#include "Geometry.hpp" #include "ClipperUtils.hpp" #include "ExPolygon.hpp" #include "Line.hpp" #include "PolylineCollection.hpp" #include "clipper.hpp" #include #include #include #include #include #include #include #include #ifdef SLIC3R_DEBUG #include "SVG.hpp" #endif using namespace boost::polygon; // provides also high() and low() namespace Slic3r { namespace Geometry { static bool sort_points (Point a, Point b) { return (a.x < b.x) || (a.x == b.x && a.y < b.y); } /* This implementation is based on Andrew's monotone chain 2D convex hull algorithm */ Polygon convex_hull(Points points) { assert(points.size() >= 3); // sort input points std::sort(points.begin(), points.end(), sort_points); int n = points.size(), k = 0; Polygon hull; hull.points.resize(2*n); // Build lower hull for (int i = 0; i < n; i++) { while (k >= 2 && points[i].ccw(hull.points[k-2], hull.points[k-1]) <= 0) k--; hull.points[k++] = points[i]; } // Build upper hull for (int i = n-2, t = k+1; i >= 0; i--) { while (k >= t && points[i].ccw(hull.points[k-2], hull.points[k-1]) <= 0) k--; hull.points[k++] = points[i]; } hull.points.resize(k); assert( hull.points.front().coincides_with(hull.points.back()) ); hull.points.pop_back(); return hull; } Polygon convex_hull(const Polygons &polygons) { Points pp; for (Polygons::const_iterator p = polygons.begin(); p != polygons.end(); ++p) { pp.insert(pp.end(), p->points.begin(), p->points.end()); } return convex_hull(pp); } /* accepts an arrayref of points and returns a list of indices according to a nearest-neighbor walk */ void chained_path(const Points &points, std::vector &retval, Point start_near) { PointConstPtrs my_points; std::map indices; my_points.reserve(points.size()); for (Points::const_iterator it = points.begin(); it != points.end(); ++it) { my_points.push_back(&*it); indices[&*it] = it - points.begin(); } retval.reserve(points.size()); while (!my_points.empty()) { Points::size_type idx = start_near.nearest_point_index(my_points); start_near = *my_points[idx]; retval.push_back(indices[ my_points[idx] ]); my_points.erase(my_points.begin() + idx); } } void chained_path(const Points &points, std::vector &retval) { if (points.empty()) return; // can't call front() on empty vector chained_path(points, retval, points.front()); } /* retval and items must be different containers */ template void chained_path_items(Points &points, T &items, T &retval) { std::vector indices; chained_path(points, indices); for (std::vector::const_iterator it = indices.begin(); it != indices.end(); ++it) retval.push_back(items[*it]); } template void chained_path_items(Points &points, ClipperLib::PolyNodes &items, ClipperLib::PolyNodes &retval); bool directions_parallel(double angle1, double angle2, double max_diff) { double diff = fabs(angle1 - angle2); max_diff += EPSILON; return diff < max_diff || fabs(diff - PI) < max_diff; } template bool contains(const std::vector &vector, const Point &point) { for (typename std::vector::const_iterator it = vector.begin(); it != vector.end(); ++it) { if (it->contains(point)) return true; } return false; } template bool contains(const ExPolygons &vector, const Point &point); double rad2deg(double angle) { return angle / PI * 180.0; } double rad2deg_dir(double angle) { angle = (angle < PI) ? (-angle + PI/2.0) : (angle + PI/2.0); if (angle < 0) angle += PI; return rad2deg(angle); } double deg2rad(double angle) { return PI * angle / 180.0; } void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval) { Polygons pp; for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++it) { Polygon p = *it; p.points.push_back(p.points.front()); p.points = MultiPoint::_douglas_peucker(p.points, tolerance); p.points.pop_back(); pp.push_back(p); } Slic3r::simplify_polygons(pp, retval); } double linint(double value, double oldmin, double oldmax, double newmin, double newmax) { return (value - oldmin) * (newmax - newmin) / (oldmax - oldmin) + newmin; } Pointfs arrange(size_t total_parts, Pointf part, coordf_t dist, const BoundingBoxf* bb) { // use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm part.x += dist; part.y += dist; Pointf area; if (bb != NULL && bb->defined) { area = bb->size(); } else { // bogus area size, large enough not to trigger the error below area.x = part.x * total_parts; area.y = part.y * total_parts; } // this is how many cells we have available into which to put parts size_t cellw = floor((area.x + dist) / part.x); size_t cellh = floor((area.y + dist) / part.y); if (total_parts > (cellw * cellh)) CONFESS("%zu parts won't fit in your print area!