#include #include #include #include namespace Slic3r { namespace sla { using Slic3r::opt::initvals; using Slic3r::opt::bounds; using Slic3r::opt::StopCriteria; using Slic3r::opt::Optimizer; using Slic3r::opt::AlgNLoptSubplex; using Slic3r::opt::AlgNLoptGenetic; StopCriteria get_criteria(const SupportTreeConfig &cfg) { return StopCriteria{} .rel_score_diff(cfg.optimizer_rel_score_diff) .max_iterations(cfg.optimizer_max_iterations); } template static Hit min_hit(const C &hits) { auto mit = std::min_element(hits.begin(), hits.end(), [](const Hit &h1, const Hit &h2) { return h1.distance() < h2.distance(); }); return *mit; } SupportTreeBuildsteps::SupportTreeBuildsteps(SupportTreeBuilder & builder, const SupportableMesh &sm) : m_cfg(sm.cfg) , m_mesh(sm.emesh) , m_support_pts(sm.pts) , m_support_nmls(sm.pts.size(), 3) , m_builder(builder) , m_points(sm.pts.size(), 3) , m_thr(builder.ctl().cancelfn) { // Prepare the support points in Eigen/IGL format as well, we will use // it mostly in this form. long i = 0; for (const SupportPoint &sp : m_support_pts) { m_points.row(i)(X) = double(sp.pos(X)); m_points.row(i)(Y) = double(sp.pos(Y)); m_points.row(i)(Z) = double(sp.pos(Z)); ++i; } } bool SupportTreeBuildsteps::execute(SupportTreeBuilder & builder, const SupportableMesh &sm) { if(sm.pts.empty()) return false; builder.ground_level = sm.emesh.ground_level() - sm.cfg.object_elevation_mm; SupportTreeBuildsteps alg(builder, sm); // Let's define the individual steps of the processing. We can experiment // later with the ordering and the dependencies between them. enum Steps { BEGIN, FILTER, PINHEADS, CLASSIFY, ROUTING_GROUND, ROUTING_NONGROUND, CASCADE_PILLARS, MERGE_RESULT, DONE, ABORT, NUM_STEPS //... }; // Collect the algorithm steps into a nice sequence std::array, NUM_STEPS> program = { [] () { // Begin... // Potentially clear up the shared data (not needed for now) }, std::bind(&SupportTreeBuildsteps::filter, &alg), std::bind(&SupportTreeBuildsteps::add_pinheads, &alg), std::bind(&SupportTreeBuildsteps::classify, &alg), std::bind(&SupportTreeBuildsteps::routing_to_ground, &alg), std::bind(&SupportTreeBuildsteps::routing_to_model, &alg), std::bind(&SupportTreeBuildsteps::interconnect_pillars, &alg), std::bind(&SupportTreeBuildsteps::merge_result, &alg), [] () { // Done }, [] () { // Abort } }; Steps pc = BEGIN; if(sm.cfg.ground_facing_only) { program[ROUTING_NONGROUND] = []() { BOOST_LOG_TRIVIAL(info) << "Skipping model-facing supports as requested."; }; } // Let's define a simple automaton that will run our program. auto progress = [&builder, &pc] () { static const std::array stepstr { "Starting", "Filtering", "Generate pinheads", "Classification", "Routing to ground", "Routing supports to model surface", "Interconnecting pillars", "Merging support mesh", "Done", "Abort" }; static const std::array stepstate { 0, 10, 30, 50, 60, 70, 80, 99, 100, 0 }; if(builder.ctl().stopcondition()) pc = ABORT; switch(pc) { case BEGIN: pc = FILTER; break; case FILTER: pc = PINHEADS; break; case PINHEADS: pc = CLASSIFY; break; case CLASSIFY: pc = ROUTING_GROUND; break; case ROUTING_GROUND: pc = ROUTING_NONGROUND; break; case ROUTING_NONGROUND: pc = CASCADE_PILLARS; break; case CASCADE_PILLARS: pc = MERGE_RESULT; break; case MERGE_RESULT: pc = DONE; break; case DONE: case ABORT: break; default: ; } builder.ctl().statuscb(stepstate[pc], stepstr[pc]); }; // Just here we run the computation... while(pc < DONE) { progress(); program[pc](); } return pc == ABORT; } IndexedMesh::hit_result SupportTreeBuildsteps::pinhead_mesh_intersect( const Vec3d &s, const Vec3d &dir, double r_pin, double r_back, double width, double sd) { static const size_t SAMPLES = 8; // Move away slightly from the touching point to avoid raycasting on the // inner surface of the mesh. auto& m = m_mesh; using HitResult = IndexedMesh::hit_result; // Hit results std::array hits; struct Rings { double rpin; double rback; Vec3d spin; Vec3d sback; PointRing ring; Vec3d backring(size_t idx) { return ring.get(idx, sback, rback); } Vec3d pinring(size_t idx) { return ring.get(idx, spin, rpin); } } rings {r_pin + sd, r_back + sd, s, s + width * dir, dir}; // We will shoot multiple rays from the head pinpoint in the direction // of the pinhead robe (side) surface. The result will be the smallest // hit distance. ccr::for_each(size_t(0), hits.size(), [&m, &rings, sd, &hits](size_t i) { // Point on the circle on the pin sphere Vec3d ps = rings.pinring(i); // This