#include "Print.hpp" #include "BoundingBox.hpp" #include "ClipperUtils.hpp" #include "Geometry.hpp" #include #include // #define SLIC3R_DEBUG // Make assert active if SLIC3R_DEBUG #ifdef SLIC3R_DEBUG #undef NDEBUG #define DEBUG #define _DEBUG #include "SVG.hpp" #undef assert #include #endif namespace Slic3r { PrintObject::PrintObject(Print* print, ModelObject* model_object, const BoundingBoxf3 &modobj_bbox) : typed_slices(false), _print(print), _model_object(model_object) { // Compute the translation to be applied to our meshes so that we work with smaller coordinates { // Translate meshes so that our toolpath generation algorithms work with smaller // XY coordinates; this translation is an optimization and not strictly required. // A cloned mesh will be aligned to 0 before slicing in _slice_region() since we // don't assume it's already aligned and we don't alter the original position in model. // We store the XY translation so that we can place copies correctly in the output G-code // (copies are expressed in G-code coordinates and this translation is not publicly exposed). this->_copies_shift = Point( scale_(modobj_bbox.min.x), scale_(modobj_bbox.min.y)); // Scale the object size and store it Pointf3 size = modobj_bbox.size(); this->size = Point3(scale_(size.x), scale_(size.y), scale_(size.z)); } this->reload_model_instances(); this->layer_height_ranges = model_object->layer_height_ranges; } bool PrintObject::add_copy(const Pointf &point) { Points points = this->_copies; points.push_back(Point::new_scale(point.x, point.y)); return this->set_copies(points); } bool PrintObject::delete_last_copy() { Points points = this->_copies; points.pop_back(); return this->set_copies(points); } bool PrintObject::delete_all_copies() { Points points; return this->set_copies(points); } bool PrintObject::set_copies(const Points &points) { this->_copies = points; // order copies with a nearest neighbor search and translate them by _copies_shift this->_shifted_copies.clear(); this->_shifted_copies.reserve(points.size()); // order copies with a nearest-neighbor search std::vector ordered_copies; Slic3r::Geometry::chained_path(points, ordered_copies); for (std::vector::const_iterator it = ordered_copies.begin(); it != ordered_copies.end(); ++it) { Point copy = points[*it]; copy.translate(this->_copies_shift); this->_shifted_copies.push_back(copy); } bool invalidated = false; if (this->_print->invalidate_step(psSkirt)) invalidated = true; if (this->_print->invalidate_step(psBrim)) invalidated = true; return invalidated; } bool PrintObject::reload_model_instances() { Points copies; for (ModelInstancePtrs::const_iterator i = this->_model_object->instances.begin(); i != this->_model_object->instances.end(); ++i) { copies.push_back(Point::new_scale((*i)->offset.x, (*i)->offset.y)); } return this->set_copies(copies); } void PrintObject::add_region_volume(int region_id, int volume_id) { region_volumes[region_id].push_back(volume_id); } /* This is the *total* layer count (including support layers) this value is not supposed to be compared with Layer::id since they have different semantics */ size_t PrintObject::total_layer_count() const { return this->layer_count() + this->support_layer_count(); } size_t PrintObject::layer_count() const { return this->layers.size(); } void PrintObject::clear_layers() { for (int i = this->layers.size()-1; i >= 0; --i) this->delete_layer(i); } Layer* PrintObject::add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z) { Layer* layer = new Layer(id, this, height, print_z, slice_z); layers.push_back(layer); return layer; } void PrintObject::delete_layer(int idx) { LayerPtrs::iterator i = this->layers.begin() + idx; delete *i; this->layers.erase(i); } size_t PrintObject::support_layer_count() const { return this->support_layers.size(); } void PrintObject::clear_support_layers() { for (int i = this->support_layers.size()-1; i >= 0; --i) this->delete_support_layer(i); } SupportLayer* PrintObject::get_support_layer(int idx) { return this->support_layers.at(idx); } SupportLayer* PrintObject::add_support_layer(int id, coordf_t height, coordf_t print_z) { SupportLayer* layer = new SupportLayer(id, this, height, print_z, -1); support_layers.push_back(layer); return layer; } void PrintObject::delete_support_layer(int idx) { SupportLayerPtrs::iterator i = this->support_layers.begin() + idx; delete *i; this->support_layers.erase(i); } bool PrintObject::invalidate_state_by_config_options(const std::vector &opt_keys) { std::set steps; // this method only accepts PrintObjectConfig and PrintRegionConfig option keys for (std::vector::const_iterator opt_key = opt_keys.begin(); opt_key != opt_keys.end(); ++opt_key) { if (*opt_key == "perimeters" || *opt_key == "extra_perimeters" || *opt_key == "gap_fill_speed" || *opt_key == "overhangs" || *opt_key == "first_layer_extrusion_width" || *opt_key == "perimeter_extrusion_width" || *opt_key == "infill_overlap" || *opt_key == "thin_walls" || *opt_key == "external_perimeters_first") { steps.insert(posPerimeters); } else if (*opt_key == "layer_height" || *opt_key == "first_layer_height" || *opt_key == "xy_size_compensation" || *opt_key == "raft_layers") { steps.insert(posSlice); } else if (*opt_key == "support_material" || *opt_key == "support_material_angle" || *opt_key == "support_material_extruder" || *opt_key == "support_material_extrusion_width" || *opt_key == "support_material_interface_layers" || *opt_key == "support_material_interface_extruder" || *opt_key == "support_material_interface_spacing" || *opt_key == "support_material_interface_speed" || *opt_key == "support_material_buildplate_only" || *opt_key == "support_material_pattern" || *opt_key == "support_material_spacing" || *opt_key == "support_material_threshold" || *opt_key == "support_material_with_sheath" || *opt_key == "dont_support_bridges" || *opt_key == "first_layer_extrusion_width") { steps.insert(posSupportMaterial); } else if (*opt_key == "interface_shells" || *opt_key == "infill_only_where_needed" || *opt_key == "infill_every_layers" || *opt_key == "solid_infill_every_layers" || *opt_key == "bottom_solid_layers" || *opt_key == "top_solid_layers" || *opt_key == "solid_infill_below_area" || *opt_key == "infill_extruder" || *opt_key == "solid_infill_extruder" || *opt_key == "infill_extrusion_width" || *opt_key == "ensure_vertical_shell_thickness") { steps.insert(posPrepareInfill); } else if (*opt_key == "external_fill_pattern" || *opt_key == "external_fill_link_max_length" || *opt_key == "fill_angle" || *opt_key == "fill_pattern" || *opt_key == "fill_link_max_length" || *opt_key == "top_infill_extrusion_width" || *opt_key == "first_layer_extrusion_width") { steps.insert(posInfill); } else if (*opt_key == "fill_density" || *opt_key == "solid_infill_extrusion_width") { steps.insert(posPerimeters); steps.insert(posPrepareInfill); } else if (*opt_key == "external_perimeter_extrusion_width" || *opt_key == "perimeter_extruder") { steps.insert(posPerimeters); steps.insert(posSupportMaterial); } else if (*opt_key == "bridge_flow_ratio") { steps.insert(posPerimeters); steps.insert(posInfill); } else if (*opt_key == "seam_position" || *opt_key == "seam_preferred_direction" || *opt_key == "seam_preferred_direction_jitter" || *opt_key == "support_material_speed" || *opt_key == "bridge_speed" || *opt_key == "external_perimeter_speed" || *opt_key == "infill_speed" || *opt_key == "perimeter_speed" || *opt_key == "small_perimeter_speed" || *opt_key == "solid_infill_speed" || *opt_key == "top_solid_infill_speed") { // these options only affect G-code export, so nothing to invalidate } else { // for legacy, if we can't handle this option let's invalidate all steps return this->invalidate_all_steps(); } } bool invalidated = false; for (std::set::const_iterator step = steps.begin(); step != steps.end(); ++step) { if (this->invalidate_step(*step)) invalidated = true; } return invalidated; } bool PrintObject::invalidate_step(PrintObjectStep step) { bool invalidated = this->state.invalidate(step); // propagate to dependent steps if (step == posPerimeters) { this->invalidate_step(posPrepareInfill); this->_print->invalidate_step(psSkirt); this->_print->invalidate_step(psBrim); } else if (step == posPrepareInfill) { this->invalidate_step(posInfill); } else if (step == posInfill) { this->_print->invalidate_step(psSkirt); this->_print->invalidate_step(psBrim); } else if (step == posSlice) { this->invalidate_step(posPerimeters); this->invalidate_step(posSupportMaterial); } else if (step == posSupportMaterial) { this->_print->invalidate_step(psSkirt); this->_print->invalidate_step(psBrim); } return invalidated; } bool PrintObject::invalidate_all_steps() { // make a copy because when invalidating steps the iterators are not working anymore std::set steps = this->state.started; bool invalidated = false; for (std::set::const_iterator step = steps.begin(); step != steps.end(); ++step) { if (this->invalidate_step(*step)) invalidated = true; } return invalidated; } bool PrintObject::has_support_material() const { return this->config.support_material || this->config.raft_layers > 0 || this->config.support_material_enforce_layers > 0; } // This function analyzes slices of a region (SurfaceCollection slices). // Each region slice (instance of Surface) is analyzed, whether it is supported or whether it is the top surface. // Initially all slices are of type S_TYPE_INTERNAL. // Slices are compared against the top / bottom slices and regions and classified to the following groups: // S_TYPE_TOP - Part of a region, which is not covered by any upper layer. This surface will be filled with a top solid infill. // S_TYPE_BOTTOMBRIDGE - Part of a region, which is not fully supported, but it hangs in the air, or it hangs losely on a support or a raft. // S_TYPE_BOTTOM - Part of a region, which is not supported by the same region, but it is supported either by another region, or by a soluble interface layer. // S_TYPE_INTERNAL - Part of a region, which is supported by the same region type. // If a part of a region is of S_TYPE_BOTTOM and S_TYPE_TOP, the S_TYPE_BOTTOM wins. void PrintObject::detect_surfaces_type() { BOOST_LOG_TRIVIAL(info) << "Detecting solid surfaces..."; for (int idx_region = 0; idx_region < this->_print->regions.size(); ++ idx_region) { #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (int idx_layer = 0; idx_layer < int(this->layer_count()); ++ idx_layer) { LayerRegion *layerm = this->layers[idx_layer]->get_region(idx_region); layerm->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-initial"); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ for (int idx_layer = 0; idx_layer < int(this->layer_count()); ++ idx_layer) { Layer *layer = this->layers[idx_layer]; LayerRegion *layerm = layer->get_region(idx_region); // comparison happens against the *full* slices (considering all regions) // unless internal shells are requested Layer *upper_layer = idx_layer + 1 < this->layer_count() ? this->get_layer(idx_layer + 1) : NULL; Layer *lower_layer = idx_layer > 0 ? this->get_layer(idx_layer - 1) : NULL; // collapse very narrow parts (using the safety offset in the diff is not enough) float offset = layerm->flow(frExternalPerimeter).scaled_width() / 10.f; Polygons layerm_slices_surfaces = to_polygons(layerm->slices.surfaces); // find top surfaces (difference between current surfaces // of current layer and upper one) Surfaces top; if (upper_layer) { // Config value $self->config->interface_shells is true, if a support is separated from the object // by a soluble material (for example a PVA plastic). Polygons upper_slices = this->config.interface_shells.value ? to_polygons(upper_layer->get_region(idx_region)->slices.surfaces) : to_polygons(upper_layer->slices); surfaces_append(top, offset2_ex(diff(layerm_slices_surfaces, upper_slices, true), -offset, offset), stTop); } else { // if no upper layer, all surfaces of this one are solid // we clone surfaces because we're going to clear the slices collection top = layerm->slices.surfaces; for (Surfaces::iterator it = top.begin(); it != top.end(); ++ it) it->surface_type = stTop; } // find bottom surfaces (difference between current surfaces // of current layer and lower one) Surfaces bottom; if (lower_layer) { // If we have soluble support material, don't bridge. The overhang will be squished against a soluble layer separating // the support from the print. SurfaceType surface_type_bottom = (this->config.support_material.value && this->config.support_material_contact_distance.value == 0) ? stBottom : stBottomBridge; // Any surface lying on the void is a true bottom bridge (an overhang) surfaces_append( bottom, offset2_ex( diff(layerm_slices_surfaces, to_polygons(lower_layer->slices), true), -offset, offset), surface_type_bottom); // if user requested internal shells, we need to identify surfaces // lying on other slices not belonging to this region //FIXME Vojtech: config.internal_shells or config.interface_shells? Is it some legacy code? // Why shall multiple regions over soluble support be treated specially? if (this->config.interface_shells.value) { // non-bridging bottom surfaces: any part of this layer lying // on something else, excluding those lying on our own region surfaces_append( bottom, offset2_ex( diff( intersection(layerm_slices_surfaces, to_polygons(lower_layer->slices)), // supported to_polygons(lower_layer->get_region(idx_region)->slices.surfaces), true), -offset, offset), stBottom); } } else { // if no lower layer, all surfaces of this one are solid // we clone surfaces because we're going to clear the slices collection bottom = layerm->slices.surfaces; // if we have raft layers, consider bottom layer as a bridge // just like any other bottom surface lying on the void SurfaceType surface_type_bottom = (this->config.raft_layers.value > 0 && this->config.support_material_contact_distance.value > 0) ? stBottomBridge : stBottom; for (Surfaces::iterator it = bottom.begin(); it != bottom.end(); ++ it) it->surface_type = surface_type_bottom; } // now, if the object contained a thin membrane, we could have overlapping bottom // and top surfaces; let's do an intersection to discover them and consider them // as bottom surfaces (to allow for bridge detection) if (! top.empty() && ! bottom.empty()) { // Polygons overlapping = intersection(to_polygons(top), to_polygons(bottom)); // Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->layer->id, scalar(@$overlapping) // if $Slic3r::debug; Polygons top_polygons = to_polygons(STDMOVE(top)); top.clear(); surfaces_append(top, #if 0 offset2_ex(diff(top_polygons, to_polygons(bottom), true), -offset, offset), #else diff_ex(top_polygons, to_polygons(bottom), false), #endif stTop); } // save surfaces to layer layerm->slices.surfaces.clear(); // find internal surfaces (difference between top/bottom surfaces and others) { Polygons topbottom = to_polygons(top); polygons_append(topbottom, to_polygons(bottom)); surfaces_append(layerm->slices.surfaces, #if 0 offset2_ex(diff(layerm_slices_surfaces, topbottom, true), -offset, offset), #else diff_ex(layerm_slices_surfaces, topbottom, false), #endif stInternal); } surfaces_append(layerm->slices.surfaces, STDMOVE(top)); surfaces_append(layerm->slices.surfaces, STDMOVE(bottom)); // Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n", // $layerm->layer->id, scalar(@bottom), scalar(@top), scalar(@internal) if $Slic3r::debug; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_slices_to_svg_debug("detect_surfaces_type-final"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } // for each layer of a region // Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces. for (int idx_layer = 0; idx_layer < int(this->layer_count()); ++ idx_layer) { LayerRegion *layerm = this->layers[idx_layer]->get_region(idx_region); layerm->slices_to_fill_surfaces_clipped(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-final"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } // for each layer of a region } // for each $self->print->region_count } void PrintObject::process_external_surfaces() { BOOST_LOG_TRIVIAL(info) << "Processing external surfaces..."; FOREACH_REGION(this->_print, region) { size_t region_id = region - this->_print->regions.begin(); FOREACH_LAYER(this, layer_it) { const Layer* lower_layer = (layer_it == this->layers.begin()) ? NULL : *(layer_it-1); (*layer_it)->get_region(region_id)->process_external_surfaces(lower_layer); } } } struct DiscoverVerticalShellsCacheEntry { DiscoverVerticalShellsCacheEntry() : valid(false) {} // Collected polygons, offsetted Polygons slices; Polygons fill_surfaces; // Is this cache entry valid? bool valid; }; void PrintObject::discover_vertical_shells() { PROFILE_FUNC(); BOOST_LOG_TRIVIAL(info) << "Discovering vertical