue"); svg.draw(union_ex(cache.holes), "red"); svg.draw_outline(union_ex(cache.holes), "black", "blue", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } cache.holes = union_(cache.holes, false); } }); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - end : cache top / bottom"; } for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region) { PROFILE_BLOCK(discover_vertical_shells_region); const PrintRegion ®ion = *m_print->get_region(idx_region); if (! region.config().ensure_vertical_shell_thickness.value) // This region will be handled by discover_horizontal_shells(). continue; if (! has_extra_layers_fn(region.config())) // Zero or 1 layer, there is no additional vertical wall thickness enforced. continue; //FIXME Improve the heuristics for a grain size. size_t grain_size = std::max(num_layers / 16, size_t(1)); if (! top_bottom_surfaces_all_regions) { // This is either a single material print, or a multi-material print and interface_shells are enabled, meaning that the vertical shell thickness // is calculated over a single material. BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - start : cache top / bottom"; tbb::parallel_for( tbb::blocked_range(0, num_layers, grain_size), [this, idx_region, &cache_top_botom_regions](const tbb::blocked_range& range) { const SurfaceType surfaces_bottom[2] = { stBottom, stBottomBridge }; for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { m_print->throw_if_canceled(); Layer &layer = *m_layers[idx_layer]; LayerRegion &layerm = *layer.m_regions[idx_region]; float min_perimeter_infill_spacing = float(layerm.flow(frSolidInfill).scaled_spacing()) * 1.05f; // Top surfaces. auto &cache = cache_top_botom_regions[idx_layer]; cache.top_surfaces = offset(to_expolygons(layerm.slices.filter_by_type(stTop)), min_perimeter_infill_spacing); append(cache.top_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_type(stTop)), min_perimeter_infill_spacing)); // Bottom surfaces. cache.bottom_surfaces = offset(to_expolygons(layerm.slices.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing); append(cache.bottom_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing)); // Holes over all regions. Only collect them once, they are valid for all idx_region iterations. if (cache.holes.empty()) { for (size_t idx_region = 0; idx_region < layer.regions().size(); ++ idx_region) polygons_append(cache.holes, to_polygons(layer.regions()[idx_region]->fill_expolygons)); } } }); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - end : cache top / bottom"; } BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - start : ensure vertical wall thickness"; tbb::parallel_for( tbb::blocked_range(0, num_layers, grain_size), [this, idx_region, &cache_top_botom_regions] (const tbb::blocked_range& range) { // printf("discover_vertical_shells from %d to %d\n", range.begin(), range.end()); for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { PROFILE_BLOCK(discover_vertical_shells_region_layer); m_print->throw_if_canceled(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING static size_t debug_idx = 0; ++ debug_idx; #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ Layer *layer = m_layers[idx_layer]; LayerRegion *layerm = layer->m_regions[idx_region]; const PrintRegionConfig ®ion_config = layerm->region()->config(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells-initial"); layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells-initial"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ Flow solid_infill_flow = layerm->flow(frSolidInfill); coord_t infill_line_spacing = solid_infill_flow.scaled_spacing(); // Find a union of perimeters below / above this surface to guarantee a minimum shell thickness. Polygons shell; Polygons holes; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING ExPolygons shell_ex; #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ float min_perimeter_infill_spacing = float(infill_line_spacing) * 1.05f; { PROFILE_BLOCK(discover_vertical_shells_region_layer_collect); #if 0 // #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg_cummulative(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d.svg", debug_idx), this->bounding_box()); for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n) { if (n < 0 || n >= (int)m_layers.size()) continue; ExPolygons &expolys = m_layers[n]->perimeter_expolygons; for (size_t i = 0; i < expolys.size(); ++ i) { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d-layer%d-expoly%d.svg", debug_idx, n, i), get_extents(expolys[i])); svg.draw(expolys[i]); svg.draw_outline(expolys[i].contour, "black", scale_(0.05)); svg.draw_outline(expolys[i].holes, "blue", scale_(0.05)); svg.Close(); svg_cummulative.draw(expolys[i]); svg_cummulative.draw_outline(expolys[i].contour, "black", scale_(0.05)); svg_cummulative.draw_outline(expolys[i].holes, "blue", scale_(0.05)); } } } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ polygons_append(holes, cache_top_botom_regions[idx_layer].holes); if (int n_top_layers = region_config.top_solid_layers.value; n_top_layers > 0) { // Gather top regions projected to this layer. coordf_t print_z = layer->print_z; for (int i = int(idx_layer) + 1; i < int(cache_top_botom_regions.size()) && (i < int(idx_layer) + n_top_layers || m_layers[i]->print_z - print_z < region_config.top_solid_min_thickness - EPSILON); ++ i) { const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[i]; if (! holes.empty()) holes = intersection(holes, cache.holes); if (! cache.top_surfaces.empty()) { polygons_append(shell, cache.top_surfaces); // Running the union_ using the Clipper library piece by piece is cheaper // than running the union_ all at once. shell = union_(shell, false); } } } if (int n_bottom_layers = region_config.bottom_solid_layers.value; n_bottom_layers > 0) { // Gather bottom regions projected to this layer. coordf_t bottom_z = layer->bottom_z(); for (int i = int(idx_layer) - 1; i >= 0 && (i > int(idx_layer) - n_bottom_layers || bottom_z - m_layers[i]->bottom_z() < region_config.bottom_solid_min_thickness - EPSILON); -- i) { const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[i]; if (! holes.empty()) holes = intersection(holes, cache.holes); if (! cache.bottom_surfaces.empty()) { polygons_append(shell, cache.bottom_surfaces); // Running the union_ using the Clipper library piece by piece is cheaper // than running the union_ all at once. shell = union_(shell, false); } } } #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-%d.svg", debug_idx), get_extents(shell)); svg.draw(shell); svg.draw_outline(shell, "black", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ #if 0 { PROFILE_BLOCK(discover_vertical_shells_region_layer_shell_); // shell = union_(shell, true); shell = union_(shell, false); } #endif #ifdef SLIC3R_DEBUG_SLICE_PROCESSING shell_ex = union_ex(shell, true); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } //if (shell.empty()) // continue; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-after-union-%d.svg", debug_idx), get_extents(shell)); svg.draw(shell_ex); svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internal-wshell-%d.svg", debug_idx), get_extents(shell)); svg.draw(layerm->fill_surfaces.filter_by_type(stInternal), "yellow", 0.5); svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternal), "black", "blue", scale_(0.05)); svg.draw(shell_ex, "blue", 0.5); svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); svg.Close(); } { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell)); svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5); svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05)); svg.draw(shell_ex, "blue", 0.5); svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); svg.Close(); } { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell)); svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5); svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05)); svg.draw(shell_ex, "blue", 0.5); svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Trim the shells region by the internal & internal void surfaces. const SurfaceType surfaceTypesInternal[] = { stInternal, stInternalVoid, stInternalSolid }; const Polygons polygonsInternal = to_polygons(layerm->fill_surfaces.filter_by_types(surfaceTypesInternal, 3)); shell = intersection(shell, polygonsInternal, true); polygons_append(shell, diff(polygonsInternal, holes)); if (shell.empty()) continue; // Append the internal solids, so they will be merged with the new ones. polygons_append(shell, to_polygons(layerm->fill_surfaces.filter_by_type(stInternalSolid))); // These regions will be filled by a rectilinear full infill. Currently this type of infill // only fills regions, which fit at least a single line. To avoid gaps in the sparse infill, // make sure that this region does not contain parts narrower than the infill spacing width. #ifdef SLIC3R_DEBUG_SLICE_PROCESSING Polygons shell_before = shell; #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ #if 1 // Intentionally inflate a bit more than how much the region has been shrunk, // so there will be some overlap between this