#ifndef slic3r_Geometry_hpp_ #define slic3r_Geometry_hpp_ #include "libslic3r.h" #include "BoundingBox.hpp" #include "ExPolygon.hpp" #include "Polygon.hpp" #include "Polyline.hpp" #include "boost/polygon/voronoi.hpp" using boost::polygon::voronoi_builder; using boost::polygon::voronoi_diagram; namespace Slic3r { namespace Geometry { // Generic result of an orientation predicate. enum Orientation { ORIENTATION_CCW = 1, ORIENTATION_CW = -1, ORIENTATION_COLINEAR = 0 }; // Return orientation of the three points (clockwise, counter-clockwise, colinear) // The predicate is exact for the coord_t type, using 64bit signed integers for the temporaries. // which means, the coord_t types must not have some of the topmost bits utilized. // As the points are limited to 30 bits + signum, // the temporaries u, v, w are limited to 61 bits + signum, // and d is limited to 63 bits + signum and we are good. static inline Orientation orient(const Point &a, const Point &b, const Point &c) { // BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t)); int64_t u = int64_t(b.x) * int64_t(c.y) - int64_t(b.y) * int64_t(c.x); int64_t v = int64_t(a.x) * int64_t(c.y) - int64_t(a.y) * int64_t(c.x); int64_t w = int64_t(a.x) * int64_t(b.y) - int64_t(a.y) * int64_t(b.x); int64_t d = u - v + w; return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW); } // Return orientation of the polygon by checking orientation of the left bottom corner of the polygon // using exact arithmetics. The input polygon must not contain duplicate points // (or at least the left bottom corner point must not have duplicates). static inline bool is_ccw(const Polygon &poly) { // The polygon shall be at least a triangle. assert(poly.points.size() >= 3); if (poly.points.size() < 3) return true; // 1) Find the lowest lexicographical point. unsigned int imin = 0; for (unsigned int i = 1; i < poly.points.size(); ++ i) { const Point &pmin = poly.points[imin]; const Point &p = poly.points[i]; if (p.x < pmin.x || (p.x == pmin.x && p.y < pmin.y)) imin = i; } // 2) Detect the orientation of the corner imin. size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1; size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1); Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]); // The lowest bottom point must not be collinear if the polygon does not contain duplicate points // or overlapping segments. assert(o != ORIENTATION_COLINEAR); return o == ORIENTATION_CCW; } inline bool ray_ray_intersection(const Pointf &p1, const Vectorf &v1, const Pointf &p2, const Vectorf &v2, Pointf &res) { double denom = v1.x * v2.y - v2.x * v1.y; if (std::abs(denom) < EPSILON) return false; double t = (v2.x * (p1.y - p2.y) - v2.y * (p1.x - p2.x)) / denom; res.x = p1.x + t * v1.x; res.y = p1.y + t * v1.y; return true; } inline bool segment_segment_intersection(const Pointf &p1, const Vectorf &v1, const Pointf &p2, const Vectorf &v2, Pointf &res) { double denom = v1.x * v2.y - v2.x * v1.y; if (std::abs(denom) < EPSILON) // Lines are collinear. return false; double s12_x = p1.x - p2.x; double s12_y = p1.y - p2.y; double s_numer = v1.x * s12_y - v1.y * s12_x; bool denom_is_positive = false; if (denom < 0.) { denom_is_positive = true; denom = - denom; s_numer = - s_numer; } if (s_numer < 0.) // Intersection outside of the 1st segment. return false; double t_numer = v2.x * s12_y - v2.y * s12_x; if (! denom_is_positive) t_numer = - t_numer; if (t_numer < 0. || s_numer > denom || t_numer > denom) // Intersection outside of the 1st or 2nd segment. return false; // Intersection inside both of the segments. double t = t_numer / denom; res.x = p1.x + t * v1.x; res.y = p1.y + t * v1.y; return true; } Polygon convex_hull(Points points); Polygon convex_hull(const Polygons &polygons); void chained_path(const Points &points, std::vector &retval, Point start_near); void chained_path(const Points &points, std::vector &retval); template void chained_path_items(Points &points, T &items, T &retval); bool directions_parallel(double angle1, double angle2, double max_diff = 0); template bool contains(const std::vector &vector, const Point &point); double rad2deg(double angle); double rad2deg_dir(double angle); template T deg2rad(T angle) { return T(PI) * angle / T(180.0); } void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval); double linint(double value, double oldmin, double oldmax, double newmin, double newmax); bool arrange( // input size_t num_parts, const Pointf &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box, // output Pointfs &positions); class MedialAxis { public: Lines lines; const ExPolygon* expolygon; double max_width; double min_width; MedialAxis(double _max_width, double _min_width, const ExPolygon* _expolygon = NULL) : expolygon(_expolygon), max_width(_max_width), min_width(_min_width) {}; void build(ThickPolylines* polylines); void build(Polylines* polylines); private: class VD : public voronoi_diagram { public: typedef double coord_type; typedef boost::polygon::point_data point_type; typedef boost::polygon::segment_data segment_type; typedef boost::polygon::rectangle_data rect_type; }; VD vd; std::set edges, valid_edges; std::map > thickness; void process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline); bool validate_edge(const VD::edge_type* edge); const Line& retrieve_segment(const VD::cell_type* cell) const; const Point& retrieve_endpoint(const VD::cell_type* cell) const; }; } } #endif