shells..."; const SurfaceType surfaces_bottom[2] = { stBottom, stBottomBridge }; for (size_t idx_region = 0; idx_region < this->_print->regions.size(); ++ idx_region) { PROFILE_BLOCK(discover_vertical_shells_region); const PrintRegion ®ion = *this->_print->get_region(idx_region); if (! region.config.ensure_vertical_shell_thickness.value) // This region will be handled by discover_horizontal_shells(). continue; int n_extra_top_layers = std::max(0, region.config.top_solid_layers.value - 1); int n_extra_bottom_layers = std::max(0, region.config.bottom_solid_layers.value - 1); if (n_extra_top_layers + n_extra_bottom_layers == 0) // Zero or 1 layer, there is no additional vertical wall thickness enforced. continue; // Cyclic buffers of pre-calculated offsetted top/bottom surfaces. std::vector cache_top_regions(n_extra_top_layers, DiscoverVerticalShellsCacheEntry()); std::vector cache_bottom_regions(n_extra_bottom_layers, DiscoverVerticalShellsCacheEntry()); for (size_t idx_layer = 0; idx_layer < this->layers.size(); ++ idx_layer) { PROFILE_BLOCK(discover_vertical_shells_region_layer); Layer *layer = this->layers[idx_layer]; LayerRegion *layerm = layer->get_region(idx_region); Flow solid_infill_flow = layerm->flow(frSolidInfill); coord_t infill_line_spacing = solid_infill_flow.scaled_spacing(); // Find a union of perimeters below / above this surface to guarantee a minimum shell thickness. Polygons shell; Polygons holes; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING ExPolygons shell_ex; #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ float min_perimeter_infill_spacing = float(infill_line_spacing) * 1.05f; if (1) { PROFILE_BLOCK(discover_vertical_shells_region_layer_collect); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { static size_t idx = 0; SVG svg_cummulative(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d.svg", idx), this->bounding_box()); for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n) { if (n < 0 || n >= (int)this->layers.size()) continue; ExPolygons &expolys = this->layers[n]->perimeter_expolygons; for (size_t i = 0; i < expolys.size(); ++ i) { SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d-layer%d-expoly%d.svg", idx, n, i), get_extents(expolys[i])); svg.draw(expolys[i]); svg.draw_outline(expolys[i].contour, "black", scale_(0.05)); svg.draw_outline(expolys[i].holes, "blue", scale_(0.05)); svg.Close(); svg_cummulative.draw(expolys[i]); svg_cummulative.draw_outline(expolys[i].contour, "black", scale_(0.05)); svg_cummulative.draw_outline(expolys[i].holes, "blue", scale_(0.05)); } } ++ idx; } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Reset the top / bottom inflated regions caches of entries, which are out of the moving window. if (n_extra_top_layers > 0) cache_top_regions[idx_layer % n_extra_top_layers].valid = false; if (n_extra_bottom_layers > 0 && idx_layer > 0) cache_bottom_regions[(idx_layer - 1) % n_extra_bottom_layers].valid = false; bool hole_first = true; for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n) if (n >= 0 && n < (int)this->layers.size()) { Layer &neighbor_layer = *this->layers[n]; LayerRegion &neighbor_region = *neighbor_layer.get_region(int(idx_region)); Polygons newholes; for (size_t idx_region = 0; idx_region < this->_print->regions.size(); ++ idx_region) polygons_append(newholes, to_polygons(neighbor_layer.get_region(idx_region)->fill_expolygons)); if (hole_first) { hole_first = false; polygons_append(holes, STDMOVE(newholes)); } else if (! holes.empty()) { holes = intersection(holes, newholes); } size_t n_shell_old = shell.size(); if (n > int(idx_layer)) { // Collect top surfaces. DiscoverVerticalShellsCacheEntry &cache = cache_top_regions[n % n_extra_top_layers]; if (! cache.valid) { cache.valid = true; // neighbor_region.slices contain the source top regions, // so one would think that they encompass the top fill_surfaces. But the fill_surfaces could have been // expanded before, therefore they may protrude out of neighbor_region.slices's top surfaces. //FIXME one should probably use the cummulative top surfaces over all regions here. cache.slices = offset(to_expolygons(neighbor_region.slices.filter_by_type(stTop)), min_perimeter_infill_spacing); cache.fill_surfaces = offset(to_expolygons(neighbor_region.fill_surfaces.filter_by_type(stTop)), min_perimeter_infill_spacing); } polygons_append(shell, cache.slices); polygons_append(shell, cache.fill_surfaces); } else if (n < int(idx_layer)) { // Collect bottom and bottom bridge surfaces. DiscoverVerticalShellsCacheEntry &cache = cache_bottom_regions[n % n_extra_bottom_layers]; if (! cache.valid) { cache.valid = true; //FIXME one should probably use the cummulative top surfaces over all regions here. cache.slices = offset(to_expolygons(neighbor_region.slices.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing); cache.fill_surfaces = offset(to_expolygons(neighbor_region.fill_surfaces.