solid infill and the other infill regions (mainly the sparse infill). shell = offset(offset_ex(union_ex(shell), - 0.5f * min_perimeter_infill_spacing), 0.8f * min_perimeter_infill_spacing, ClipperLib::jtSquare); if (shell.empty()) continue; #else // Ensure each region is at least 3x infill line width wide, so it could be filled in. // float margin = float(infill_line_spacing) * 3.f; float margin = float(infill_line_spacing) * 1.5f; // we use a higher miterLimit here to handle areas with acute angles // in those cases, the default miterLimit would cut the corner and we'd // get a triangle in $too_narrow; if we grow it below then the shell // would have a different shape from the external surface and we'd still // have the same angle, so the next shell would be grown even more and so on. Polygons too_narrow = diff(shell, offset2(shell, -margin, margin, ClipperLib::jtMiter, 5.), true); if (! too_narrow.empty()) { // grow the collapsing parts and add the extra area to the neighbor layer // as well as to our original surfaces so that we support this // additional area in the next shell too // make sure our grown surfaces don't exceed the fill area polygons_append(shell, intersection(offset(too_narrow, margin), polygonsInternal)); } #endif ExPolygons new_internal_solid = intersection_ex(polygonsInternal, shell, false); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-regularized-%d.svg", debug_idx), get_extents(shell_before)); // Source shell. svg.draw(union_ex(shell_before, true)); // Shell trimmed to the internal surfaces. svg.draw_outline(union_ex(shell, true), "black", "blue", scale_(0.05)); // Regularized infill region. svg.draw_outline(new_internal_solid, "red", "magenta", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Trim the internal & internalvoid by the shell. Slic3r::ExPolygons new_internal = diff_ex( to_polygons(layerm->fill_surfaces.filter_by_type(stInternal)), shell, false ); Slic3r::ExPolygons new_internal_void = diff_ex( to_polygons(layerm->fill_surfaces.filter_by_type(stInternalVoid)), shell, false ); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal-%d.svg", debug_idx), get_extents(shell), new_internal, "black", "blue", scale_(0.05)); SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_void-%d.svg", debug_idx), get_extents(shell), new_internal_void, "black", "blue", scale_(0.05)); SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_solid-%d.svg", debug_idx), get_extents(shell), new_internal_solid, "black", "blue", scale_(0.05)); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Assign resulting internal surfaces to layer. const SurfaceType surfaceTypesKeep[] = { stTop, stBottom, stBottomBridge }; layerm->fill_surfaces.keep_types(surfaceTypesKeep, sizeof(surfaceTypesKeep)/sizeof(SurfaceType)); layerm->fill_surfaces.append(new_internal, stInternal); layerm->fill_surfaces.append(new_internal_void, stInternalVoid); layerm->fill_surfaces.append(new_internal_solid, stInternalSolid); } // for each layer }); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - end"; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++idx_layer) { LayerRegion *layerm = m_layers[idx_layer]->get_region(idx_region); layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells-final"); layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells-final"); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } // for each region // Write the profiler measurements to file // PROFILE_UPDATE(); // PROFILE_OUTPUT(debug_out_path("discover_vertical_shells-profile.txt").c_str()); } /* This method applies bridge flow to the first internal solid layer above sparse infill */ void PrintObject::bridge_over_infill() { BOOST_LOG_TRIVIAL(info) << "Bridge over infill..." << log_memory_info(); for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) { const PrintRegion ®ion = *m_print->regions()[region_id]; // skip bridging in case there are no voids if (region.config().fill_density.value == 100) continue; // get bridge flow Flow bridge_flow = region.flow( frSolidInfill, -1, // layer height, not relevant for bridge flow true, // bridge false, // first layer -1, // custom width, not relevant for bridge flow *this ); for (LayerPtrs::iterator layer_it = m_layers.begin(); layer_it != m_layers.end(); ++ layer_it) { // skip first layer if (layer_it == m_layers.begin()) continue; Layer* layer = *layer_it; LayerRegion* layerm = layer->m_regions[region_id]; // extract the stInternalSolid surfaces that might be transformed into bridges Polygons internal_solid; layerm->fill_surfaces.filter_by_type(stInternalSolid, &internal_solid); // check whether the lower area is deep enough for absorbing the extra flow // (for obvious physical reasons but also for preventing the bridge extrudates // from overflowing in 3D preview) ExPolygons to_bridge; { Polygons to_bridge_pp = internal_solid; // iterate through lower layers spanned by bridge_flow double bottom_z = layer->print_z - bridge_flow.height; for (int i = int(layer_it - m_layers.begin()) - 1; i >= 0; --i) { const Layer* lower_layer = m_layers[i]; // stop iterating if layer is lower than bottom_z if (lower_layer->print_z < bottom_z) break; // iterate through regions and collect internal surfaces Polygons lower_internal; for (LayerRegion *lower_layerm : lower_layer->m_regions) lower_layerm->fill_surfaces.filter_by_type(stInternal, &lower_internal); // intersect such lower internal surfaces with the candidate solid surfaces to_bridge_pp = intersection(to_bridge_pp, lower_internal); } // there's no point in bridging too thin/short regions //FIXME Vojtech: The offset2 function is not a geometric offset, // therefore it may create 1) gaps, and 2) sharp corners, which are outside the original contour. // The gaps will be filled by a separate region, which makes the infill less stable and it takes longer. { float min_width = float(bridge_flow.scaled_width()) * 3.f; to_bridge_pp = offset2(to_bridge_pp, -min_width, +min_width); } if (to_bridge_pp.empty()) continue; // convert into ExPolygons to_bridge = union_ex(to_bridge_pp); } #ifdef SLIC3R_DEBUG printf("Bridging %zu internal areas at layer %zu\n", to_bridge.size(), layer->id()); #endif // compute the remaning internal solid surfaces as difference ExPolygons not_to_bridge = diff_ex(internal_solid, to_polygons(to_bridge), true); to_bridge = intersection_ex(to_polygons(to_bridge), internal_solid, true); // build the new collection of fill_surfaces layerm->fill_surfaces.remove_type(stInternalSolid); for (ExPolygon &ex : to_bridge) layerm->fill_surfaces.surfaces.push_back(Surface(stInternalBridge, ex)); for (ExPolygon &ex : not_to_bridge) layerm->fill_surfaces.surfaces.push_back(Surface(stInternalSolid, ex)); /* # exclude infill from the layers below if needed # see discussion at https://github.com/alexrj/Slic3r/issues/240 # Update: do not exclude any infill. Sparse infill is able to absorb the excess material. if (0) { my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height; for (my $i = $layer_id-1; $excess >= $self->get_layer($i)->height; $i--) { Slic3r::debugf " skipping infill below those areas at layer %d\n", $i; foreach my $lower_layerm (@{$self->get_layer($i)->regions}) { my @new_surfaces = (); # subtract the area from all types of surfaces foreach my $group (@{$lower_layerm->fill_surfaces->group}) { push @new_surfaces, map $group->[0]->clone(expolygon => $_), @{diff_ex( [ map $_->p, @$group ], [ map @$_, @$to_bridge ], )}; push @new_surfaces, map Slic3r::Surface->new( expolygon => $_, surface_type => stInternalVoid, ), @{intersection_ex( [ map $_->p, @$group ], [ map @$_, @$to_bridge ], )}; } $lower_layerm->fill_surfaces->clear; $lower_layerm->fill_surfaces->append($_) for @new_surfaces; } $excess -= $self->get_layer($i)->height; } } */ #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_slices_to_svg_debug("7_bridge_over_infill"); layerm->export_region_fill_surfaces_to_svg_debug("7_bridge_over_infill"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ m_print->throw_if_canceled(); } } } static void clamp_exturder_to_default(ConfigOptionInt &opt, size_t num_extruders) { if (opt.value > (int)num_extruders) // assign the default extruder opt.value = 1; } PrintObjectConfig PrintObject::object_config_from_model_object(const PrintObjectConfig &default_object_config, const ModelObject &object, size_t num_extruders) { PrintObjectConfig config = default_object_config; normalize_and_apply_config(config, object.config); // Clamp invalid extruders to the default extruder (with index 1). clamp_exturder_to_default(config.support_material_extruder, num_extruders); clamp_exturder_to_default(config.support_material_interface_extruder, num_extruders); return config; } PrintRegionConfig PrintObject::region_config_from_model_volume(const PrintRegionConfig &default_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders) { PrintRegionConfig config = default_region_config; normalize_and_apply_config(config, volume.get_object()->config); if (layer_range_config != nullptr) normalize_and_apply_config(config, *layer_range_config); normalize_and_apply_config(config, volume.config); if (! volume.material_id().empty()) normalize_and_apply_config(config, volume.material()->config); // Clamp invalid extruders to the default extruder (with index 1). clamp_exturder_to_default(config.infill_extruder, num_extruders); clamp_exturder_to_default(config.perimeter_extruder, num_extruders); clamp_exturder_to_default(config.solid_infill_extruder, num_extruders); return config; } void PrintObject::update_slicing_parameters() { if (! m_slicing_params.valid) m_slicing_params = SlicingParameters::create_from_config( this->print()->config(), m_config, unscale(this->height()), this->object_extruders()); } SlicingParameters PrintObject::slicing_parameters(const DynamicPrintConfig& full_config, const ModelObject& model_object, float object_max_z) { PrintConfig print_config; PrintObjectConfig object_config; PrintRegionConfig default_region_config; print_config.apply(full_config, true); object_config.apply(full_config, true); default_region_config.apply(full_config, true); size_t num_extruders = print_config.nozzle_diameter.size(); object_config = object_config_from_model_object(object_config, model_object, num_extruders); std::vector object_extruders; for (const ModelVolume* model_volume : model_object.volumes) if (model_volume->is_model_part()) { PrintRegion::collect_object_printing_extruders( print_config, region_config_from_model_volume(default_region_config, nullptr, *model_volume, num_extruders), object_extruders); for (const std::pair &range_and_config : model_object.layer_config_ranges) if (range_and_config.second.has("perimeter_extruder") || range_and_config.second.has("infill_extruder") || range_and_config.second.has("solid_infill_extruder")) PrintRegion::collect_object_printing_extruders( print_config, region_config_from_model_volume(default_region_config, &range_and_config.second, *model_volume, num_extruders), object_extruders); } sort_remove_duplicates(object_extruders); if (object_max_z <= 0.f) object_max_z = (float)model_object.raw_bounding_box().size().z(); return SlicingParameters::create_from_config(print_config, object_config, object_max_z, object_extruders); } // returns 0-based indices of extruders used to print the object (without brim, support and other helper extrusions) std::vector PrintObject::object_extruders() const { std::vector extruders; extruders.reserve(this->region_volumes.size() * 3); for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region) if (! this->region_volumes[idx_region].empty()) m_print->get_region(idx_region)->collect_object_printing_extruders(extruders); sort_remove_duplicates(extruders); return extruders; } bool PrintObject::update_layer_height_profile(const ModelObject &model_object, const SlicingParameters &slicing_parameters, std::vector &layer_height_profile) { bool updated = false; if (layer_height_profile.empty()) { // use the constructor because the assignement is crashing on ASAN OsX layer_height_profile = std::vector(model_object.layer_height_profile); // layer_height_profile = model_object.layer_height_profile; updated = true; } // Verify the layer_height_profile. if (! layer_height_profile.empty() && // Must not be of even length. ((layer_height_profile.size() & 1) != 0 || // Last entry must be at the top of the object. std::abs(layer_height_profile[layer_height_profile.size() - 2] - slicing_parameters.object_print_z_height()) > 1e-3)) layer_height_profile.clear(); if (layer_height_profile.empty()) { //layer_height_profile = layer_height_profile_adaptive(slicing_parameters, model_object.layer_config_ranges, model_object.volumes); layer_height_profile = layer_height_profile_from_ranges(slicing_parameters, model_object.layer_config_ranges); updated = true; } return updated; } // 1) Decides Z positions of the layers, // 2) Initializes layers and their regions // 3) Slices the object meshes // 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes // 5) Applies size compensation (offsets the slices in XY plane) // 6) Replaces bad slices by the slices reconstructed from the upper/lower layer // Resulting expolygons of layer regions are marked as Internal. // // this should be idempotent void PrintObject::_slice(const std::vector &layer_height_profile) { BOOST_LOG_TRIVIAL(info) << "Slicing objects..." << log_memory_info(); m_typed_slices = false; #ifdef SLIC3R_PROFILE // Disable parallelization so the Shiny profiler works static tbb::task_scheduler_init *tbb_init = nullptr; tbb_init = new tbb::task_scheduler_init(1); #endif // 1) Initialize layers and their slice heights. std::vector slice_zs; { this->clear_layers(); // Object layers (pairs of bottom/top Z coordinate), without the raft. std::vector object_layers = generate_object_layers(m_slicing_params, layer_height_profile); // Reserve object layers for the raft. Last layer of the raft is the contact layer. int id = int(m_slicing_params.raft_layers()); slice_zs.reserve(object_layers.size()); Layer *prev = nullptr; for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) { coordf_t lo = object_layers[i_layer]; coordf_t hi = object_layers[i_layer + 1]; coordf_t slice_z = 0.5 * (lo + hi); Layer *layer = this->add_layer(id ++, hi - lo, hi + m_slicing_params.object_print_z_min, slice_z); slice_zs.push_back(float(slice_z)); if (prev != nullptr) { prev->upper_layer = layer; layer->lower_layer = prev; } // Make sure all layers contain layer region objects for all regions. for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) layer->add_region(this->print()->regions()[region_id]); prev = layer; } } // Count model parts and modifier meshes, check whether the model parts are of the same region. int all_volumes_single_region = -2; // not set yet bool has_z_ranges = false; size_t num_volumes = 0; size_t num_modifiers = 0; for (int region_id = 0; region_id < (int)this->region_volumes.size(); ++ region_id) { int last_volume_id = -1; for (const std::pair &volume_and_range : this->region_volumes[region_id]) { const int volume_id = volume_and_range.second; const ModelVolume *model_volume = this->model_object()->volumes[volume_id]; if (model_volume->is_model_part()) { if (last_volume_id == volume_id) { has_z_ranges = true; } else { last_volume_id = volume_id; if (all_volumes_single_region == -2) // first model volume met all_volumes_single_region = region_id; else if (all_volumes_single_region != region_id) // multiple volumes met and they are not equal all_volumes_single_region = -1; ++ num_volumes; } } else if (model_volume->is_modifier()) ++ num_modifiers; } } assert(num_volumes > 0); // Slice all non-modifier volumes. bool clipped = false; bool upscaled = false; auto slicing_mode = this->print()->config().spiral_vase ? SlicingMode::PositiveLargestContour : SlicingMode::Regular; if (! has_z_ranges && (! m_config.clip_multipart_objects.value || all_volumes_single_region >= 0)) { // Cheap path: Slice regions without mutual clipping. // The cheap path is possible if no clipping is allowed or if slicing volumes of just a single region. for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) { BOOST_LOG_TRIVIAL(debug) << "Slicing objects - region " << region_id; // slicing in parallel std::vector expolygons_by_layer = this->slice_region(region_id, slice_zs, slicing_mode); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " start"; for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id) m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons_by_layer[layer_id]), stInternal); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " end"; } } else { // Expensive path: Slice one volume after the other in the order they are presented at the user interface, // clip the last volumes with the first. // First slice the volumes. struct SlicedVolume { SlicedVolume(int volume_id, int region_id, std::vector &&expolygons_by_layer) : volume_id(volume_id), region_id(region_id), expolygons_by_layer(std::move(expolygons_by_layer)) {} int volume_id; int region_id; std::vector expolygons_by_layer; }; std::vector sliced_volumes; sliced_volumes.reserve(num_volumes); for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) { const std::vector> &volumes_and_ranges = this->region_volumes[region_id]; for (size_t i = 0; i < volumes_and_ranges.size(); ) { int volume_id = volumes_and_ranges[i].second; const ModelVolume *model_volume = this->model_object()->volumes[volume_id]; if (model_volume->is_model_part()) { BOOST_LOG_TRIVIAL(debug) << "Slicing objects - volume " << volume_id; // Find the ranges of this volume. Ranges in volumes_and_ranges must not overlap for a single volume. std::vector ranges; ranges.emplace_back(volumes_and_ranges[i].first); size_t j = i + 1; for (; j < volumes_and_ranges.size() && volume_id == volumes_and_ranges[j].second; ++ j) if (! ranges.empty() && std::abs(ranges.back().second - volumes_and_ranges[j].first.first) < EPSILON) ranges.back().second = volumes_and_ranges[j].first.second; else ranges.emplace_back(volumes_and_ranges[j].first); // slicing in parallel sliced_volumes.emplace_back(volume_id, (int)region_id, this->slice_volume(slice_zs, ranges, slicing_mode, *model_volume)); i = j; } else ++ i; } } // Second