#ifndef slic3r_TriangleMesh_hpp_ #define slic3r_TriangleMesh_hpp_ #include "libslic3r.h" #include #include #include #include #include "BoundingBox.hpp" #include "Line.hpp" #include "Point.hpp" #include "Polygon.hpp" #include "ExPolygon.hpp" namespace Slic3r { class TriangleMesh; class TriangleMeshSlicer; typedef std::vector TriangleMeshPtrs; class TriangleMesh { public: TriangleMesh() : repaired(false) {} TriangleMesh(const Pointf3s &points, const std::vector &facets); explicit TriangleMesh(const indexed_triangle_set &M); void clear() { this->stl.clear(); this->its.clear(); this->repaired = false; } bool ReadSTLFile(const char* input_file) { return stl_open(&stl, input_file); } bool write_ascii(const char* output_file) { return stl_write_ascii(&this->stl, output_file, ""); } bool write_binary(const char* output_file) { return stl_write_binary(&this->stl, output_file, ""); } void repair(bool update_shared_vertices = true); float volume(); void check_topology(); bool is_manifold() const { return this->stl.stats.connected_facets_3_edge == (int)this->stl.stats.number_of_facets; } void WriteOBJFile(const char* output_file) const; void scale(float factor); void scale(const Vec3d &versor); void translate(float x, float y, float z); void translate(const Vec3f &displacement); void rotate(float angle, const Axis &axis); void rotate(float angle, const Vec3d& axis); void rotate_x(float angle) { this->rotate(angle, X); } void rotate_y(float angle) { this->rotate(angle, Y); } void rotate_z(float angle) { this->rotate(angle, Z); } void mirror(const Axis &axis); void mirror_x() { this->mirror(X); } void mirror_y() { this->mirror(Y); } void mirror_z() { this->mirror(Z); } void transform(const Transform3d& t, bool fix_left_handed = false); void transform(const Matrix3d& t, bool fix_left_handed = false); void align_to_origin(); void rotate(double angle, Point* center); TriangleMeshPtrs split() const; void merge(const TriangleMesh &mesh); ExPolygons horizontal_projection() const; const float* first_vertex() const { return this->stl.facet_start.empty() ? nullptr : &this->stl.facet_start.front().vertex[0](0); } // 2D convex hull of a 3D mesh projected into the Z=0 plane. Polygon convex_hull(); BoundingBoxf3 bounding_box() const; // Returns the bbox of this TriangleMesh transformed by the given transformation BoundingBoxf3 transformed_bounding_box(const Transform3d &trafo) const; // Return the size of the mesh in coordinates. Vec3d size() const { return stl.stats.size.cast(); } /// Return the center of the related bounding box. Vec3d center() const { return this->bounding_box().center(); } // Returns the convex hull of this TriangleMesh TriangleMesh convex_hull_3d() const; // Slice this mesh at the provided Z levels and return the vector std::vector slice(const std::vector& z); void reset_repair_stats(); bool needed_repair() const; void require_shared_vertices(); bool has_shared_vertices() const { return ! this->its.vertices.empty(); } size_t facets_count() const { return this->stl.stats.number_of_facets; } bool empty() const { return this->facets_count() == 0; } bool is_splittable() const; // Estimate of the memory occupied by this structure, important for keeping an eye on the Undo / Redo stack allocation. size_t memsize() const; // Release optional data from the mesh if the object is on the Undo / Redo stack only. Returns the amount of memory released. size_t release_optional(); // Restore optional data possibly released by release_optional(). void restore_optional(); stl_file stl; indexed_triangle_set its; bool repaired; private: std::deque find_unvisited_neighbors(std::vector &facet_visited) const; }; enum FacetEdgeType { // A general case, the cutting plane intersect a face at two different edges. feGeneral, // Two vertices are aligned with the cutting plane, the third vertex is below the cutting plane. feTop, // Two vertices are aligned with the cutting plane, the third vertex is above the cutting plane. feBottom, // All three vertices of a face are aligned with the cutting plane. feHorizontal }; class IntersectionReference { public: IntersectionReference() : point_id(-1), edge_id(-1) {}; IntersectionReference(int point_id, int edge_id) : point_id(point_id), edge_id(edge_id) {} // Where is this intersection point located? On mesh vertex or mesh edge? // Only one of the following will be set, the other will remain set to -1. // Index of the mesh vertex. int point_id; // Index of the mesh edge. int edge_id; }; class IntersectionPoint : public Point, public IntersectionReference { public: IntersectionPoint() {}; IntersectionPoint(int point_id, int edge_id, const Point &pt) : IntersectionReference(point_id, edge_id), Point(pt) {} IntersectionPoint(const IntersectionReference &ir, const Point &pt) : IntersectionReference(ir), Point(pt) {} // Inherits coord_t x, y }; class IntersectionLine : public Line { public: IntersectionLine() : a_id(-1), b_id(-1), edge_a_id(-1), edge_b_id(-1), edge_type(feGeneral), flags(0) {} bool skip() const { return (this->flags & SKIP) != 0; } void set_skip() { this->flags |= SKIP; } bool is_seed_candidate() const { return (this->flags & NO_SEED) == 0 && ! this->skip(); } void set_no_seed(bool set) { if (set) this->flags |= NO_SEED; else this->flags &= ~NO_SEED; } // Inherits Point a, b // For each line end point, either {a,b}_id or {a,b}edge_a_id is set, the other is left to -1. // Vertex indices of the line end points. int a_id; int b_id; // Source mesh edges of the line end points. int edge_a_id; int edge_b_id; // feGeneral, feTop, feBottom, feHorizontal FacetEdgeType edge_type; // Used by TriangleMeshSlicer::slice() to skip duplicate edges. enum { // Triangle edge added, because it has no neighbor. EDGE0_NO_NEIGHBOR = 0x001, EDGE1_NO_NEIGHBOR = 0x002, EDGE2_NO_NEIGHBOR = 0x004, // Triangle edge added, because it makes a fold with another horizontal edge. EDGE0_FOLD = 0x010, EDGE1_FOLD = 0x020, EDGE2_FOLD = 0x040, // The edge cannot be a seed of a greedy loop extraction (folds are not safe to become seeds). NO_SEED = 0x100, SKIP = 0x200, }; uint32_t flags; }; typedef std::vector IntersectionLines; typedef std::vector IntersectionLinePtrs; enum class SlicingMode : uint32_t { // Regular slicing, maintain all contours and their orientation. Regular, // Maintain all contours, orient all contours CCW, therefore all holes are being closed. Positive, // Orient all contours CCW and keep only the contour with the largest area. // This mode is useful for slicing complex objects in vase mode. PositiveLargestContour, }; class TriangleMeshSlicer { public: typedef std::function throw_on_cancel_callback_type; TriangleMeshSlicer() : mesh(nullptr) {} TriangleMeshSlicer(const TriangleMesh* mesh) { this->init(mesh, [](){}); } void init(const TriangleMesh *mesh, throw_on_cancel_callback_type throw_on_cancel); void slice(const std::vector &z, SlicingMode mode, std::vector* layers, throw_on_cancel_callback_type throw_on_cancel) const; void slice(const std::vector &z, SlicingMode mode, const float closing_radius, std::vector* layers, throw_on_cancel_callback_type throw_on_cancel) const; enum FacetSliceType { NoSlice = 0, Slicing = 1, Cutting = 2 }; FacetSliceType slice_facet(float slice_z, const stl_facet &facet, const int facet_idx, const float min_z, const float max_z, IntersectionLine *line_out) const; void cut(float z, TriangleMesh* upper, TriangleMesh* lower) const; void set_up_direction(const Vec3f& up); private: const TriangleMesh *mesh; // Map from a facet to an edge index. std::vector facets_edges; // Scaled copy of this->mesh->stl.v_shared std::vector v_scaled_shared; // Quaternion that will be used to rotate every facet before the slicing Eigen::Quaternion m_quaternion; // Whether or not the above quaterion should be used bool m_use_quaternion = false; void _slice_do(size_t facet_idx, std::vector* lines, boost::mutex* lines_mutex, const std::vector &z) const; void make_loops(std::vector &lines, Polygons* loops) const; void make_expolygons(const Polygons &loops, const float closing_radius, ExPolygons* slices) const; void make_expolygons_simple(std::vector &lines, ExPolygons* slices) const; void make_expolygons(std::vector &lines, const float closing_radius, ExPolygons* slices) const; }; inline void slice_mesh( const TriangleMesh & mesh, const std::vector & z, std::vector & layers, TriangleMeshSlicer::throw_on_cancel_callback_type thr = nullptr) { if (mesh.empty()) return; TriangleMeshSlicer slicer(&mesh); slicer.slice(z, SlicingMode::Regular, &layers, thr); } inline void slice_mesh( const TriangleMesh & mesh, const std::vector & z, std::vector & layers, float closing_radius, TriangleMeshSlicer::throw_on_cancel_callback_type thr = nullptr) { if (mesh.empty()) return; TriangleMeshSlicer slicer(&mesh); slicer.slice(z, SlicingMode::Regular, closing_radius, &layers, thr); } TriangleMesh make_cube(double x, double y, double z); // Generate a TriangleMesh of a cylinder TriangleMesh make_cylinder(double r, double h, double fa=(2*PI/360)); TriangleMesh make_sphere(double rho, double fa=(2*PI/360)); } // Serialization through the Cereal library #include namespace cereal { template struct specialize {}; template void load(Archive &archive, Slic3r::TriangleMesh &mesh) { stl_file &stl = mesh.stl; stl.stats.type = inmemory; archive(stl.stats.number_of_facets, stl.stats.original_num_facets); stl_allocate(&stl); archive.loadBinary((char*)stl.facet_start.data(), stl.facet_start.size() * 50); stl_get_size(&stl); mesh.repair(); } template void save(Archive &archive, const Slic3r::TriangleMesh &mesh) { const stl_file& stl = mesh.stl; archive(stl.stats.number_of_facets, stl.stats.original_num_facets); archive.saveBinary((char*)stl.facet_start.data(), stl.facet_start.size() * 50); } } #endif