is the point on the circle on the back sphere Vec3d p = rings.backring(i); auto &hit = hits[i]; // Point ps is not on mesh but can be inside or // outside as well. This would cause many problems // with ray-casting. To detect the position we will // use the ray-casting result (which has an is_inside // predicate). Vec3d n = (p - ps).normalized(); auto q = m.query_ray_hit(ps + sd * n, n); if (q.is_inside()) { // the hit is inside the model if (q.distance() > rings.rpin) { // If we are inside the model and the hit // distance is bigger than our pin circle // diameter, it probably indicates that the // support point was already inside the // model, or there is really no space // around the point. We will assign a zero // hit distance to these cases which will // enforce the function return value to be // an invalid ray with zero hit distance. // (see min_element at the end) hit = HitResult(0.0); } else { // re-cast the ray from the outside of the // object. The starting point has an offset // of 2*safety_distance because the // original ray has also had an offset auto q2 = m.query_ray_hit(ps + (q.distance() + 2 * sd) * n, n); hit = q2; } } else hit = q; }); return min_hit(hits); } IndexedMesh::hit_result SupportTreeBuildsteps::bridge_mesh_intersect( const Vec3d &src, const Vec3d &dir, double r, double sd) { static const size_t SAMPLES = 8; PointRing ring{dir}; using Hit = IndexedMesh::hit_result; // Hit results std::array hits; ccr::for_each(size_t(0), hits.size(), [this, r, src, /*ins_check,*/ &ring, dir, sd, &hits] (size_t i) { Hit &hit = hits[i]; // Point on the circle on the pin sphere Vec3d p = ring.get(i, src, r + sd); auto hr = m_mesh.query_ray_hit(p + r * dir, dir); if(/*ins_check && */hr.is_inside()) { if(hr.distance() > 2 * r + sd) hit = Hit(0.0); else { // re-cast the ray from the outside of the object hit = m_mesh.query_ray_hit(p + (hr.distance() + EPSILON) * dir, dir); } } else hit = hr; }); return min_hit(hits); } bool SupportTreeBuildsteps::interconnect(const Pillar &pillar, const Pillar &nextpillar) { // We need to get the starting point of the zig-zag pattern. We have to // be aware that the two head junctions are at different heights. We // may start from the lowest junction and call it a day but this // strategy would leave unconnected a lot of pillar duos where the // shorter pillar is too short to start a new bridge but the taller // pillar could still be bridged with the shorter one. bool was_connected = false; Vec3d supper = pillar.startpoint(); Vec3d slower = nextpillar.startpoint(); Vec3d eupper = pillar.endpoint(); Vec3d elower = nextpillar.endpoint(); double zmin = m_builder.ground_level + m_cfg.base_height_mm; eupper(Z) = std::max(eupper(Z), zmin); elower(Z) = std::max(elower(Z), zmin); // The usable length of both pillars should be positive if(slower(Z) - elower(Z) < 0) return false; if(supper(Z) - eupper(Z) < 0) return false; double pillar_dist = distance(Vec2d{slower(X), slower(Y)}, Vec2d{supper(X), supper(Y)}); double bridge_distance = pillar_dist / std::cos(-m_cfg.bridge_slope); double zstep = pillar_dist * std::tan(-m_cfg.bridge_slope); if(pillar_dist < 2 * m_cfg.head_back_radius_mm || pillar_dist > m_cfg.max_pillar_link_distance_mm) return false; if(supper(Z) < slower(Z)) supper.swap(slower); if(eupper(Z) < elower(Z)) eupper.swap(elower); double startz = 0, endz = 0; startz = slower(Z) - zstep < supper(Z) ? slower(Z) - zstep : slower(Z); endz = eupper(Z) + zstep > elower(Z) ? eupper(Z) + zstep : eupper(Z); if(slower(Z) - eupper(Z) < std::abs(zstep)) { // no space for even one cross // Get max available space startz = std::min(supper(Z), slower(Z) - zstep); endz = std::max(eupper(Z) + zstep, elower(Z)); // Align to center double available_dist = (startz - endz); double rounds = std::floor(available_dist / std::abs(zstep)); startz -= 0.5 * (available_dist - rounds * std::abs(zstep)); } auto pcm = m_cfg.pillar_connection_mode; bool docrosses = pcm == PillarConnectionMode::cross || (pcm == PillarConnectionMode::dynamic && pillar_dist > 2*m_cfg.base_radius_mm); // 'sj' means starting junction, 'ej' is the end junction of a bridge. // They will be swapped in every iteration thus the zig-zag pattern. // According to a config parameter, a second bridge may be added which // results in a cross connection between the pillars. Vec3d sj = supper, ej = slower; sj(Z) = startz; ej(Z) = sj(Z) + zstep; // TODO: This is a workaround to not have a faulty last bridge