clip the volumes in the order they are presented at the user interface. BOOST_LOG_TRIVIAL(debug) << "Slicing objects - parallel clipping - start"; tbb::parallel_for( tbb::blocked_range(0, slice_zs.size()), [this, &sliced_volumes, num_modifiers](const tbb::blocked_range& range) { float delta = float(scale_(m_config.xy_size_compensation.value)); // Only upscale together with clipping if there are no modifiers, as the modifiers shall be applied before upscaling // (upscaling may grow the object outside of the modifier mesh). bool upscale = delta > 0 && num_modifiers == 0; for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) { m_print->throw_if_canceled(); // Trim volumes in a single layer, one by the other, possibly apply upscaling. { Polygons processed; for (SlicedVolume &sliced_volume : sliced_volumes) if (! sliced_volume.expolygons_by_layer.empty()) { ExPolygons slices = std::move(sliced_volume.expolygons_by_layer[layer_id]); if (upscale) slices = offset_ex(std::move(slices), delta); if (! processed.empty()) // Trim by the slices of already processed regions. slices = diff_ex(to_polygons(std::move(slices)), processed); if (size_t(&sliced_volume - &sliced_volumes.front()) + 1 < sliced_volumes.size()) // Collect the already processed regions to trim the to be processed regions. polygons_append(processed, slices); sliced_volume.expolygons_by_layer[layer_id] = std::move(slices); } } // Collect and union volumes of a single region. for (int region_id = 0; region_id < (int)this->region_volumes.size(); ++ region_id) { ExPolygons expolygons; size_t num_volumes = 0; for (SlicedVolume &sliced_volume : sliced_volumes) if (sliced_volume.region_id == region_id && ! sliced_volume.expolygons_by_layer.empty() && ! sliced_volume.expolygons_by_layer[layer_id].empty()) { ++ num_volumes; append(expolygons, std::move(sliced_volume.expolygons_by_layer[layer_id])); } if (num_volumes > 1) // Merge the islands using a positive / negative offset. expolygons = offset_ex(offset_ex(expolygons, float(scale_(EPSILON))), -float(scale_(EPSILON))); m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons), stInternal); } } }); BOOST_LOG_TRIVIAL(debug) << "Slicing objects - parallel clipping - end"; clipped = true; upscaled = m_config.xy_size_compensation.value > 0 && num_modifiers == 0; } // Slice all modifier volumes. if (this->region_volumes.size() > 1) { for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) { BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - region " << region_id; // slicing in parallel std::vector expolygons_by_layer = this->slice_modifiers(region_id, slice_zs); m_print->throw_if_canceled(); if (expolygons_by_layer.empty()) continue; // loop through the other regions and 'steal' the slices belonging to this one BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - stealing " << region_id << " start"; tbb::parallel_for( tbb::blocked_range(0, m_layers.size()), [this, &expolygons_by_layer, region_id](const tbb::blocked_range& range) { for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) { for (size_t other_region_id = 0; other_region_id < this->region_volumes.size(); ++ other_region_id) { if (region_id == other_region_id) continue; Layer *layer = m_layers[layer_id]; LayerRegion *layerm = layer->m_regions[region_id]; LayerRegion *other_layerm = layer->m_regions[other_region_id]; if (layerm == nullptr || other_layerm == nullptr || other_layerm->slices.empty() || expolygons_by_layer[layer_id].empty()) continue; Polygons other_slices = to_polygons(other_layerm->slices); ExPolygons my_parts = intersection_ex(other_slices, to_polygons(expolygons_by_layer[layer_id])); if (my_parts.empty()) continue; // Remove such parts from original region. other_layerm->slices.set(diff_ex(other_slices, to_polygons(my_parts)), stInternal); // Append new parts to our region. layerm->slices.append(std::move(my_parts), stInternal); } } }); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - stealing " << region_id << " end"; } } BOOST_LOG_TRIVIAL(debug) << "Slicing objects - removing top empty layers"; while (! m_layers.empty()) { const Layer *layer = m_layers.back(); if (! layer->empty()) goto end; delete layer; m_layers.pop_back(); if (! m_layers.empty()) m_layers.back()->upper_layer = nullptr; } m_print->throw_if_canceled(); end: ; BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - begin"; { // Compensation value, scaled. const float xy_compensation_scaled = float(scale_(m_config.xy_size_compensation.value)); const float elephant_foot_compensation_scaled = (m_config.raft_layers == 0) ? // Only enable Elephant foot compensation if printing directly on the print bed. float(scale_(m_config.elefant_foot_compensation.value)) : 0.f; // Uncompensated slices for the first layer in case the Elephant foot compensation is applied. ExPolygons lslices_1st_layer; tbb::parallel_for( tbb::blocked_range(0, m_layers.size()), [this, upscaled, clipped, xy_compensation_scaled, elephant_foot_compensation_scaled, &lslices_1st_layer] (const tbb::blocked_range& range) { for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) { m_print->throw_if_canceled(); Layer *layer = m_layers[layer_id]; // Apply size compensation and perform clipping of multi-part objects. float elfoot = (layer_id == 0) ? elephant_foot_compensation_scaled : 0.f; if (layer->m_regions.size() == 1) { assert(! upscaled); assert(! clipped); // Optimized version for a single region layer. // Single region, growing or shrinking. LayerRegion *layerm = layer->m_regions.front(); if (elfoot > 0) { // Apply the elephant foot compensation and store the 1st layer slices without the Elephant foot compensation applied. lslices_1st_layer = to_expolygons(std::move(layerm->slices.surfaces)); float delta = xy_compensation_scaled; if (delta > elfoot) { delta -= elfoot; elfoot = 0.f; } else if (delta > 0) elfoot -= delta; layerm->slices.set( union_ex( Slic3r::elephant_foot_compensation( (delta == 0.f) ? lslices_1st_layer : offset_ex(lslices_1st_layer, delta), layerm->flow(frExternalPerimeter), unscale(elfoot))), stInternal); if (xy_compensation_scaled != 0.f) lslices_1st_layer = offset_ex(std::move(lslices_1st_layer), xy_compensation_scaled); } else if (xy_compensation_scaled != 0.f) { // Apply the XY compensation. layerm->slices.set( offset_ex(to_expolygons(std::move(layerm->slices.surfaces)), xy_compensation_scaled), stInternal); } } else { bool upscale = ! upscaled && xy_compensation_scaled > 0.f; bool clip = ! clipped && m_config.clip_multipart_objects.value; if (upscale || clip) { // Multiple regions, growing or just clipping one region by the other. // When clipping the regions, priority is given to the first regions. Polygons processed; for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) { LayerRegion *layerm = layer->m_regions[region_id]; ExPolygons slices = to_expolygons(std::move(layerm->slices.surfaces)); if (upscale) slices = offset_ex(std::move(slices), xy_compensation_scaled); if (region_id > 0 && clip) // Trim by the slices of already processed regions. slices = diff_ex(to_polygons(std::move(slices)), processed); if (clip && (region_id + 1 < layer->m_regions.size())) // Collect the already processed regions to trim the to be processed regions. polygons_append(processed, slices); layerm->slices.set(std::move(slices), stInternal); } } if (xy_compensation_scaled < 0.f || elfoot > 0.f) { // Apply the negative XY compensation. Polygons trimming; static const float eps = float(scale_(m_config.slice_closing_radius.value) * 1.5); if (elfoot > 0.f) { lslices_1st_layer = offset_ex(layer->merged(eps), std::min(xy_compensation_scaled, 0.f) - eps); trimming = to_polygons(Slic3r::elephant_foot_compensation(lslices_1st_layer, layer->m_regions.front()->flow(frExternalPerimeter), unscale(elfoot))); } else trimming = offset(layer->merged(float(SCALED_EPSILON)), xy_compensation_scaled - float(SCALED_EPSILON)); for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) layer->m_regions[region_id]->trim_surfaces(trimming); } } // Merge all regions' slices to get islands, chain them by a shortest path. layer->make_slices(); } }); if (elephant_foot_compensation_scaled > 0.f) { // The Elephant foot has been compensated, therefore the 1st layer's lslices are shrank with the Elephant foot compensation value. // Store the uncompensated value there. assert(! m_layers.empty()); assert(m_layers.front()->id() == 0); m_layers.front()->lslices = std::move(lslices_1st_layer); } } m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - end"; } // To be used only if there are no layer span specific configurations applied, which would lead to z ranges being generated for this region. std::vector PrintObject::slice_region(size_t region_id, const std::vector &z, SlicingMode mode) const { std::vector volumes; if (region_id < this->region_volumes.size()) { for (const std::pair &volume_and_range : this->region_volumes[region_id]) { const ModelVolume *volume = this->model_object()->volumes[volume_and_range.second]; if (volume->is_model_part()) volumes.emplace_back(volume); } } return this->slice_volumes(z, mode, volumes); } // Z