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing); } polygons_append(shell, cache.slices); polygons_append(shell, cache.fill_surfaces); } // Running the union_ using the Clipper library piece by piece is cheaper // than running the union_ all at once. if (n_shell_old < shell.size()) shell = union_(shell, false); } #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { static size_t idx = 0; SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-%d.svg", idx ++), get_extents(shell)); svg.draw(shell); svg.draw_outline(shell, "black", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ #if 0 { PROFILE_BLOCK(discover_vertical_shells_region_layer_shell_); // shell = union_(shell, true); shell = union_(shell, false); } #endif #ifdef SLIC3R_DEBUG_SLICE_PROCESSING shell_ex = union_ex(shell, true); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } //if (shell.empty()) // continue; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { static size_t idx = 0; SVG svg(debug_out_path("discover_vertical_shells-perimeters-after-union-%d.svg", idx ++), get_extents(shell)); svg.draw(shell_ex); svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { static size_t idx = 0; SVG svg(debug_out_path("discover_vertical_shells-internal-wshell-%d.svg", idx ++), get_extents(shell)); svg.draw(layerm->fill_surfaces.filter_by_type(stInternal), "yellow", 0.5); svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternal), "black", "blue", scale_(0.05)); svg.draw(shell_ex, "blue", 0.5); svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); svg.Close(); } { static size_t idx = 0; SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", idx ++), get_extents(shell)); svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5); svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05)); svg.draw(shell_ex, "blue", 0.5); svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); svg.Close(); } { static size_t idx = 0; SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", idx ++), get_extents(shell)); svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5); svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05)); svg.draw(shell_ex, "blue", 0.5); svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Trim the shells region by the internal & internal void surfaces. const SurfaceType surfaceTypesInternal[] = { stInternal, stInternalVoid, stInternalSolid }; const Polygons polygonsInternal = to_polygons(layerm->fill_surfaces.filter_by_types(surfaceTypesInternal, 2)); shell = intersection(shell, polygonsInternal, true); polygons_append(shell, diff(polygonsInternal, holes)); if (shell.empty()) continue; // Append the internal solids, so they will be merged with the new ones. polygons_append(shell, to_polygons(layerm->fill_surfaces.filter_by_type(stInternalSolid))); // These regions will be filled by a rectilinear full infill. Currently this type of infill // only fills regions, which fit at least a single line. To avoid gaps in the sparse infill, // make sure that this region does not contain parts narrower than the infill spacing width. #ifdef SLIC3R_DEBUG_SLICE_PROCESSING Polygons shell_before = shell; #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ #if 1 // Intentionally inflate a bit more than how much the region has been shrunk, // so there will be some overlap between this solid infill and the other infill regions (mainly the sparse infill). shell = offset2(shell, - 0.5f * min_perimeter_infill_spacing, 0.8f * min_perimeter_infill_spacing, ClipperLib::jtSquare); if (shell.empty()) continue; #else // Ensure each region is at least 3x infill line width wide, so it could be filled in. // float margin = float(infill_line_spacing) * 3.f; float margin = float(infill_line_spacing) * 1.5f; // we use a higher miterLimit here to handle areas with acute angles // in those cases, the default miterLimit would cut the corner and we'd // get a triangle in $too_narrow; if we grow it below then the shell // would have a different shape from the external surface and we'd still // have the same angle, so the next shell would be grown even more and so on. Polygons too_narrow = diff(shell, offset2(shell, -margin, margin, ClipperLib::jtMiter, 5.), true); if (! too_narrow.empty()) { // grow the collapsing parts and add the extra area to the neighbor layer // as well as to our original surfaces so that we support this // additional area in the next shell too // make sure our grown surfaces don't exceed the fill area polygons_append(shell, intersection(offset(too_narrow, margin), polygonsInternal)); } #endif ExPolygons new_internal_solid = intersection_ex(polygonsInternal, shell, false); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { static size_t idx = 0; SVG svg(debug_out_path("discover_vertical_shells-regularized-%d.svg", idx ++), get_extents(shell_before)); // Source shell. svg.draw(union_ex(shell_before, true)); // Shell trimmed to the internal surfaces. svg.draw_outline(union_ex(shell, true), "black", "blue", scale_(0.05)); // Regularized infill region. svg.draw_outline(new_internal_solid, "red", "magenta", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Trim the internal & internalvoid by the shell. Slic3r::ExPolygons new_internal = diff_ex( to_polygons(layerm->fill_surfaces.filter_by_type(stInternal)), shell, false ); Slic3r::ExPolygons new_internal_void = diff_ex( to_polygons(layerm->fill_surfaces.filter_by_type(stInternalVoid)), shell, false ); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { static size_t idx = 0; SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal-%d.svg", idx), get_extents(shell), new_internal, "black", "blue", scale_(0.05)); SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_void-%d.svg", idx), get_extents(shell), new_internal_void, "black", "blue", scale_(0.05)); SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_solid-%d.svg", idx), get_extents(shell), new_internal_solid, "black", "blue", scale_(0.05)); ++ idx; } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Assign resulting internal surfaces to layer. const SurfaceType surfaceTypesKeep[] = { stTop, stBottom, stBottomBridge }; layerm->fill_surfaces.keep_types(surfaceTypesKeep, sizeof(surfaceTypesKeep)/sizeof(SurfaceType)); layerm->fill_surfaces.append(new_internal, stInternal); layerm->fill_surfaces.append(new_internal_void, stInternalVoid); layerm->fill_surfaces.append(new_internal_solid, stInternalSolid); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells"); layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } // for each layer } // for each region // Write the profiler measurements to file PROFILE_UPDATE(); PROFILE_OUTPUT(debug_out_path("discover_vertical_shells-profile.txt").c_str()); } /* This method applies bridge flow to the first internal solid layer above sparse infill */ void PrintObject::bridge_over_infill() { BOOST_LOG_TRIVIAL(info) << "Bridge over infill..."; FOREACH_REGION(this->_print, region) { size_t region_id = region - this->_print->regions.begin(); // skip bridging in case there are no voids if ((*region)->config.fill_density.value == 100) continue; // get bridge flow Flow bridge_flow = (*region)->flow( frSolidInfill, -1, // layer height, not relevant for bridge flow true, // bridge false, // first layer -1, // custom width, not relevant for bridge flow *this ); FOREACH_LAYER(this, layer_it) { // skip first layer if (layer_it == this->layers.begin()) continue; Layer* layer = *layer_it; LayerRegion* layerm = layer->get_region(region_id); // extract the stInternalSolid surfaces that might be transformed into bridges Polygons internal_solid; layerm->fill_surfaces.filter_by_type(stInternalSolid, &internal_solid); // check whether the lower area is deep enough for absorbing the extra flow // (for obvious physical reasons but also for preventing the bridge extrudates // from overflowing in 3D preview) ExPolygons to_bridge; { Polygons to_bridge_pp = internal_solid; // iterate through lower layers spanned by bridge_flow double bottom_z = layer->print_z - bridge_flow.height; for (int i = (layer_it - this->layers.begin()) - 1; i >= 0; --i) { const Layer* lower_layer = this->layers[i]; // stop iterating if layer is lower than bottom_z if (lower_layer->print_z < bottom_z) break; // iterate through regions and collect internal surfaces Polygons lower_internal; FOREACH_LAYERREGION(lower_layer, lower_layerm_it) (*lower_layerm_it)->fill_surfaces.filter_by_type(stInternal, &lower_internal); // intersect such lower internal surfaces with the candidate solid surfaces to_bridge_pp = intersection(to_bridge_pp, lower_internal); } // there's no point in bridging too thin/short regions //FIXME Vojtech: The offset2 function is not a geometric offset, // therefore it may create 1) gaps, and 2) sharp corners, which are outside the original contour. // The gaps will be filled by a separate region, which makes the infill less stable and it takes longer. { double min_width = bridge_flow.scaled_width() * 3; to_bridge_pp = offset2(to_bridge_pp, -min_width, +min_width); } if (to_bridge_pp.empty()) continue; // convert into ExPolygons to_bridge = union_ex(to_bridge_pp); } #ifdef SLIC3R_DEBUG printf("Bridging " PRINTF_ZU " internal areas at layer " PRINTF_ZU "\n", to_bridge.size(), layer->id()); #endif // compute the remaning internal solid surfaces as difference ExPolygons not_to_bridge = diff_ex(internal_solid, to_bridge, true); to_bridge = intersection_ex(to_polygons(to_bridge), internal_solid, true); // build the new collection of fill_surfaces { layerm->fill_surfaces.remove_type(stInternalSolid); for (ExPolygons::const_iterator ex = to_bridge.begin(); ex != to_bridge.end(); ++ex) layerm->fill_surfaces.surfaces.push_back(Surface(stInternalBridge, *ex)); for (ExPolygons::const_iterator ex = not_to_bridge.begin(); ex != not_to_bridge.end(); ++ex) layerm->fill_surfaces.surfaces.push_back(Surface(stInternalSolid, *ex)); } /* # exclude infill from the layers below if needed # see discussion at https://github.com/alexrj/Slic3r/issues/240 # Update: do not exclude any infill. Sparse infill is able to absorb the excess material. if (0) { my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height; for (my $i = $layer_id-1; $excess >= $self->get_layer($i)->height; $i--) { Slic3r::debugf " skipping infill below those areas at layer %d\n", $i; foreach my $lower_layerm (@{$self->get_layer($i)->regions}) { my @new_surfaces = (); # subtract the area from all types of surfaces foreach my $group (@{$lower_layerm->fill_surfaces->group}) { push @new_surfaces, map $group->[0]->clone(expolygon => $_), @{diff_ex( [ map $_->p, @$group ], [ map @$_, @$to_bridge ], )}; push @new_surfaces, map Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNALVOID, ), @{intersection_ex( [ map $_->p, @$group ], [ map @$_, @$to_bridge ], )}; } $lower_layerm->fill_surfaces->clear; $lower_layerm->fill_surfaces->append($_) for @new_surfaces; } $excess -= $self->get_layer($i)->height; } } */ #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_slices_to_svg_debug("7_bridge_over_infill"); layerm->export_region_fill_surfaces_to_svg_debug("7_bridge_over_infill"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } } } SlicingParameters PrintObject::slicing_parameters() const { return SlicingParameters::create_from_config( this->print()->config, this->config, unscale(this->size.z), this->print()->object_extruders()); } void PrintObject::update_layer_height_profile() { if (this->layer_height_profile.empty()) { if (0) // if (this->layer_height_profile.empty()) this->layer_height_profile = layer_height_profile_adaptive(this->slicing_parameters(), this->layer_height_ranges, this->model_object()->volumes); else this->layer_height_profile = layer_height_profile_from_ranges(this->slicing_parameters(), this->layer_height_ranges); } } // 1) Decides Z positions of the layers, // 2) Initializes layers and their