#include "TriangleMesh.hpp" #include "ClipperUtils.hpp" #include "Geometry.hpp" #include #include #include #include #include #include #include #include #include #include #ifdef SLIC3R_DEBUG #include "SVG.hpp" #endif namespace Slic3r { TriangleMesh::TriangleMesh() : repaired(false) { stl_initialize(&this->stl); } TriangleMesh::TriangleMesh(const TriangleMesh &other) : stl(other.stl), repaired(other.repaired) { this->stl.heads = NULL; this->stl.tail = NULL; if (other.stl.facet_start != NULL) { this->stl.facet_start = (stl_facet*)calloc(other.stl.stats.number_of_facets, sizeof(stl_facet)); std::copy(other.stl.facet_start, other.stl.facet_start + other.stl.stats.number_of_facets, this->stl.facet_start); } if (other.stl.neighbors_start != NULL) { this->stl.neighbors_start = (stl_neighbors*)calloc(other.stl.stats.number_of_facets, sizeof(stl_neighbors)); std::copy(other.stl.neighbors_start, other.stl.neighbors_start + other.stl.stats.number_of_facets, this->stl.neighbors_start); } if (other.stl.v_indices != NULL) { this->stl.v_indices = (v_indices_struct*)calloc(other.stl.stats.number_of_facets, sizeof(v_indices_struct)); std::copy(other.stl.v_indices, other.stl.v_indices + other.stl.stats.number_of_facets, this->stl.v_indices); } if (other.stl.v_shared != NULL) { this->stl.v_shared = (stl_vertex*)calloc(other.stl.stats.shared_vertices, sizeof(stl_vertex)); std::copy(other.stl.v_shared, other.stl.v_shared + other.stl.stats.shared_vertices, this->stl.v_shared); } } TriangleMesh& TriangleMesh::operator= (TriangleMesh other) { this->swap(other); return *this; } void TriangleMesh::swap(TriangleMesh &other) { std::swap(this->stl, other.stl); std::swap(this->repaired, other.repaired); std::swap(this->stl.facet_start, other.stl.facet_start); std::swap(this->stl.neighbors_start, other.stl.neighbors_start); std::swap(this->stl.v_indices, other.stl.v_indices); std::swap(this->stl.v_shared, other.stl.v_shared); } TriangleMesh::~TriangleMesh() { stl_close(&this->stl); } void TriangleMesh::ReadSTLFile(char* input_file) { stl_open(&stl, input_file); } void TriangleMesh::write_ascii(char* output_file) { stl_write_ascii(&this->stl, output_file, ""); } void TriangleMesh::write_binary(char* output_file) { stl_write_binary(&this->stl, output_file, ""); } void TriangleMesh::repair() { if (this->repaired) return; // admesh fails when repairing empty meshes if (this->stl.stats.number_of_facets == 0) return; // checking exact stl_check_facets_exact(&stl); stl.stats.facets_w_1_bad_edge = (stl.stats.connected_facets_2_edge - stl.stats.connected_facets_3_edge); stl.stats.facets_w_2_bad_edge = (stl.stats.connected_facets_1_edge - stl.stats.connected_facets_2_edge); stl.stats.facets_w_3_bad_edge = (stl.stats.number_of_facets - stl.stats.connected_facets_1_edge); // checking nearby int last_edges_fixed = 0; float tolerance = stl.stats.shortest_edge; float increment = stl.stats.bounding_diameter / 10000.0; int iterations = 2; if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) { for (int i = 0; i < iterations; i++) { if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) { //printf("Checking nearby. Tolerance= %f Iteration=%d of %d...", tolerance, i + 1, iterations); stl_check_facets_nearby(&stl, tolerance); //printf(" Fixed %d edges.