ranges are not applicable to modifier meshes, therefore a sinle volume will be found in volume_and_range at most once. std::vector PrintObject::slice_modifiers(size_t region_id, const std::vector &slice_zs) const { std::vector out; if (region_id < this->region_volumes.size()) { std::vector> volume_ranges; const std::vector> &volumes_and_ranges = this->region_volumes[region_id]; volume_ranges.reserve(volumes_and_ranges.size()); for (size_t i = 0; i < volumes_and_ranges.size(); ) { int volume_id = volumes_and_ranges[i].second; const ModelVolume *model_volume = this->model_object()->volumes[volume_id]; if (model_volume->is_modifier()) { std::vector ranges; ranges.emplace_back(volumes_and_ranges[i].first); size_t j = i + 1; for (; j < volumes_and_ranges.size() && volume_id == volumes_and_ranges[j].second; ++ j) { if (! ranges.empty() && std::abs(ranges.back().second - volumes_and_ranges[j].first.first) < EPSILON) ranges.back().second = volumes_and_ranges[j].first.second; else ranges.emplace_back(volumes_and_ranges[j].first); } volume_ranges.emplace_back(std::move(ranges)); i = j; } else ++ i; } if (! volume_ranges.empty()) { bool equal_ranges = true; for (size_t i = 1; i < volume_ranges.size(); ++ i) { assert(! volume_ranges[i].empty()); if (volume_ranges.front() != volume_ranges[i]) { equal_ranges = false; break; } } if (equal_ranges && volume_ranges.front().size() == 1 && volume_ranges.front().front() == t_layer_height_range(0, DBL_MAX)) { // No modifier in this region was split to layer spans. std::vector volumes; for (const std::pair &volume_and_range : this->region_volumes[region_id]) { const ModelVolume *volume = this->model_object()->volumes[volume_and_range.second]; if (volume->is_modifier()) volumes.emplace_back(volume); } out = this->slice_volumes(slice_zs, SlicingMode::Regular, volumes); } else { // Some modifier in this region was split to layer spans. std::vector merge; for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) { const std::vector> &volumes_and_ranges = this->region_volumes[region_id]; for (size_t i = 0; i < volumes_and_ranges.size(); ) { int volume_id = volumes_and_ranges[i].second; const ModelVolume *model_volume = this->model_object()->volumes[volume_id]; if (model_volume->is_modifier()) { BOOST_LOG_TRIVIAL(debug) << "Slicing modifiers - volume " << volume_id; // Find the ranges of this volume. Ranges in volumes_and_ranges must not overlap for a single volume. std::vector ranges; ranges.emplace_back(volumes_and_ranges[i].first); size_t j = i + 1; for (; j < volumes_and_ranges.size() && volume_id == volumes_and_ranges[j].second; ++ j) ranges.emplace_back(volumes_and_ranges[j].first); // slicing in parallel std::vector this_slices = this->slice_volume(slice_zs, ranges, SlicingMode::Regular, *model_volume); if (out.empty()) { out = std::move(this_slices); merge.assign(out.size(), false); } else { for (size_t i = 0; i < out.size(); ++ i) if (! this_slices[i].empty()) { if (! out[i].empty()) { append(out[i], this_slices[i]); merge[i] = true; } else out[i] = std::move(this_slices[i]); } } i = j; } else ++ i; } } for (size_t i = 0; i < merge.size(); ++ i) if (merge[i]) out[i] = union_ex(out[i]); } } } return out; } std::vector PrintObject::slice_support_volumes(const ModelVolumeType &model_volume_type) const { std::vector volumes; for (const ModelVolume *volume : this->model_object()->volumes) if (volume->type() == model_volume_type) volumes.emplace_back(volume); std::vector zs; zs.reserve(this->layers().size()); for (const Layer *l : this->layers()) zs.emplace_back((float)l->slice_z); return this->slice_volumes(zs, SlicingMode::Regular, volumes); } std::vector PrintObject::slice_volumes(const std::vector &z, SlicingMode mode, const std::vector &volumes) const { std::vector layers; if (! volumes.empty()) { // Compose mesh. //FIXME better to perform slicing over each volume separately and then to use a Boolean operation to merge them. TriangleMesh mesh(volumes.front()->mesh()); mesh.transform(volumes.front()->get_matrix(), true); assert(mesh.repaired); if (volumes.size() == 1 && mesh.repaired) { //FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it. stl_check_facets_exact(&mesh.stl); } for (size_t idx_volume = 1; idx_volume < volumes.size(); ++ idx_volume) { const ModelVolume &model_volume = *volumes[idx_volume]; TriangleMesh vol_mesh(model_volume.mesh()); vol_mesh.transform(model_volume.get_matrix(), true); mesh.merge(vol_mesh); } if (mesh.stl.stats.number_of_facets > 0) { mesh.transform(m_trafo, true); // apply XY shift mesh.translate(- unscale(m_center_offset.x()), - unscale(m_center_offset.y()), 0); // perform actual slicing const Print *print = this->print(); auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();}); // TriangleMeshSlicer needs shared vertices, also this calls the repair() function. mesh.require_shared_vertices(); TriangleMeshSlicer mslicer; mslicer.init(&mesh, callback); mslicer.slice(z, mode, float(m_config.slice_closing_radius.value), &layers, callback); m_print->throw_if_canceled(); } } return layers; } std::vector PrintObject::slice_volume(const std::vector &z, SlicingMode mode, const ModelVolume &volume) const { std::vector layers; if (! z.empty()) { // Compose mesh. //FIXME better to split the mesh into separate shells, perform slicing over each shell separately and then to use a Boolean operation to merge them. TriangleMesh mesh(volume.mesh()); mesh.transform(volume.get_matrix(), true); if (mesh.repaired) { //FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it. stl_check_facets_exact(&mesh.stl); } if (mesh.stl.stats.number_of_facets > 0) { mesh.transform(m_trafo, true); // apply XY shift mesh.translate(- unscale(m_center_offset.x()), - unscale(m_center_offset.y()), 0); // perform actual slicing TriangleMeshSlicer mslicer; const Print *print = this->print(); auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();}); // TriangleMeshSlicer needs the shared vertices. mesh.require_shared_vertices(); mslicer.init(&mesh, callback); mslicer.slice(z, mode, float(m_config.slice_closing_radius.value), &layers, callback); m_print->throw_if_canceled(); } } return layers; } // Filter the zs not inside the ranges. The ranges are closed at the botton and open at the top, they are sorted lexicographically and non overlapping. std::vector PrintObject::slice_volume(const std::vector &z, const std::vector &ranges, SlicingMode mode, const ModelVolume &volume) const { std::vector out; if (! z.empty() && ! ranges.empty()) { if (ranges.size() == 1 && z.front() >= ranges.front().first && z.back() < ranges.front().second) { // All layers fit into a single range. out = this->slice_volume(z, mode, volume); } else { std::vector z_filtered; std::vector> n_filtered; z_filtered.reserve(z.size()); n_filtered.reserve(2 * ranges.size()); size_t i = 0; for (const t_layer_height_range &range : ranges) { for (; i < z.size() && z[i] < range.first; ++ i) ; size_t first = i; for (; i < z.size() && z[i] < range.second; ++ i) z_filtered.emplace_back(z[i]); if (i > first) n_filtered.emplace_back(std::make_pair(first, i)); } if (! n_filtered.empty()) { std::vector layers = this->slice_volume(z_filtered, mode, volume); out.assign(z.size(), ExPolygons()); i = 0; for (const std::pair &span : n_filtered) for (size_t j = span.first; j < span.second; ++ j) out[j] = std::move(layers[i ++]); } } } return out; } std::string PrintObject::_fix_slicing_errors() { // Collect layers with slicing errors. // These layers will be fixed in parallel. std::vector buggy_layers; buggy_layers.reserve(m_layers.size()); for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++ idx_layer) if (m_layers[idx_layer]->slicing_errors) buggy_layers.push_back(idx_layer); BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin"; tbb::parallel_for( tbb::blocked_range(0, buggy_layers.size()), [this, &buggy_layers](const tbb::blocked_range& range) { for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) { m_print->throw_if_canceled(); size_t idx_layer = buggy_layers[buggy_layer_idx]; Layer *layer = m_layers[idx_layer]; assert(layer->slicing_errors); // Try to repair the layer surfaces by merging all contours and all holes from neighbor layers. // BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer; for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) { LayerRegion *layerm = layer->m_regions[region_id]; // Find the first valid layer below / above the current layer. const Surfaces *upper_surfaces = nullptr; const Surfaces *lower_surfaces = nullptr; for (size_t j = idx_layer + 1; j < m_layers.size(); ++ j) if (! m_layers[j]->slicing_errors) { upper_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces; break; } for (int j = int(idx_layer) - 1; j >= 0; -- j) if (! m_layers[j]->slicing_errors) { lower_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces; break; } // Collect outer contours and holes from the valid layers above & below. Polygons outer; outer.reserve( ((upper_surfaces == nullptr) ? 0 : upper_surfaces->size()) + ((lower_surfaces == nullptr) ? 