regions // 3) Slices the object meshes // 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes // 5) Applies size compensation (offsets the slices in XY plane) // 6) Replaces bad slices by the slices reconstructed from the upper/lower layer // Resulting expolygons of layer regions are marked as Internal. // // this should be idempotent void PrintObject::_slice() { SlicingParameters slicing_params = this->slicing_parameters(); // 1) Initialize layers and their slice heights. std::vector slice_zs; { this->clear_layers(); // Object layers (pairs of bottom/top Z coordinate), without the raft. this->update_layer_height_profile(); std::vector object_layers = generate_object_layers(slicing_params, this->layer_height_profile); // Reserve object layers for the raft. Last layer of the raft is the contact layer. int id = int(slicing_params.raft_layers()); slice_zs.reserve(object_layers.size()); Layer *prev = nullptr; for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) { coordf_t lo = object_layers[i_layer]; coordf_t hi = object_layers[i_layer + 1]; coordf_t slice_z = 0.5 * (lo + hi); Layer *layer = this->add_layer(id ++, hi - lo, hi + slicing_params.object_print_z_min, slice_z); slice_zs.push_back(float(slice_z)); if (prev != nullptr) { prev->upper_layer = layer; layer->lower_layer = prev; } // Make sure all layers contain layer region objects for all regions. for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id) layer->add_region(this->print()->regions[region_id]); prev = layer; } } if (this->print()->regions.size() == 1) { // Optimized for a single region. Slice the single non-modifier mesh. std::vector expolygons_by_layer = this->_slice_region(0, slice_zs, false); for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id) this->layers[layer_id]->regions.front()->slices.append(std::move(expolygons_by_layer[layer_id]), stInternal); } else { // Slice all non-modifier volumes. for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id) { std::vector expolygons_by_layer = this->_slice_region(region_id, slice_zs, false); for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id) this->layers[layer_id]->regions[region_id]->slices.append(std::move(expolygons_by_layer[layer_id]), stInternal); } // Slice all modifier volumes. for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id) { std::vector expolygons_by_layer = this->_slice_region(region_id, slice_zs, true); // loop through the other regions and 'steal' the slices belonging to this one for (size_t other_region_id = 0; other_region_id < this->print()->regions.size(); ++ other_region_id) { if (region_id == other_region_id) continue; for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id) { Layer *layer = layers[layer_id]; LayerRegion *layerm = layer->regions[region_id]; LayerRegion *other_layerm = layer->regions[other_region_id]; if (layerm == nullptr || other_layerm == nullptr) continue; Polygons other_slices = to_polygons(other_layerm->slices); ExPolygons my_parts = intersection_ex(other_slices, to_polygons(expolygons_by_layer[layer_id])); if (my_parts.empty()) continue; // Remove such parts from original region. other_layerm->slices.set(diff_ex(other_slices, my_parts), stInternal); // Append new parts to our region. layerm->slices.append(std::move(my_parts), stInternal); } } } } // remove last layer(s) if empty while (! this->layers.empty()) { const Layer *layer = this->layers.back(); for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id) if (layer->regions[region_id] != nullptr && ! layer->regions[region_id]->slices.empty()) // Non empty layer. goto end; this->delete_layer(int(this->layers.size()) - 1); } end: ; for (size_t layer_id = 0; layer_id < layers.size(); ++ layer_id) { Layer *layer = this->layers[layer_id]; // apply size compensation if (this->config.xy_size_compensation.value != 0.) { float delta = float(scale_(this->config.xy_size_compensation.value)); if (layer->regions.size() == 1) { // single region LayerRegion *layerm = layer->regions.front(); layerm->slices.set(offset_ex(to_polygons(std::move(layerm->slices.surfaces)), delta), stInternal); } else { if (delta < 0) { // multiple regions, shrinking // we apply the offset to the combined shape, then intersect it // with the original slices for each region Polygons region_slices; for (size_t region_id = 0; region_id < layer->regions.size(); ++ region_id) polygons_append(region_slices, layer->regions[region_id]->slices.surfaces); Polygons slices = offset(union_(region_slices), delta); for (size_t region_id = 0; region_id < layer->regions.size(); ++ region_id) { LayerRegion *layerm = layer->regions[region_id]; layerm->slices.set(std::move(intersection_ex(slices, to_polygons(std::move(layerm->slices.surfaces)))), stInternal); } } else { // multiple regions, growing // this is an ambiguous case, since it's not clear how to grow regions where they are going to overlap // so we give priority to the first one and so on Polygons processed; for (size_t region_id = 0;; ++ region_id) { LayerRegion *layerm = layer->regions[region_id]; ExPolygons slices = offset_ex(to_polygons(layerm->slices.surfaces), delta); if (region_id > 0) // Trim by the slices of already processed regions. slices = diff_ex(to_polygons(std::move(slices)), processed); if (region_id + 1 == layer->regions.size()) { layerm->slices.set(std::move(slices), stInternal); break; } polygons_append(processed, slices); layerm->slices.set(std::move(slices), stInternal); } } } } // Merge all regions' slices to get islands, chain them by a shortest path. layer->make_slices(); } } std::vector PrintObject::_slice_region(size_t