while(ej(Z) >= eupper(Z) /*endz*/) { if(bridge_mesh_distance(sj, dirv(sj, ej), pillar.r) >= bridge_distance) { m_builder.add_crossbridge(sj, ej, pillar.r); was_connected = true; } // double bridging: (crosses) if(docrosses) { Vec3d sjback(ej(X), ej(Y), sj(Z)); Vec3d ejback(sj(X), sj(Y), ej(Z)); if (sjback(Z) <= slower(Z) && ejback(Z) >= eupper(Z) && bridge_mesh_distance(sjback, dirv(sjback, ejback), pillar.r) >= bridge_distance) { // need to check collision for the cross stick m_builder.add_crossbridge(sjback, ejback, pillar.r); was_connected = true; } } sj.swap(ej); ej(Z) = sj(Z) + zstep; } return was_connected; } bool SupportTreeBuildsteps::connect_to_nearpillar(const Head &head, long nearpillar_id) { auto nearpillar = [this, nearpillar_id]() -> const Pillar& { return m_builder.pillar(nearpillar_id); }; if (m_builder.bridgecount(nearpillar()) > m_cfg.max_bridges_on_pillar) return false; Vec3d headjp = head.junction_point(); Vec3d nearjp_u = nearpillar().startpoint(); Vec3d nearjp_l = nearpillar().endpoint(); double r = head.r_back_mm; double d2d = distance(to_2d(headjp), to_2d(nearjp_u)); double d3d = distance(headjp, nearjp_u); double hdiff = nearjp_u(Z) - headjp(Z); double slope = std::atan2(hdiff, d2d); Vec3d bridgestart = headjp; Vec3d bridgeend = nearjp_u; double max_len = r * m_cfg.max_bridge_length_mm / m_cfg.head_back_radius_mm; double max_slope = m_cfg.bridge_slope; double zdiff = 0.0; // check the default situation if feasible for a bridge if(d3d > max_len || slope > -max_slope) { // not feasible to connect the two head junctions. We have to search // for a suitable touch point. double Zdown = headjp(Z) + d2d * std::tan(-max_slope); Vec3d touchjp = bridgeend; touchjp(Z) = Zdown; double D = distance(headjp, touchjp); zdiff = Zdown - nearjp_u(Z); if(zdiff > 0) { Zdown -= zdiff; bridgestart(Z) -= zdiff; touchjp(Z) = Zdown; double t = bridge_mesh_distance(headjp, DOWN, r); // We can't insert a pillar under the source head to connect // with the nearby pillar's starting junction if(t < zdiff) return false; } if(Zdown <= nearjp_u(Z) && Zdown >= nearjp_l(Z) && D < max_len) bridgeend(Z) = Zdown; else return false; } // There will be a minimum distance from the ground where the // bridge is allowed to connect. This is an empiric value. double minz = m_builder.ground_level + 4 * head.r_back_mm; if(bridgeend(Z) < minz) return false; double t = bridge_mesh_distance(bridgestart, dirv(bridgestart, bridgeend), r); // Cannot insert the bridge. (further search might not worth the hassle) if(t < distance(bridgestart, bridgeend)) return false; std::lock_guard lk(m_bridge_mutex); if (m_builder.bridgecount(nearpillar()) < m_cfg.max_bridges_on_pillar) { // A partial pillar is needed under the starting head. if(zdiff > 0) { m_builder.add_pillar(head.id, headjp.z() - bridgestart.z()); m_builder.add_junction(bridgestart, r); m_builder.add_bridge(bridgestart, bridgeend, r); } else { m_builder.add_bridge(head.id, bridgeend); } m_builder.increment_bridges(nearpillar()); } else return false; return true; } bool SupportTreeBuildsteps::create_ground_pillar(const Vec3d &hjp, const Vec3d &sourcedir, double radius, long head_id) { Vec3d jp = hjp, endp = jp, dir = sourcedir; long pillar_id = SupportTreeNode::ID_UNSET; bool can_add_base = false, non_head = false; double gndlvl = 0.; // The Z level where pedestals should be double jp_gnd = 0.; // The lowest Z where a junction center can be double gap_dist = 0.; // The gap distance between the model and the pad auto to_floor = [&gndlvl](const Vec3d &p) { return Vec3d{p.x(), p.y(), gndlvl}; }; auto eval_limits = [this, &radius, &can_add_base, &gndlvl, &gap_dist, &jp_gnd] (bool base_en = true) { can_add_base = base_en && radius >= m_cfg.head_back_radius_mm; double base_r = can_add_base ? m_cfg.base_radius_mm : 0.; gndlvl = m_builder.ground_level; if (!can_add_base) gndlvl -= m_mesh.ground_level_offset(); jp_gnd = gndlvl + (can_add_base ? 