\n", total_parts); // total space used by cells Pointf cells(cellw * part.x, cellh * part.y); // bounding box of total space used by cells BoundingBoxf cells_bb; cells_bb.merge(Pointf(0,0)); // min cells_bb.merge(cells); // max // center bounding box to area cells_bb.translate( (area.x - cells.x) / 2, (area.y - cells.y) / 2 ); // list of cells, sorted by distance from center std::vector cellsorder; // work out distance for all cells, sort into list for (size_t i = 0; i <= cellw-1; ++i) { for (size_t j = 0; j <= cellh-1; ++j) { coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min.x, cells_bb.max.x); coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min.y, cells_bb.max.y); coordf_t xd = fabs((area.x / 2) - cx); coordf_t yd = fabs((area.y / 2) - cy); ArrangeItem c; c.pos.x = cx; c.pos.y = cy; c.index_x = i; c.index_y = j; c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5)); // binary insertion sort { coordf_t index = c.dist; size_t low = 0; size_t high = cellsorder.size(); while (low < high) { size_t mid = (low + ((high - low) / 2)) | 0; coordf_t midval = cellsorder[mid].index; if (midval < index) { low = mid + 1; } else if (midval > index) { high = mid; } else { cellsorder.insert(cellsorder.begin() + mid, ArrangeItemIndex(index, c)); goto ENDSORT; } } cellsorder.insert(cellsorder.begin() + low, ArrangeItemIndex(index, c)); } ENDSORT: true; } } // the extents of cells actually used by objects coordf_t lx = 0; coordf_t ty = 0; coordf_t rx = 0; coordf_t by = 0; // now find cells actually used by objects, map out the extents so we can position correctly for (size_t i = 1; i <= total_parts; ++i) { ArrangeItemIndex c = cellsorder[i - 1]; coordf_t cx = c.item.index_x; coordf_t cy = c.item.index_y; if (i == 1) { lx = rx = cx; ty = by = cy; } else { if (cx > rx) rx = cx; if (cx < lx) lx = cx; if (cy > by) by = cy; if (cy < ty) ty = cy; } } // now we actually place objects into cells, positioned such that the left and bottom borders are at 0 Pointfs positions; for (size_t i = 1; i <= total_parts; ++i) { ArrangeItemIndex c = cellsorder.front(); cellsorder.erase(cellsorder.begin()); coordf_t cx = c.item.index_x - lx; coordf_t cy = c.item.index_y - ty; positions.push_back(Pointf(cx * part.x, cy * part.y)); } if (bb != NULL && bb->defined) { for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) { p->x += bb->min.x; p->y += bb->min.y; } } return positions; } void MedialAxis::build(ThickPolylines* polylines) { construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd); /* // DEBUG: dump all Voronoi edges { for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) { if (edge->is_infinite()) continue; ThickPolyline polyline; polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() )); polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() )); polylines->push_back(polyline); } return; } */ typedef const VD::vertex_type vert_t; typedef const VD::edge_type edge_t; // collect valid edges (i.e. prune those not belonging to MAT) // note: this keeps twins, so it inserts twice the number of the valid edges this->valid_edges.clear(); { std::set seen_edges; for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) { // if we only process segments representing closed loops, none if the // infinite edges (if any) would be part of our MAT anyway if (edge->is_secondary() || edge->is_infinite()) continue; // don't re-validate twins if (seen_edges.find(&*edge) != seen_edges.end()) continue; // TODO: is this needed? seen_edges.insert(&*edge); seen_edges.insert(edge->twin()); if (!this->validate_edge(&*edge)) continue; this->valid_edges.insert(&*edge); this->valid_edges.insert(edge->twin()); } } this->edges = this->valid_edges; // iterate through the valid edges to build polylines while (!this->edges.empty()) { const edge_t* edge = *this->edges.begin(); // start a polyline ThickPolyline polyline; polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() )); polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() )); polyline.width.push_back(this->thickness[edge].first); polyline.width.push_back(this->thickness[edge].second); // remove this edge and its twin from the available edges (void)this->edges.erase(edge); (void)this->edges.erase(edge->twin()); // get next points this->process_edge_neighbors(edge, &polyline); // get previous points { ThickPolyline rpolyline; this->process_edge_neighbors(edge->twin(), &rpolyline); polyline.points.insert(polyline.points.begin(), rpolyline.points.rbegin(), rpolyline.points.rend()); polyline.width.insert(polyline.width.begin(), rpolyline.width.rbegin(), rpolyline.width.rend()); polyline.endpoints.first = rpolyline.endpoints.second; } assert(polyline.width.size() == polyline.points.size()*2 - 2); // prevent loop endpoints from being extended if (polyline.first_point().coincides_with(polyline.last_point())) { polyline.endpoints.first = false; polyline.endpoints.second = false; } // append polyline to result polylines->push_back(polyline); } } void MedialAxis::build(Polylines* polylines) { ThickPolylines tp; this->build(&tp); polylines->insert(polylines->end(), tp.begin(), tp.end()); } void MedialAxis::process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline) { while (true) { // Since rot_next() works on the edge starting point but we want // to find neighbors on the ending point, we just swap