0 : lower_surfaces->size())); size_t num_holes = 0; if (upper_surfaces) for (const auto &surface : *upper_surfaces) { outer.push_back(surface.expolygon.contour); num_holes += surface.expolygon.holes.size(); } if (lower_surfaces) for (const auto &surface : *lower_surfaces) { outer.push_back(surface.expolygon.contour); num_holes += surface.expolygon.holes.size(); } Polygons holes; holes.reserve(num_holes); if (upper_surfaces) for (const auto &surface : *upper_surfaces) polygons_append(holes, surface.expolygon.holes); if (lower_surfaces) for (const auto &surface : *lower_surfaces) polygons_append(holes, surface.expolygon.holes); layerm->slices.set(diff_ex(union_(outer), holes, false), stInternal); } // Update layer slices after repairing the single regions. layer->make_slices(); } }); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end"; // remove empty layers from bottom while (! m_layers.empty() && (m_layers.front()->lslices.empty() || m_layers.front()->empty())) { delete m_layers.front(); m_layers.erase(m_layers.begin()); m_layers.front()->lower_layer = nullptr; for (size_t i = 0; i < m_layers.size(); ++ i) m_layers[i]->set_id(m_layers[i]->id() - 1); } return buggy_layers.empty() ? "" : "The model has overlapping or self-intersecting facets. I tried to repair it, " "however you might want to check the results or repair the input file and retry.\n"; } // Simplify the sliced model, if "resolution" configuration parameter > 0. // The simplification is problematic, because it simplifies the slices independent from each other, // which makes the simplified discretization visible on the object surface. void PrintObject::simplify_slices(double distance) { BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - begin"; tbb::parallel_for( tbb::blocked_range(0, m_layers.size()), [this, distance](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); Layer *layer = m_layers[layer_idx]; for (size_t region_idx = 0; region_idx < layer->m_regions.size(); ++ region_idx) layer->m_regions[region_idx]->slices.simplify(distance); { ExPolygons simplified; for (const ExPolygon &expoly : layer->lslices) expoly.simplify(distance, &simplified); layer->lslices = std::move(simplified); } } }); BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - end"; } // Only active if config->infill_only_where_needed. This step trims the sparse infill, // so it acts as an internal support. It maintains all other infill types intact. // Here the internal surfaces and perimeters have to be supported by the sparse infill. //FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support. // Likely the sparse infill will not be anchored correctly, so it will not work as intended. // Also one wishes the perimeters to be supported by a full infill. // Idempotence of this method is guaranteed by the fact that we don't remove things from // fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries. void PrintObject::clip_fill_surfaces() { if (! m_config.infill_only_where_needed.value || ! std::any_of(this->print()->regions().begin(), this->print()->regions().end(), [](const PrintRegion *region) { return region->config().fill_density > 0; })) return; // We only want infill under ceilings; this is almost like an // internal support material. // Proceed top-down, skipping the bottom layer. Polygons upper_internal; for (int layer_id = int(m_layers.size()) - 1; layer_id > 0; -- layer_id) { Layer *layer = m_layers[layer_id]; Layer *lower_layer = m_layers[layer_id - 1]; // Detect things that we need to support. // Cummulative slices. Polygons slices; polygons_append(slices, layer->lslices); // Cummulative fill surfaces. Polygons fill_surfaces; // Solid surfaces to be supported. Polygons overhangs; for (const LayerRegion *layerm : layer->m_regions) for (const Surface &surface : layerm->fill_surfaces.surfaces) { Polygons polygons = to_polygons(surface.expolygon); if (surface.is_solid()) polygons_append(overhangs, polygons); polygons_append(fill_surfaces, std::move(polygons)); } Polygons lower_layer_fill_surfaces; Polygons lower_layer_internal_surfaces; for (const LayerRegion *layerm : lower_layer->m_regions) for (const Surface &surface : layerm->fill_surfaces.surfaces) { Polygons polygons = to_polygons(surface.expolygon); if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid) polygons_append(lower_layer_internal_surfaces, polygons); polygons_append(lower_layer_fill_surfaces, std::move(polygons)); } // We also need to support perimeters when there's at least one full unsupported loop { // Get perimeters area as the difference between slices and fill_surfaces // Only consider the area that is not supported by lower perimeters Polygons perimeters = intersection(diff(slices, fill_surfaces), lower_layer_fill_surfaces); // Only consider perimeter areas that are at least one extrusion width thick. //FIXME Offset2 eats out from both sides, while the perimeters are create outside in. //Should the pw not be half of the current value? float pw = FLT_MAX; for (const LayerRegion *layerm : layer->m_regions) pw = std::min(pw, (float)layerm->flow(frPerimeter).scaled_width()); // Append such thick perimeters to the areas that need support polygons_append(overhangs, offset2(perimeters, -pw, +pw)); } // Find new internal infill. polygons_append(overhangs, std::move(upper_internal)); upper_internal = intersection(overhangs, lower_layer_internal_surfaces); // Apply new internal infill to regions. for (LayerRegion *layerm : lower_layer->m_regions) { if (layerm->region()->config().fill_density.value == 0) continue; SurfaceType internal_surface_types[] = { stInternal, stInternalVoid }; Polygons internal; for (Surface &surface : layerm->fill_surfaces.surfaces) if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid) polygons_append(internal, std::move(surface.expolygon)); layerm->fill_surfaces.remove_types(internal_surface_types, 2); layerm->fill_surfaces.append(intersection_ex(internal, upper_internal, true), stInternal); layerm->fill_surfaces.append(diff_ex (internal, upper_internal, true), stInternalVoid); // If there are voids it means that our internal infill is not adjacent to // perimeters. In this case it would be nice to add a loop around infill to // make it more robust and nicer. TODO. #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_fill_surfaces_to_svg_debug("6_clip_fill_surfaces"); #endif } m_print->throw_if_canceled(); } } void PrintObject::discover_horizontal_shells() { BOOST_LOG_TRIVIAL(trace) << "discover_horizontal_shells()"; for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) { for (size_t i = 0; i < m_layers.size(); ++ i) { m_print->throw_if_canceled(); Layer *layer = m_layers[i]; LayerRegion *layerm = layer->regions()[region_id]; const PrintRegionConfig ®ion_config = layerm->region()->config(); if (region_config.solid_infill_every_layers.value > 0 && region_config.fill_density.value > 0 && (i % region_config.solid_infill_every_layers) == 0) { // Insert a solid internal layer. Mark stInternal surfaces as stInternalSolid or stInternalBridge. SurfaceType type = (region_config.fill_density == 100) ? stInternalSolid : stInternalBridge; for (Surface &surface : layerm->fill_surfaces.surfaces) if (surface.surface_type == stInternal) surface.surface_type = type; } // If ensure_vertical_shell_thickness, then the rest has already been performed by discover_vertical_shells(). if (region_config.ensure_vertical_shell_thickness.value) continue; coordf_t print_z = layer->print_z; coordf_t bottom_z = layer->bottom_z(); for (size_t idx_surface_type = 0; idx_surface_type < 3; ++ idx_surface_type) { m_print->throw_if_canceled(); SurfaceType type = (idx_surface_type == 0) ? stTop : (idx_surface_type == 1) ? stBottom : stBottomBridge; int num_solid_layers = (type == stTop) ? region_config.top_solid_layers.value : region_config.bottom_solid_layers.value; if (num_solid_layers == 0) continue; // Find slices of current type for current layer. // Use slices instead of fill_surfaces, because they also include the perimeter area, // which needs to be propagated in shells; we need to grow slices like we did for // fill_surfaces though. Using both ungrown slices and grown fill_surfaces will // not work in some situations, as there won't be any grown region in the perimeter // area (this was seen in a model where the top layer had one extra perimeter, thus // its fill_surfaces were thinner than the lower layer's infill), however it's the best // solution so far. Growing the external slices by EXTERNAL_INFILL_MARGIN will put // too much solid infill inside nearly-vertical slopes. // Surfaces including the area of perimeters. Everything, that is visible from the top / bottom // (not covered by a layer above / below). // This does not contain the areas covered by perimeters! Polygons solid; for (const Surface &surface : layerm->slices.surfaces) if (surface.surface_type == type) polygons_append(solid, to_polygons(surface.expolygon)); // Infill areas (slices without the perimeters). for (const Surface &surface : layerm->fill_surfaces.surfaces) if (surface.surface_type == type) polygons_append(solid, to_polygons(surface.expolygon)); if (solid.empty()) continue; // Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == stTop) ? 