0. : m_cfg.head_back_radius_mm); gap_dist = m_cfg.pillar_base_safety_distance_mm + base_r + EPSILON; }; eval_limits(); // We are dealing with a mini pillar that's potentially too long if (radius < m_cfg.head_back_radius_mm && jp.z() - gndlvl > 20 * radius) { std::optional diffbr = search_widening_path(jp, dir, radius, m_cfg.head_back_radius_mm); if (diffbr && diffbr->endp.z() > jp_gnd) { auto &br = m_builder.add_diffbridge(*diffbr); if (head_id >= 0) m_builder.head(head_id).bridge_id = br.id; endp = diffbr->endp; radius = diffbr->end_r; m_builder.add_junction(endp, radius); non_head = true; dir = diffbr->get_dir(); eval_limits(); } else return false; } if (m_cfg.object_elevation_mm < EPSILON) { // get a suitable direction for the corrector bridge. It is the // original sourcedir's azimuth but the polar angle is saturated to the // configured bridge slope. auto [polar, azimuth] = dir_to_spheric(dir); polar = PI - m_cfg.bridge_slope; Vec3d d = spheric_to_dir(polar, azimuth).normalized(); double t = bridge_mesh_distance(endp, dir, radius); double tmax = std::min(m_cfg.max_bridge_length_mm, t); t = 0.; double zd = endp.z() - jp_gnd; double tmax2 = zd / std::sqrt(1 - m_cfg.bridge_slope * m_cfg.bridge_slope); tmax = std::min(tmax, tmax2); Vec3d nexp = endp; double dlast = 0.; while (((dlast = std::sqrt(m_mesh.squared_distance(to_floor(nexp)))) < gap_dist || !std::isinf(bridge_mesh_distance(nexp, DOWN, radius))) && t < tmax) { t += radius; nexp = endp + t * d; } if (dlast < gap_dist && can_add_base) { nexp = endp; t = 0.; can_add_base = false; eval_limits(can_add_base); zd = endp.z() - jp_gnd; tmax2 = zd / std::sqrt(1 - m_cfg.bridge_slope * m_cfg.bridge_slope); tmax = std::min(tmax, tmax2); while (((dlast = std::sqrt(m_mesh.squared_distance(to_floor(nexp)))) < gap_dist || !std::isinf(bridge_mesh_distance(nexp, DOWN, radius))) && t < tmax) { t += radius; nexp = endp + t * d; } } // Could not find a path to avoid the pad gap if (dlast < gap_dist) return false; if (t > 0.) { // Need to make additional bridge const Bridge& br = m_builder.add_bridge(endp, nexp, radius); if (head_id >= 0) m_builder.head(head_id).bridge_id = br.id; m_builder.add_junction(nexp, radius); endp = nexp; non_head = true; } } Vec3d gp = to_floor(endp); double h = endp.z() - gp.z(); pillar_id = head_id >= 0 && !non_head ? m_builder.add_pillar(head_id, h) : m_builder.add_pillar(gp, h, radius); if (can_add_base) add_pillar_base(pillar_id); if(pillar_id >= 0) // Save the pillar endpoint in the spatial index m_pillar_index.guarded_insert(m_builder.pillar(pillar_id).endpt, unsigned(pillar_id)); return true; } std::optional SupportTreeBuildsteps::search_widening_path( const Vec3d &jp, const Vec3d &dir, double radius, double new_radius) { double w = radius + 2 * m_cfg.head_back_radius_mm; double stopval = w + jp.z() - m_builder.ground_level; Optimizer solver(get_criteria(m_cfg).stop_score(stopval)); auto [polar, azimuth] = dir_to_spheric(dir); double fallback_ratio = radius / m_cfg.head_back_radius_mm; auto oresult = solver.to_max().optimize( [this, jp, radius, new_radius](const opt::Input<3> &input) { auto &[plr, azm, t] = input; auto d = spheric_to_dir(plr, azm).normalized(); double ret = pinhead_mesh_intersect(jp, d, radius, new_radius, t) .distance(); double down = bridge_mesh_distance(jp + t * d, d, new_radius); if (ret > t && std::isinf(down)) ret += jp.z() - m_builder.ground_level; return ret; }, initvals({polar, azimuth, w}), // start with what we have bounds({ {PI - m_cfg.bridge_slope, PI}, // Must not exceed the slope limit {-PI, PI}, // azimuth can be a full search {radius + m_cfg.head_back_radius_mm, fallback_ratio * m_cfg.max_bridge_length_mm} })); if (oresult.score >= stopval) { polar = std::get<0>(oresult.optimum); azimuth = std::get<1>(oresult.optimum); double t = std::get<2>(oresult.optimum); Vec3d endp = jp + t * spheric_to_dir(polar, azimuth); return DiffBridge(jp, endp, radius, m_cfg.head_back_radius_mm); } return {}; } void SupportTreeBuildsteps::filter() { // Get the points that are too close to each other and keep only the // first one auto aliases = cluster(m_points, D_SP, 2); PtIndices filtered_indices; filtered_indices.reserve(aliases.size()); m_iheads.reserve(aliases.size()); m_iheadless.reserve(aliases.size()); for(auto& a : aliases) { // Here we keep only the front point of the cluster. filtered_indices.emplace_back(a.front()); } // calculate the normals to the triangles for filtered points auto nmls = sla::normals(m_points, m_mesh, m_cfg.head_front_radius_mm, m_thr, filtered_indices); // Not all of the support points have to be a valid position for // support creation. The angle may be inappropriate or there may // not be enough space for the pinhead. Filtering is applied for // these reasons. std::vector heads; heads.reserve(m_support_pts.size()); for (const SupportPoint &sp : m_support_pts) { m_thr(); heads.emplace_back( std::nan(""), sp.head_front_radius, 0., m_cfg.head_penetration_mm, Vec3d::Zero(), // dir