edge with // its twin. const VD::edge_type* twin = edge->twin(); // count neighbors for this edge std::vector neighbors; for (const VD::edge_type* neighbor = twin->rot_next(); neighbor != twin; neighbor = neighbor->rot_next()) { if (this->valid_edges.count(neighbor) > 0) neighbors.push_back(neighbor); } // if we have a single neighbor then we can continue recursively if (neighbors.size() == 1) { const VD::edge_type* neighbor = neighbors.front(); // break if this is a closed loop if (this->edges.count(neighbor) == 0) return; Point new_point(neighbor->vertex1()->x(), neighbor->vertex1()->y()); polyline->points.push_back(new_point); polyline->width.push_back(this->thickness[neighbor].first); polyline->width.push_back(this->thickness[neighbor].second); (void)this->edges.erase(neighbor); (void)this->edges.erase(neighbor->twin()); edge = neighbor; } else if (neighbors.size() == 0) { polyline->endpoints.second = true; return; } else { // T-shaped or star-shaped joint return; } } } bool MedialAxis::validate_edge(const VD::edge_type* edge) { // construct the line representing this edge of the Voronoi diagram const Line line( Point( edge->vertex0()->x(), edge->vertex0()->y() ), Point( edge->vertex1()->x(), edge->vertex1()->y() ) ); // discard edge if it lies outside the supplied shape // this could maybe be optimized (checking inclusion of the endpoints // might give false positives as they might belong to the contour itself) if (this->expolygon != NULL) { if (line.a.coincides_with(line.b)) { // in this case, contains(line) returns a false positive if (!this->expolygon->contains(line.a)) return false; } else { if (!this->expolygon->contains(line)) return false; } } // retrieve the original line segments which generated the edge we're checking const VD::cell_type* cell_l = edge->cell(); const VD::cell_type* cell_r = edge->twin()->cell(); const Line &segment_l = this->retrieve_segment(cell_l); const Line &segment_r = this->retrieve_segment(cell_r); /* SVG svg("edge.svg"); svg.draw(*this->expolygon); svg.draw(line); svg.draw(segment_l, "red"); svg.draw(segment_r, "blue"); svg.Close(); */ /* Calculate thickness of the cross-section at both the endpoints of this edge. Our Voronoi edge is part of a CCW sequence going around its Voronoi cell located on the left side. (segment_l). This edge's twin goes around segment_r. Thus, segment_r is oriented in the same direction as our main edge, and segment_l is oriented in the same direction as our twin edge. We used to only consider the (half-)distances to segment_r, and that works whenever segment_l and segment_r are almost specular and facing. However, at curves they are staggered and they only face for a very little length (our very short edge represents such visibility). Both w0 and w1 can be calculated either towards cell_l or cell_r with equal results by Voronoi definition. When cell_l or cell_r don't refer to the segment but only to an endpoint, we calculate the distance to that endpoint instead. */ coordf_t w0 = cell_r->contains_segment() ? line.a.distance_to(segment_r)*2 : line.a.distance_to(this->retrieve_endpoint(cell_r))*2; coordf_t w1 = cell_l->contains_segment() ? line.b.distance_to(segment_l)*2 : line.b.distance_to(this->retrieve_endpoint(cell_l))*2; if (cell_l->contains_segment() && cell_r->contains_segment()) { // calculate the relative angle between the two boundary segments double angle = fabs(segment_r.orientation() - segment_l.orientation()); if (angle > PI) angle = 2*PI - angle; assert(angle >= 0 && angle <= PI); // fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction) // we're interested only in segments close to the second case (facing segments) // so we allow some tolerance. // this filter ensures that we're dealing with a narrow/oriented area (longer than thick) // we don't run it on edges not generated by two segments (thus generated by one segment // and the endpoint of another segment), since their orientation would not be meaningful if (PI - angle > PI/8) { // angle is not narrow enough // only apply this filter to segments that are not too short otherwise their // angle could possibly be not meaningful if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON || line.length() >= this->min_width) return false; } } else { if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON) return false; } if (w0 < this->min_width && w1 < this->min_width) return false; if (w0 > this->max_width && w1 > this->max_width) return false; this->thickness[edge] = std::make_pair(w0, w1); this->thickness[edge->twin()] = std::make_pair(w1, w0); return true; } const Line& MedialAxis::retrieve_segment(const VD::cell_type* cell) const { return this->lines[cell->source_index()]; } const Point& MedialAxis::retrieve_endpoint(const VD::cell_type* cell) const { const Line& line = this->retrieve_segment(cell); if (cell->source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) { return line.a; } else { return line.b; } } } }