'top' : 'bottom'; // Scatter top / bottom regions to other layers. Scattering process is inherently serial, it is difficult to parallelize without locking. for (int n = (type == stTop) ? int(i) - 1 : int(i) + 1; (type == stTop) ? (n >= 0 && (int(i) - n < num_solid_layers || print_z - m_layers[n]->print_z < region_config.top_solid_min_thickness.value - EPSILON)) : (n < int(m_layers.size()) && (n - int(i) < num_solid_layers || m_layers[n]->bottom_z() - bottom_z < region_config.bottom_solid_min_thickness.value - EPSILON)); (type == stTop) ? -- n : ++ n) { // Slic3r::debugf " looking for neighbors on layer %d...\n", $n; // Reference to the lower layer of a TOP surface, or an upper layer of a BOTTOM surface. LayerRegion *neighbor_layerm = m_layers[n]->regions()[region_id]; // find intersection between neighbor and current layer's surfaces // intersections have contours and holes // we update $solid so that we limit the next neighbor layer to the areas that were // found on this one - in other words, solid shells on one layer (for a given external surface) // are always a subset of the shells found on the previous shell layer // this approach allows for DWIM in hollow sloping vases, where we want bottom // shells to be generated in the base but not in the walls (where there are many // narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the // upper perimeter as an obstacle and shell will not be propagated to more upper layers //FIXME How does it work for stInternalBRIDGE? This is set for sparse infill. Likely this does not work. Polygons new_internal_solid; { Polygons internal; for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces) if (surface.surface_type == stInternal || surface.surface_type == stInternalSolid) polygons_append(internal, to_polygons(surface.expolygon)); new_internal_solid = intersection(solid, internal, true); } if (new_internal_solid.empty()) { // No internal solid needed on this layer. In order to decide whether to continue // searching on the next neighbor (thus enforcing the configured number of solid // layers, use different strategies according to configured infill density: if (region_config.fill_density.value == 0) { // If user expects the object to be void (for example a hollow sloping vase), // don't continue the search. In this case, we only generate the external solid // shell if the object would otherwise show a hole (gap between perimeters of // the two layers), and internal solid shells are a subset of the shells found // on each previous layer. goto EXTERNAL; } else { // If we have internal infill, we can generate internal solid shells freely. continue; } } if (region_config.fill_density.value == 0) { // if we're printing a hollow object we discard any solid shell thinner // than a perimeter width, since it's probably just crossing a sloping wall // and it's not wanted in a hollow print even if it would make sense when // obeying the solid shell count option strictly (DWIM!) float margin = float(neighbor_layerm->flow(frExternalPerimeter).scaled_width()); Polygons too_narrow = diff( new_internal_solid, offset2(new_internal_solid, -margin, +margin, jtMiter, 5), true); // Trim the regularized region by the original region. if (! too_narrow.empty()) new_internal_solid = solid = diff(new_internal_solid, too_narrow); } // make sure the new internal solid is wide enough, as it might get collapsed // when spacing is added in Fill.pm { //FIXME Vojtech: Disable this and you will be sorry. // https://github.com/prusa3d/PrusaSlicer/issues/26 bottom float margin = 3.f * layerm->flow(frSolidInfill).scaled_width(); // require at least this size // we use a higher miterLimit here to handle areas with acute angles // in those cases, the default miterLimit would cut the corner and we'd // get a triangle in $too_narrow; if we grow it below then the shell // would have a different shape from the external surface and we'd still // have the same angle, so the next shell would be grown even more and so on. Polygons too_narrow = diff( new_internal_solid, offset2(new_internal_solid, -margin, +margin, ClipperLib::jtMiter, 5), true); if (! too_narrow.empty()) { // grow the collapsing parts and add the extra area to the neighbor layer // as well as to our original surfaces so that we support this // additional area in the next shell too // make sure our grown surfaces don't exceed the fill area Polygons internal; for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces) if (surface.is_internal() && !surface.is_bridge()) polygons_append(internal, to_polygons(surface.expolygon)); polygons_append(new_internal_solid, intersection( offset(too_narrow, +margin), // Discard bridges as they are grown for anchoring and we can't // remove such anchors. (This may happen when a bridge is being // anchored onto a wall where little space remains after the bridge // is grown, and that little space is an internal solid shell so // it triggers this too_narrow logic.) internal)); // see https://github.com/prusa3d/PrusaSlicer/pull/3426 // solid = new_internal_solid; } } // internal-solid are the union of the existing internal-solid surfaces // and new ones SurfaceCollection backup = std::move(neighbor_layerm->fill_surfaces); polygons_append(new_internal_solid, to_polygons(backup.filter_by_type(stInternalSolid))); ExPolygons internal_solid = union_ex(new_internal_solid, false); // assign new internal-solid surfaces to layer neighbor_layerm->fill_surfaces.set(internal_solid, stInternalSolid); // subtract intersections from layer surfaces to get resulting internal surfaces Polygons polygons_internal = to_polygons(std::move(internal_solid)); ExPolygons internal = diff_ex( to_polygons(backup.filter_by_type(stInternal)), polygons_internal, true); // assign resulting internal surfaces to layer neighbor_layerm->fill_surfaces.append(internal, stInternal); polygons_append(polygons_internal, to_polygons(std::move(internal))); // assign top and bottom surfaces to layer SurfaceType surface_types_solid[] = { stTop, stBottom, stBottomBridge }; backup.keep_types(surface_types_solid, 3); std::vector top_bottom_groups; backup.group(&top_bottom_groups); for (SurfacesPtr &group : top_bottom_groups) neighbor_layerm->fill_surfaces.append( diff_ex(to_polygons(group), polygons_internal), // Use an existing surface as a template, it carries the bridge angle etc. *group.front()); } EXTERNAL:; } // foreach type (stTop, stBottom, stBottomBridge) } // for each layer } // for each region #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) { for (const Layer *layer : m_layers) { const LayerRegion *layerm = layer->m_regions[region_id]; layerm->export_region_slices_to_svg_debug("5_discover_horizontal_shells"); layerm->export_region_fill_surfaces_to_svg_debug("5_discover_horizontal_shells"); } // for each layer } // for each region #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } // combine fill surfaces across layers to honor the "infill every N layers" option // Idempotence of this method is guaranteed by the fact that we don't remove things from // fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries. void PrintObject::combine_infill() { // Work on each region separately. for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) { const PrintRegion *region = this->print()->regions()[region_id]; const size_t every = region->config().infill_every_layers.value; if (every < 2 || region->config().fill_density == 0.) continue; // Limit the number of combined layers to the maximum height allowed by this regions' nozzle. //FIXME limit the layer height to max_layer_height double nozzle_diameter = std::min( this->print()->config().nozzle_diameter.get_at(region->config().infill_extruder.value - 1), this->print()->config().nozzle_diameter.get_at(region->config().solid_infill_extruder.value - 1)); // define the combinations std::vector combine(m_layers.size(), 0); { double current_height = 0.; size_t num_layers = 0; for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) { m_print->throw_if_canceled(); const Layer *layer = m_layers[layer_idx]; if (layer->id() == 0) // Skip first print layer (which may not be first layer in array because of raft). continue; // Check whether the combination of this layer with the lower layers' buffer // would exceed max layer height or max combined layer count. if (current_height + layer->height >= nozzle_diameter + EPSILON || num_layers >= every) { // Append combination to lower layer. combine[layer_idx - 1] = num_layers; current_height = 0.; num_layers = 0; } current_height += layer->height; ++ num_layers; } // Append lower layers (if any) to uppermost layer. combine[m_layers.size() - 1] = num_layers; } // loop through layers to which we have assigned layers to combine for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) { m_print->throw_if_canceled(); size_t num_layers = combine[layer_idx]; if (num_layers <= 1) continue; // Get all the LayerRegion objects to be combined. std::vector layerms; layerms.reserve(num_layers); for (size_t i = layer_idx + 1 - num_layers; i <= layer_idx; ++ i) layerms.emplace_back(m_layers[i]->regions()[region_id]); // We need to perform a multi-layer intersection, so let's split it in pairs. // Initialize the intersection with the candidates of the lowest layer. ExPolygons intersection = to_expolygons(layerms.front()->fill_surfaces.filter_by_type(stInternal)); // Start looping from the second layer and intersect the current intersection with it. for (size_t i = 1; i < layerms.size(); ++ i) intersection = intersection_ex( to_polygons(intersection), to_polygons(layerms[i]->fill_surfaces.filter_by_type(stInternal)), false); double area_threshold = layerms.front()->infill_area_threshold(); if (! intersection.empty() && area_threshold > 0.) intersection.erase(std::remove_if(intersection.begin(), intersection.end(), [area_threshold](const ExPolygon &expoly) { return expoly.area() <= area_threshold; }), intersection.end()); if (intersection.empty()) continue; // Slic3r::debugf " combining %d %s regions from layers %d-%d\n", // scalar(@$intersection), // ($type == stInternal ? 