sp.pos.cast() // displacement ); } std::function filterfn; filterfn = [this, &nmls, &heads, &filterfn](unsigned fidx, size_t i, double back_r) { m_thr(); auto n = nmls.row(Eigen::Index(i)); // for all normals we generate the spherical coordinates and // saturate the polar angle to 45 degrees from the bottom then // convert back to standard coordinates to get the new normal. // Then we just create a quaternion from the two normals // (Quaternion::FromTwoVectors) and apply the rotation to the // arrow head. auto [polar, azimuth] = dir_to_spheric(n); // skip if the tilt is not sane if (polar < PI - m_cfg.normal_cutoff_angle) return; // We saturate the polar angle to 3pi/4 polar = std::max(polar, PI - m_cfg.bridge_slope); // save the head (pinpoint) position Vec3d hp = m_points.row(fidx); double lmin = m_cfg.head_width_mm, lmax = lmin; if (back_r < m_cfg.head_back_radius_mm) { lmin = 0., lmax = m_cfg.head_penetration_mm; } // The distance needed for a pinhead to not collide with model. double w = lmin + 2 * back_r + 2 * m_cfg.head_front_radius_mm - m_cfg.head_penetration_mm; double pin_r = double(m_support_pts[fidx].head_front_radius); // Reassemble the now corrected normal auto nn = spheric_to_dir(polar, azimuth).normalized(); // check available distance IndexedMesh::hit_result t = pinhead_mesh_intersect(hp, nn, pin_r, back_r, w); if (t.distance() < w) { // Let's try to optimize this angle, there might be a // viable normal that doesn't collide with the model // geometry and its very close to the default. Optimizer solver(get_criteria(m_cfg)); solver.seed(0); // we want deterministic behavior auto oresult = solver.to_max().optimize( [this, pin_r, back_r, hp](const opt::Input<3> &input) { auto &[plr, azm, l] = input; auto dir = spheric_to_dir(plr, azm).normalized(); return pinhead_mesh_intersect( hp, dir, pin_r, back_r, l).distance(); }, initvals({polar, azimuth, (lmin + lmax) / 2.}), // start with what we have bounds({ {PI - m_cfg.bridge_slope, PI}, // Must not exceed the slope limit {-PI, PI}, // azimuth can be a full search {lmin, lmax} })); if(oresult.score > w) { polar = std::get<0>(oresult.optimum); azimuth = std::get<1>(oresult.optimum); nn = spheric_to_dir(polar, azimuth).normalized(); lmin = std::get<2>(oresult.optimum); t = IndexedMesh::hit_result(oresult.score); } } if (t.distance() > w && hp(Z) + w * nn(Z) >= m_builder.ground_level) { Head &h = heads[fidx]; h.id = fidx; h.dir = nn; h.width_mm = lmin; h.r_back_mm = back_r; } else if (back_r > m_cfg.head_fallback_radius_mm) { filterfn(fidx, i, m_cfg.head_fallback_radius_mm); } }; ccr::for_each(size_t(0), filtered_indices.size(), [this, &filterfn, &filtered_indices] (size_t i) { filterfn(filtered_indices[i], i, m_cfg.head_back_radius_mm); }); for (size_t i = 0; i < heads.size(); ++i) if (heads[i].is_valid()) { m_builder.add_head(i, heads[i]); m_iheads.emplace_back(i); } m_thr(); } void SupportTreeBuildsteps::add_pinheads() { } void SupportTreeBuildsteps::classify() { // We should first get the heads that reach the ground directly PtIndices ground_head_indices; ground_head_indices.reserve(m_iheads.size()); m_iheads_onmodel.reserve(m_iheads.size()); // First we decide which heads reach the ground and can be full // pillars and which shall be connected to the model surface (or // search a suitable path around the surface that leads to the // ground -- TODO) for(unsigned i : m_iheads) { m_thr(); Head &head = m_builder.head(i); double r = head.r_back_mm; Vec3d headjp = head.junction_point(); // collision check auto hit = bridge_mesh_intersect(headjp, DOWN, r); if(std::isinf(hit.distance())) ground_head_indices.emplace_back(i); else if(m_cfg.ground_facing_only) head.invalidate(); else m_iheads_onmodel.emplace_back(i); m_head_to_ground_scans[i] = hit; } // We want to search for clusters of points that are far enough // from each other in the XY plane to not cross their pillar bases // These clusters of support points will join in one pillar, // possibly in their centroid support point. auto pointfn = [this](unsigned i) { return m_builder.head(i).junction_point(); }; auto predicate = [this](const PointIndexEl &e1, const PointIndexEl &e2) { double d2d = distance(to_2d(e1.first), to_2d(e2.first)); double d3d = distance(e1.first, e2.first); return d2d < 2 * m_cfg.base_radius_mm && d3d < m_cfg.max_bridge_length_mm; }; m_pillar_clusters = cluster(ground_head_indices, pointfn, predicate, m_cfg.max_bridges_on_pillar); } void SupportTreeBuildsteps::routing_to_ground() { ClusterEl