region_id, const std::vector &z, bool modifier) { std::vector layers; assert(region_id < this->region_volumes.size()); std::vector &volumes = this->region_volumes[region_id]; if (! volumes.empty()) { // Compose mesh. //FIXME better to perform slicing over each volume separately and then to use a Boolean operation to merge them. TriangleMesh mesh; for (std::vector::const_iterator it_volume = volumes.begin(); it_volume != volumes.end(); ++ it_volume) { ModelVolume *volume = this->model_object()->volumes[*it_volume]; if (volume->modifier == modifier) mesh.merge(volume->mesh); } if (mesh.stl.stats.number_of_facets > 0) { // transform mesh // we ignore the per-instance transformations currently and only // consider the first one this->model_object()->instances.front()->transform_mesh(&mesh, true); // align mesh to Z = 0 (it should be already aligned actually) and apply XY shift mesh.translate(- unscale(this->_copies_shift.x), - unscale(this->_copies_shift.y), -this->model_object()->bounding_box().min.z); // perform actual slicing TriangleMeshSlicer mslicer(&mesh); mslicer.slice(z, &layers); } } return layers; } void PrintObject::_make_perimeters() { if (this->state.is_done(posPerimeters)) return; this->state.set_started(posPerimeters); // merge slices if they were split into types if (this->typed_slices) { FOREACH_LAYER(this, layer_it) (*layer_it)->merge_slices(); this->typed_slices = false; this->state.invalidate(posPrepareInfill); } // compare each layer to the one below, and mark those slices needing // one additional inner perimeter, like the top of domed objects- // this algorithm makes sure that at least one perimeter is overlapping // but we don't generate any extra perimeter if fill density is zero, as they would be floating // inside the object - infill_only_where_needed should be the method of choice for printing // hollow objects FOREACH_REGION(this->_print, region_it) { size_t region_id = region_it - this->_print->regions.begin(); const PrintRegion ®ion = **region_it; if (!region.config.extra_perimeters || region.config.perimeters == 0 || region.config.fill_density == 0 || this->layer_count() < 2) continue; for (int i = 0; i < int(this->layer_count()) - 1; ++i) { LayerRegion &layerm = *this->get_layer(i)->get_region(region_id); const LayerRegion &upper_layerm = *this->get_layer(i+1)->get_region(region_id); const Polygons upper_layerm_polygons = upper_layerm.slices; // Filter upper layer polygons in intersection_ppl by their bounding boxes? // my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ]; double total_loop_length = 0; for (Polygons::const_iterator it = upper_layerm_polygons.begin(); it != upper_layerm_polygons.end(); ++it) total_loop_length += it->length(); const coord_t perimeter_spacing = layerm.flow(frPerimeter).scaled_spacing(); const Flow ext_perimeter_flow = layerm.flow(frExternalPerimeter); const coord_t ext_perimeter_width = ext_perimeter_flow.scaled_width(); const coord_t ext_perimeter_spacing = ext_perimeter_flow.scaled_spacing(); for (Surfaces::iterator slice = layerm.slices.surfaces.begin(); slice != layerm.slices.surfaces.end(); ++slice) { while (true) { // compute the total thickness of perimeters const coord_t perimeters_thickness = ext_perimeter_width/2 + ext_perimeter_spacing/2 + (region.config.perimeters-1 + region.config.extra_perimeters) * perimeter_spacing; // define a critical area where we don't want the upper slice to fall into // (it should either lay over our perimeters or outside this area) const coord_t critical_area_depth = perimeter_spacing * 1.5; const Polygons critical_area = diff( offset(slice->expolygon, -perimeters_thickness), offset(slice->expolygon, -(perimeters_thickness + critical_area_depth)) ); // check whether a portion of the upper slices falls inside the critical area const Polylines intersection = intersection_pl( to_polylines(upper_layerm_polygons), critical_area ); // only add an additional loop if at least 30% of the slice loop would benefit from it { double total_intersection_length = 0; for (Polylines::const_iterator it = intersection.begin(); it != intersection.end(); ++it) total_intersection_length += it->length(); if (total_intersection_length <= total_loop_length*0.3) break; } /* if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output( "extra.svg", no_arrows => 1, expolygons => union_ex($critical_area), polylines => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ], ); } */ slice->extra_perimeters++; } #ifdef DEBUG if (slice->extra_perimeters > 0) printf(" adding %d more perimeter(s) at layer %zu\n", slice->extra_perimeters, i); #endif } } } parallelize( std::queue(std::deque(this->layers.begin(), this->layers.end())), // cast LayerPtrs to std::queue boost::bind(&Slic3r::Layer::make_perimeters, _1), this->_print->config.threads.value ); /* simplify slices (both layer and region slices), we only need the max resolution for perimeters ### This makes this method not-idempotent, so we keep it disabled for now. ###$self->_simplify_slices(&Slic3r::SCALED_RESOLUTION); */ this->state.set_done(posPerimeters); } void PrintObject::_infill() { if (this->state.is_done(posInfill)) return; this->state.set_started(posInfill); parallelize( std::queue(std::deque(this->layers.begin(), this->layers.end())), // cast LayerPtrs to std::queue boost::bind(&Slic3r::Layer::make_fills, _1), this->_print->config.threads.value ); /* we could free memory now, but this would make this step not idempotent ### $_->fill_surfaces->clear for map @{$_->regions}, @{$object->layers}; */ this->state.set_done(posInfill); } } // namespace Slic3r