'internal' : 'internal-solid'), // $layer_idx-($every-1), $layer_idx; // intersection now contains the regions that can be combined across the full amount of layers, // so let's remove those areas from all layers. Polygons intersection_with_clearance; intersection_with_clearance.reserve(intersection.size()); float clearance_offset = 0.5f * layerms.back()->flow(frPerimeter).scaled_width() + // Because fill areas for rectilinear and honeycomb are grown // later to overlap perimeters, we need to counteract that too. ((region->config().fill_pattern == ipRectilinear || region->config().fill_pattern == ipMonotonous || region->config().fill_pattern == ipGrid || region->config().fill_pattern == ipLine || region->config().fill_pattern == ipHoneycomb) ? 1.5f : 0.5f) * layerms.back()->flow(frSolidInfill).scaled_width(); for (ExPolygon &expoly : intersection) polygons_append(intersection_with_clearance, offset(expoly, clearance_offset)); for (LayerRegion *layerm : layerms) { Polygons internal = to_polygons(layerm->fill_surfaces.filter_by_type(stInternal)); layerm->fill_surfaces.remove_type(stInternal); layerm->fill_surfaces.append(diff_ex(internal, intersection_with_clearance, false), stInternal); if (layerm == layerms.back()) { // Apply surfaces back with adjusted depth to the uppermost layer. Surface templ(stInternal, ExPolygon()); templ.thickness = 0.; for (LayerRegion *layerm2 : layerms) templ.thickness += layerm2->layer()->height; templ.thickness_layers = (unsigned short)layerms.size(); layerm->fill_surfaces.append(intersection, templ); } else { // Save void surfaces. layerm->fill_surfaces.append( intersection_ex(internal, intersection_with_clearance, false), stInternalVoid); } } } } } void PrintObject::_generate_support_material() { PrintObjectSupportMaterial support_material(this, m_slicing_params); support_material.generate(*this); } void PrintObject::project_and_append_custom_facets( bool seam, EnforcerBlockerType type, std::vector& expolys) const { for (const ModelVolume* mv : this->model_object()->volumes) { const indexed_triangle_set custom_facets = seam ? mv->m_seam_facets.get_facets(*mv, type) : mv->m_supported_facets.get_facets(*mv, type); if (! mv->is_model_part() || custom_facets.indices.empty()) continue; const Transform3f& tr1 = mv->get_matrix().cast(); const Transform3f& tr2 = this->trafo().cast(); const Transform3f tr = tr2 * tr1; const float tr_det_sign = (tr.matrix().determinant() > 0. ? 1.f : -1.f); // The projection will be at most a pentagon. Let's minimize heap // reallocations by saving in in the following struct. // Points are used so that scaling can be done in parallel // and they can be moved from to create an ExPolygon later. struct LightPolygon { LightPolygon() { pts.reserve(5); } Points pts; void add(const Vec2f& pt) { pts.emplace_back(scale_(pt.x()), scale_(pt.y())); assert(pts.size() <= 5); } }; // Structure to collect projected polygons. One element for each triangle. // Saves vector of polygons and layer_id of the first one. struct TriangleProjections { size_t first_layer_id; std::vector polygons; }; // Vector to collect resulting projections from each triangle. std::vector projections_of_triangles(custom_facets.indices.size()); // Iterate over all triangles. tbb::parallel_for( tbb::blocked_range(0, custom_facets.indices.size()), [&](const tbb::blocked_range& range) { for (size_t idx = range.begin(); idx < range.end(); ++ idx) { std::array facet; // Transform the triangle into worlds coords. for (int i=0; i<3; ++i) facet[i] = tr * custom_facets.vertices[custom_facets.indices[idx](i)]; // Ignore triangles with upward-pointing normal. Don't forget about mirroring. float z_comp = (facet[1]-facet[0]).cross(facet[2]-facet[0]).z(); if (! seam && tr_det_sign * z_comp > 0.) continue; // Sort the three vertices according to z-coordinate. std::sort(facet.begin(), facet.end(), [](const Vec3f& pt1, const Vec3f&pt2) { return pt1.z() < pt2.z(); }); std::array trianglef; for (int i=0; i<3; ++i) { trianglef[i] = Vec2f(facet[i].x(), facet[i].y()); trianglef[i] -= Vec2f(unscale(this->center_offset().x()), unscale(this->center_offset().y())); } // Find lowest slice not below the triangle. auto it = std::lower_bound(layers().begin(), layers().end(), facet[0].z()+EPSILON, [](const Layer* l1, float z) { return l1->slice_z < z; }); // Count how many projections will be generated for this triangle // and allocate respective amount in projections_of_triangles. projections_of_triangles[idx].first_layer_id = it-layers().begin(); size_t last_layer_id = projections_of_triangles[idx].first_layer_id; // The cast in the condition below is important. The comparison must // be an exact opposite of the one lower in the code where // the polygons are appended. And that one is on floats. while (last_layer_id + 1 < layers().size() && float(layers()[last_layer_id]->slice_z) <= facet[2].z()) ++last_layer_id; projections_of_triangles[idx].polygons.resize( last_layer_id - projections_of_triangles[idx].first_layer_id + 1); // Calculate how to move points on triangle sides per unit z increment. Vec2f ta(trianglef[1] - trianglef[0]); Vec2f tb(trianglef[2] - trianglef[0]); ta *= 1./(facet[1].z() - facet[0].z()); tb *= 1./(facet[2].z() - facet[0].z()); // Projection on current slice will be build directly in place. LightPolygon* proj = &projections_of_triangles[idx].polygons[0]; proj->add(trianglef[0]); bool passed_first = false; bool stop = false; // Project a sub-polygon on all slices intersecting the triangle. while (it != layers().end()) { const float z = (*it)->slice_z; // Projections of triangle sides intersections with slices. // a moves along one side, b tracks the other. Vec2f a; Vec2f b; // If the middle vertex was already passed, append the vertex // and use ta for tracking the remaining side. if (z > facet[1].z() && ! passed_first) { proj->add(trianglef[1]); ta = trianglef[2]-trianglef[1]; ta *= 1./(facet[2].z() - facet[1].z()); passed_first = true; } // This slice is above the triangle already. if (z > facet[2].z() || it+1 == layers().end()) { proj->add(trianglef[2]); stop = true; } else { // Move a, b along the side it currently tracks to get // projected intersection with current slice. a = passed_first ? (trianglef[1]+ta*(z-facet[1].z())) : (trianglef[0]+ta*(z-facet[0].z())); b = trianglef[0]+tb*(z-facet[0].z()); proj->add(a); proj->add(b); } if (stop) break; // Advance to the next layer. ++it; ++proj; assert(proj <= &projections_of_triangles[idx].polygons.back() ); // a, b are first two points of the polygon for the next layer. proj->add(b); proj->add(a); } } }); // end of parallel_for // Make sure that the output vector can be used. expolys.resize(layers().size()); // Now append the collected polygons to respective layers. for (auto& trg : projections_of_triangles) { int layer_id = trg.first_layer_id; for (const LightPolygon& poly : trg.polygons) { if (layer_id >= int(expolys.size())) break; // part of triangle could be projected above top layer expolys[layer_id].emplace_back(std::move(poly.pts)); ++layer_id; } } } // loop over ModelVolumes } const Layer* PrintObject::get_layer_at_printz(coordf_t print_z) const { auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [print_z](const Layer *layer) { return layer->print_z < print_z; }); return (it == m_layers.end() || (*it)->print_z != print_z) ? nullptr : *it; } Layer* PrintObject::get_layer_at_printz(coordf_t print_z) { return const_cast(std::as_const(*this).get_layer_at_printz(print_z)); } // Get a layer approximately at print_z. const Layer* PrintObject::get_layer_at_printz(coordf_t print_z, coordf_t epsilon) const { coordf_t limit = print_z - epsilon; auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [limit](const Layer *layer) { return layer->print_z < limit; }); return (it == m_layers.end() || (*it)->print_z > print_z + epsilon) ? nullptr : *it; } Layer* PrintObject::get_layer_at_printz(coordf_t print_z, coordf_t epsilon) { return const_cast(std::as_const(*this).get_layer_at_printz(print_z, epsilon)); } } // namespace Slic3r