cl_centroids; cl_centroids.reserve(m_pillar_clusters.size()); for (auto &cl : m_pillar_clusters) { m_thr(); // place all the centroid head positions into the index. We // will query for alternative pillar positions. If a sidehead // cannot connect to the cluster centroid, we have to search // for another head with a full pillar. Also when there are two // elements in the cluster, the centroid is arbitrary and the // sidehead is allowed to connect to a nearby pillar to // increase structural stability. if (cl.empty()) continue; // get the current cluster centroid auto & thr = m_thr; const auto &points = m_points; long lcid = cluster_centroid( cl, [&points](size_t idx) { return points.row(long(idx)); }, [thr](const Vec3d &p1, const Vec3d &p2) { thr(); return distance(Vec2d(p1(X), p1(Y)), Vec2d(p2(X), p2(Y))); }); assert(lcid >= 0); unsigned hid = cl[size_t(lcid)]; // Head ID cl_centroids.emplace_back(hid); Head &h = m_builder.head(hid); if (!create_ground_pillar(h.junction_point(), h.dir, h.r_back_mm, h.id)) { BOOST_LOG_TRIVIAL(warning) << "Pillar cannot be created for support point id: " << hid; m_iheads_onmodel.emplace_back(h.id); continue; } } // now we will go through the clusters ones again and connect the // sidepoints with the cluster centroid (which is a ground pillar) // or a nearby pillar if the centroid is unreachable. size_t ci = 0; for (auto cl : m_pillar_clusters) { m_thr(); auto cidx = cl_centroids[ci++]; auto q = m_pillar_index.query(m_builder.head(cidx).junction_point(), 1); if (!q.empty()) { long centerpillarID = q.front().second; for (auto c : cl) { m_thr(); if (c == cidx) continue; auto &sidehead = m_builder.head(c); if (!connect_to_nearpillar(sidehead, centerpillarID) && !search_pillar_and_connect(sidehead)) { Vec3d pstart = sidehead.junction_point(); // Vec3d pend = Vec3d{pstart(X), pstart(Y), gndlvl}; // Could not find a pillar, create one create_ground_pillar(pstart, sidehead.dir, sidehead.r_back_mm, sidehead.id); } } } } } bool SupportTreeBuildsteps::connect_to_ground(Head &head, const Vec3d &dir) { auto hjp = head.junction_point(); double r = head.r_back_mm; double t = bridge_mesh_distance(hjp, dir, head.r_back_mm); double d = 0, tdown = 0; t = std::min(t, m_cfg.max_bridge_length_mm * r / m_cfg.head_back_radius_mm); while (d < t && !std::isinf(tdown = bridge_mesh_distance(hjp + d * dir, DOWN, r))) d += r; if(!std::isinf(tdown)) return false; Vec3d endp = hjp + d * dir; bool ret = false; if ((ret = create_ground_pillar(endp, dir, head.r_back_mm))) { m_builder.add_bridge(head.id, endp); m_builder.add_junction(endp, head.r_back_mm); } return ret; } bool SupportTreeBuildsteps::connect_to_ground(Head &head) { if (connect_to_ground(head, head.dir)) return true; // Optimize bridge direction: // Straight path failed so we will try to search for a suitable // direction out of the cavity. auto [polar, azimuth] = dir_to_spheric(head.dir); Optimizer solver(get_criteria(m_cfg).stop_score(1e6)); solver.seed(0); // we want deterministic behavior double r_back = head.r_back_mm; Vec3d hjp = head.junction_point(); auto oresult = solver.to_max().optimize( [this, hjp, r_back](const opt::Input<2> &input) { auto &[plr, azm] = input; Vec3d n = spheric_to_dir(plr, azm).normalized(); return bridge_mesh_distance(hjp, n, r_back); }, initvals({polar, azimuth}), // let's start with what we have bounds({ {PI - m_cfg.bridge_slope, PI}, {-PI, PI} }) ); Vec3d bridgedir = spheric_to_dir(oresult.optimum).normalized(); return connect_to_ground(head, bridgedir); } bool SupportTreeBuildsteps::connect_to_model_body(Head &head) { if (head.id <= SupportTreeNode::ID_UNSET) return false; auto it = m_head_to_ground_scans.find(unsigned(head.id)); if (it == m_head_to_ground_scans.end()) return false; auto &hit = it->second; if (!hit.is_hit()) { // TODO scan for potential anchor points on model surface return false; } Vec3d hjp = head.junction_point(); double zangle = std::asin(hit.direction()(Z)); zangle = std::max(zangle, PI/4); double h = std::sin(zangle) * head.fullwidth(); // The width of the tail head that we would like to have... h = std::min(hit.distance() - head.r_back_mm, h); // If this is a mini pillar dont bother with the tail width, can be 0. if (head.r_back_mm < m_cfg.head_back_radius_mm) h = std::max(h, 0.); else if (h <= 0.) return false; Vec3d endp{hjp(X), hjp(Y), hjp(Z) - hit.distance() + h}; auto center_hit = m_mesh.query_ray_hit(hjp, DOWN); double hitdiff = center_hit.distance() - hit.distance(); Vec3d hitp = std::abs(hitdiff) < 2*head.r_back_mm? center_hit.position() : hit.position(); long pillar_id = m_builder.add_pillar(head.id, hjp.z() - endp.z()); Pillar &pill = m_builder.pillar(pillar_id); Vec3d taildir = endp - hitp; double dist = (hitp - endp).norm() + m_cfg.head_penetration_mm; double w = dist - 2 * head.r_pin_mm - head.r_back_mm; if (w < 0.) { BOOST_LOG_TRIVIAL(error) << "Pinhead width is negative!"; w = 0.; } m_builder.add_anchor(head.r_back_mm, head.r_pin_mm, w, m_cfg.head_penetration_mm, taildir, hitp); m_pillar_index.guarded_insert(pill.endpoint(), pill.id); return true; } bool SupportTreeBuildsteps::search_pillar_and_connect(const Head &source) { // Hope that a local copy takes less time than the whole search loop. // We also need to remove elements progressively from the copied index. PointIndex spindex = m_pillar_index.guarded_clone(); long nearest_id = SupportTreeNode::ID_UNSET; Vec3d querypt = source.junction_point(); while(nearest_id < 0 && !spindex.empty()) { m_thr(); // loop until a suitable head is not found // if there is a pillar closer than the cluster center // (this may happen as the clustering is not perfect) // than we will bridge to this closer pillar Vec3d qp(querypt(X), querypt(Y), m_builder.ground_level); auto qres = spindex.nearest(qp, 1); if(qres.empty()) break; auto ne = qres.front(); nearest_id = ne.second; if(nearest_id >= 0) { if (size_t(nearest_id) < m_builder.pillarcount()) { if(!connect_to_nearpillar(source, nearest_id) || m_builder.pillar(nearest_id).r < source.r_back_mm) { nearest_id = SupportTreeNode::ID_UNSET; // continue searching spindex.remove(ne); // without the current pillar } } } } return nearest_id >= 0; } void SupportTreeBuildsteps::routing_to_model() { // We need to check if there is an easy way out to the bed surface. // If it can be routed there with a bridge shorter than // min_bridge_distance. ccr::for_each(m_iheads_onmodel.begin(), m_iheads_onmodel.end(), [this] (const unsigned idx) { m_thr(); auto& head = m_builder.head(idx); // Search nearby pillar if (search_pillar_and_connect(head)) { return; } // Cannot connect to nearby pillar. We will try to search for // a route to the ground. if (connect_to_ground(head)) { return; } // No route to the ground, so connect to the model body as a last resort if (connect_to_model_body(head)) { return; } // We have failed to route this head. BOOST_LOG_TRIVIAL(warning) << "Failed to route model facing support point. ID: " << idx; head.invalidate(); }); } void SupportTreeBuildsteps::interconnect_pillars() { // Now comes the algorithm that connects pillars with each other. // Ideally every pillar should be connected with at least one of its // neighbors if that neighbor is within max_pillar_link_distance // Pillars with height exceeding H1 will require at least one neighbor // to connect with. Height exceeding H2 require two neighbors. double H1 = m_cfg.max_solo_pillar_height_mm; double H2 = m_cfg.max_dual_pillar_height_mm; double d = m_cfg.max_pillar_link_distance_mm; //A connection between two pillars only counts if the height ratio is // bigger than 50% double min_height_ratio = 0.5; std::set pairs; // A function to connect one pillar with its neighbors. THe number of // neighbors is given in the configuration. This function if called // for every pillar in the pillar index. A pair of pillar will not // be connected multiple times this is ensured by the 'pairs' set which // remembers the processed pillar pairs auto cascadefn = [this, d, &pairs, min_height_ratio, H1] (const PointIndexEl& el) { Vec3d qp = el.first; // endpoint of the pillar const Pillar& pillar = m_builder.pillar(el.second); // actual pillar // Get the max number of neighbors a pillar should connect to unsigned neighbors = m_cfg.pillar_cascade_neighbors; // connections are already enough for the pillar if(pillar.links >= neighbors) return; double max_d = d * pillar.r / m_cfg.head_back_radius_mm; // Query all remaining points within reach auto qres = m_pillar_index.query([qp, max_d](const PointIndexEl& e){ return distance(e.first, qp) < max_d; }); // sort the result by distance (have to check if this is needed) std::sort(qres.begin(), qres.end(), [qp](const PointIndexEl& e1, const PointIndexEl& e2){ return distance(e1.first, qp) < distance(e2.first, qp); }); for(auto& re : qres) { // process the queried neighbors if(re.second == el.second) continue; // Skip self auto a = el.second, b = re.second; // Get unique hash for the given pair (order doesn't matter) auto hashval = pairhash(a, b); // Search for the pair amongst the remembered pairs if(pairs.find(hashval) != pairs.end()) continue; const Pillar& neighborpillar = m_builder.pillar(re.second); // this neighbor is occupied, skip if (neighborpillar.links >= neighbors) continue; if (neighborpillar.r < pillar.r) continue; if(interconnect(pillar, neighborpillar)) { pairs.insert(hashval); // If the interconnection length between the two pillars is // less than 50% of the longer pillar's height, don't count if(pillar.height < H1 || neighborpillar.height / pillar.height > min_height_ratio) m_builder.increment_links(pillar); if(neighborpillar.height < H1 || pillar.height / neighborpillar.height > min_height_ratio) m_builder.increment_links(neighborpillar); } // connections are enough for one pillar if(pillar.links >= neighbors) break; } }; // Run the cascade for the pillars in the index m_pillar_index.foreach(cascadefn); // We would be done here if we could allow some pillars to not be // connected with any neighbors. But this might leave the support tree // unprintable. // // The current solution is to insert additional pillars next to these // lonely pillars. One or even two additional pillar might get inserted // depending on the length of the lonely pillar. size_t pillarcount = m_builder.pillarcount(); // Again, go through all pillars, this time in the whole support tree // not just the index. for(size_t pid = 0; pid < pillarcount; pid++) { auto pillar = [this, pid]() { return m_builder.pillar(pid); }; // Decide how many additional pillars will be needed: unsigned needpillars = 0; if (pillar().bridges > m_cfg.max_bridges_on_pillar) needpillars = 3; else if (pillar().links < 2 && pillar().height > H2) { // Not enough neighbors to support this pillar needpillars = 2; } else if (pillar().links < 1 && pillar().height > H1) { // No neighbors could be found and the pillar is too long. needpillars = 1; } needpillars = std::max(pillar().links, needpillars) - pillar().links; if (needpillars == 0) continue; // Search for new pillar locations: bool found = false; double alpha = 0; // goes to 2Pi double r = 2 * m_cfg.base_radius_mm; Vec3d pillarsp = pillar().startpoint(); // temp value for starting point detection Vec3d sp(pillarsp(X), pillarsp(Y), pillarsp(Z) - r); // A vector of bool for placement feasbility std::vector canplace(needpillars, false); std::vector spts(needpillars); // vector of starting points double gnd = m_builder.ground_level; double min_dist = m_cfg.pillar_base_safety_distance_mm + m_cfg.base_radius_mm + EPSILON; while(!found && alpha < 2*PI) { for (unsigned n = 0; n < needpillars && (!n || canplace[n - 1]); n++) { double a = alpha + n * PI / 3; Vec3d s = sp; s(X) += std::cos(a) * r; s(Y) += std::sin(a) * r; spts[n] = s; // Check the path vertically down Vec3d check_from = s + Vec3d{0., 0., pillar().r}; auto hr = bridge_mesh_intersect(check_from, DOWN, pillar().r); Vec3d gndsp{s(X), s(Y), gnd}; // If the path is clear, check for pillar base collisions canplace[n] = std::isinf(hr.distance()) && std::sqrt(m_mesh.squared_distance(gndsp)) > min_dist; } found = std::all_of(canplace.begin(), canplace.end(), [](bool v) { return v; }); // 20 angles will be tried... alpha += 0.1 * PI; } std::vector newpills; newpills.reserve(needpillars); if (found) for (unsigned n = 0; n < needpillars; n++) { Vec3d s = spts[n]; Pillar p(Vec3d{s.x(), s.y(), gnd}, s.z() - gnd, pillar().r); if (interconnect(pillar(), p)) { Pillar &pp = m_builder.pillar(m_builder.add_pillar(p)); add_pillar_base(pp.id); m_pillar_index.insert(pp.endpoint(), unsigned(pp.id)); m_builder.add_junction(s, pillar().r); double t = bridge_mesh_distance(pillarsp, dirv(pillarsp, s), pillar().r); if (distance(pillarsp, s) < t) m_builder.add_bridge(pillarsp, s, pillar().r); if (pillar().endpoint()(Z) > m_builder.ground_level + pillar().r) m_builder.add_junction(pillar().endpoint(), pillar().r); newpills.emplace_back(pp.id); m_builder.increment_links(pillar()); m_builder.increment_links(pp); } } if(!newpills.empty()) { for(auto it = newpills.begin(), nx = std::next(it); nx != newpills.end(); ++it, ++nx) { const Pillar& itpll = m_builder.pillar(*it); const Pillar& nxpll = m_builder.pillar(*nx); if(interconnect(itpll, nxpll)) { m_builder.increment_links(itpll); m_builder.increment_links(nxpll); } } m_pillar_index.foreach(cascadefn); } } } }} // namespace Slic3r::sla