\n", stl.stats.edges_fixed - last_edges_fixed); last_edges_fixed = stl.stats.edges_fixed; tolerance += increment; } else { break; } } } // remove_unconnected if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) { stl_remove_unconnected_facets(&stl); } // fill_holes if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) { stl_fill_holes(&stl); } // normal_directions stl_fix_normal_directions(&stl); // normal_values stl_fix_normal_values(&stl); // always calculate the volume and reverse all normals if volume is negative stl_calculate_volume(&stl); // neighbors stl_verify_neighbors(&stl); this->repaired = true; } void TriangleMesh::reset_repair_stats() { this->stl.stats.degenerate_facets = 0; this->stl.stats.edges_fixed = 0; this->stl.stats.facets_removed = 0; this->stl.stats.facets_added = 0; this->stl.stats.facets_reversed = 0; this->stl.stats.backwards_edges = 0; this->stl.stats.normals_fixed = 0; } bool TriangleMesh::needed_repair() const { return this->stl.stats.degenerate_facets > 0 || this->stl.stats.edges_fixed > 0 || this->stl.stats.facets_removed > 0 || this->stl.stats.facets_added > 0 || this->stl.stats.facets_reversed > 0 || this->stl.stats.backwards_edges > 0; } size_t TriangleMesh::facets_count() const { return this->stl.stats.number_of_facets; } void TriangleMesh::WriteOBJFile(char* output_file) { stl_generate_shared_vertices(&stl); stl_write_obj(&stl, output_file); } void TriangleMesh::scale(float factor) { stl_scale(&(this->stl), factor); } void TriangleMesh::scale(const Pointf3 &versor) { float fversor[3]; fversor[0] = versor.x; fversor[1] = versor.y; fversor[2] = versor.z; stl_scale_versor(&this->stl, fversor); } void TriangleMesh::translate(float x, float y, float z) { stl_translate_relative(&(this->stl), x, y, z); } void TriangleMesh::rotate_x(float angle) { stl_rotate_x(&(this->stl), angle); } void TriangleMesh::rotate_y(float angle) { stl_rotate_y(&(this->stl), angle); } void TriangleMesh::rotate_z(float angle) { stl_rotate_z(&(this->stl), angle); } void TriangleMesh::flip_x() { stl_mirror_yz(&this->stl); } void TriangleMesh::flip_y() { stl_mirror_xz(&this->stl); } void TriangleMesh::flip_z() { stl_mirror_xy(&this->stl); } void TriangleMesh::align_to_origin() { this->translate( -(this->stl.stats.min.x), -(this->stl.stats.min.y), -(this->stl.stats.min.z) ); } void TriangleMesh::rotate(double angle, Point* center) { this->translate(-center->x, -center->y, 0); stl_rotate_z(&(this->stl), (float)angle); this->translate(+center->x, +center->y, 0); } TriangleMeshPtrs TriangleMesh::split() const { TriangleMeshPtrs meshes; std::set seen_facets; // we need neighbors if (!this->repaired) CONFESS("split() requires repair()"); // loop while we have remaining facets while (1) { // get the first facet std::queue facet_queue; std::deque facets; for (int facet_idx = 0; facet_idx < this->stl.stats.number_of_facets; facet_idx++) { if (seen_facets.find(facet_idx) == seen_facets.end()) { // if facet was not seen put it into queue and start searching facet_queue.push(facet_idx); break; } } if (facet_queue.empty()) break; while (!facet_queue.empty()) { int facet_idx = facet_queue.front(); facet_queue.pop(); if (seen_facets.find(facet_idx) != seen_facets.end()) continue; facets.push_back(facet_idx); for (int j = 0; j <= 2; j++) { facet_queue.push(this->stl.neighbors_start[facet_idx].neighbor[j]); } seen_facets.insert(facet_idx); } TriangleMesh* mesh = new TriangleMesh; meshes.push_back(mesh); mesh->stl.stats.type = inmemory; mesh->stl.stats.number_of_facets = facets.size(); mesh->stl.stats.original_num_facets = mesh->stl.stats.number_of_facets; stl_allocate(&mesh->stl); int first = 1; for (std::deque::const_iterator facet = facets.begin(); facet != facets.end(); facet++) { mesh->stl.facet_start[facet - facets.begin()] = this->stl.facet_start[*facet]; stl_facet_stats(&mesh->stl, this->stl.facet_start[*facet], first); first = 0; } } return meshes; } void TriangleMesh::merge(const TriangleMesh &mesh) { // reset stats and metadata int number_of_facets = this->stl.stats.number_of_facets; stl_invalidate_shared_vertices(&this->stl); this->repaired = false; // update facet count and allocate more memory this->stl.stats.number_of_facets = number_of_facets + mesh.stl.stats.number_of_facets; this->stl.stats.original_num_facets = this->stl.stats.number_of_facets; stl_reallocate(&this->stl); // copy facets for (int i = 0; i < mesh.stl.stats.number_of_facets; i++) { this->stl.facet_start[number_of_facets + i] = mesh.stl.facet_start[i]; } // update size stl_get_size(&this->stl); } /* this will return scaled ExPolygons */ void TriangleMesh::horizontal_projection(ExPolygons &retval) const { Polygons pp; pp.reserve(this->stl.stats.number_of_facets); for (int i = 0; i < this->stl.stats.number_of_facets; i++) { stl_facet* facet = &this->stl.facet_start[i]; Polygon p; p.points.resize(3); p.points[0] = Point(facet->vertex[0].x / SCALING_FACTOR, facet->vertex[0].y / SCALING_FACTOR); p.points[1] = Point(facet->vertex[1].x / SCALING_FACTOR, facet->vertex[1].y / SCALING_FACTOR); p.points[2] = Point(facet->vertex[2].x / SCALING_FACTOR, facet->vertex[2].y / SCALING_FACTOR); p.make_counter_clockwise(); // do this after scaling, as winding order might change while doing that pp.push_back(p); } // the offset factor was tuned using groovemount.stl offset(pp, &pp, 0.01 / SCALING_FACTOR); union_(pp, &retval, true); } void TriangleMesh::convex_hull(Polygon* hull) { this->require_shared_vertices(); Points pp; pp.reserve(this->stl.stats.shared_vertices); for (int i = 0; i < this->stl.stats.shared_vertices; i++) { stl_vertex* v = &this->stl.v_shared[i]; pp.push_back(Point(v->x / SCALING_FACTOR, v->y / SCALING_FACTOR)); } Slic3r::Geometry::convex_hull(pp, hull); } void TriangleMesh::bounding_box(BoundingBoxf3* bb) const { bb->min.x = this->stl.stats.min.x; bb->min.y = this->stl.stats.min.y; bb->min.z = this->stl.stats.min.z; bb->max.x = this->stl.stats.max.x; bb->max.y = this->stl.stats.max.y; bb->max.z = this->stl.stats.max.z; } BoundingBoxf3 TriangleMesh::bounding_box() const { BoundingBoxf3 bb; this->bounding_box(&bb); return bb; } void TriangleMesh::require_shared_vertices() { if (!this->repaired) this->repair(); if (this->stl.v_shared == NULL) stl_generate_shared_vertices(&(this->stl)); } #ifdef SLIC3RXS REGISTER_CLASS(TriangleMesh, "TriangleMesh"); SV* TriangleMesh::to_SV() { SV* sv = newSV(0); sv_setref_pv( sv, perl_class_name(this), (void*)this ); return sv; } void TriangleMesh::ReadFromPerl(SV* vertices, SV* facets) { stl.stats.type = inmemory; // count facets and allocate memory AV* facets_av = (AV*)SvRV(facets); stl.stats.number_of_facets = av_len(facets_av)+1; stl.stats.original_num_facets = stl.stats.number_of_facets; stl_allocate(&stl); // read geometry AV* vertices_av = (AV*)SvRV(vertices); for (unsigned int i = 0; i < stl.stats.number_of_facets; i++) { AV* facet_av = (AV*)SvRV(*av_fetch(facets_av, i, 0)); stl_facet facet; facet.normal.x = 0; facet.normal.y = 0; facet.normal.z = 0; for (unsigned int v = 0; v <= 2; v++) { AV* vertex_av = (AV*)SvRV(*av_fetch(vertices_av, SvIV(*av_fetch(facet_av, v, 0)), 0)); facet.vertex[v].x = SvNV(*av_fetch(vertex_av, 0, 0)); facet.vertex[v].y = SvNV(*av_fetch(vertex_av, 1, 0)); facet.vertex[v].z = SvNV(*av_fetch(vertex_av, 2, 0)); } facet.extra[0] = 0; facet.extra[1] = 0; stl.facet_start[i] = facet; } stl_get_size(&(this->stl)); } #endif void TriangleMeshSlicer::slice(const std::vector &z, std::vector* layers) { /* This method gets called with a list of unscaled Z coordinates and outputs a vector pointer having the same number of items as the original list. Each item is a vector of polygons created by slicing our mesh at the given heights. This method should basically combine the behavior of the existing Perl methods defined in lib/Slic3r/TriangleMesh.pm: - analyze(): this creates the 'facets_edges' and the 'edges_facets' tables (we don't need the 'edges' table) - slice_facet(): this has to be done for each facet. It generates intersection lines with each plane identified by the Z list. The get_layer_range() binary search used to identify the Z range of the facet is already ported to C++ (see Object.xsp) - make_loops(): this has to be done for each layer. It creates polygons from the lines generated by the previous step. At the end, we free the tables generated by analyze() as we don't need them anymore. FUTURE: parallelize slice_facet() and make_loops() NOTE: this method accepts a vector of floats because the mesh coordinate type is float. */ std::vector lines(z.size()); for (int facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; facet_idx++) { stl_facet* facet = &this->mesh->stl.facet_start[facet_idx]; // find facet extents float min_z = fminf(facet->vertex[0].z, fminf(facet->vertex[1].z, facet->vertex[2].z)); float max_z = fmaxf(facet->vertex[0].z, fmaxf(facet->vertex[1].z, facet->vertex[2].z)); #ifdef SLIC3R_DEBUG printf("\n==> FACET %d (%f,%f,%f - %f,%f,%f - %f,%f,%f):\n", facet_idx, facet->vertex[0].x, facet->vertex[0].y, facet->vertex[0].z, facet->vertex[1].x, facet->vertex[1].y, facet->vertex[1].z, facet->vertex[2].x, facet->vertex[2].y, facet->vertex[2].z); printf("z: min = %.2f, max = %.2f\n", min_z, max_z); #endif // find layer extents std::vector::const_iterator min_layer, max_layer; min_layer = std::lower_bound(z.begin(), z.end(), min_z); // first layer whose slice_z is >= min_z max_layer = std::upper_bound(z.begin() + (min_layer - z.begin()), z.end(), max_z) - 1; // last layer whose slice_z is <= max_z #ifdef SLIC3R_DEBUG printf("layers: min = %d, max = %d\n", (int)(min_layer - z.begin()), (int)(max_layer - z.begin())); #endif for (std::vector::const_iterator it = min_layer; it != max_layer + 1; ++it) { std::vector::size_type layer_idx = it - z.begin(); this->slice_facet(*it / SCALING_FACTOR, *facet, facet_idx, min_z, max_z, &lines[layer_idx]); } } // v_scaled_shared could be freed here // build loops layers->resize(z.size()); for (std::vector::iterator it = lines.begin(); it != lines.end(); ++it) { int layer_idx = it - lines.begin(); #ifdef SLIC3R_DEBUG printf("Layer %d:\n", layer_idx); #endif this->make_loops(*it, &(*layers)[layer_idx]); } } void TriangleMeshSlicer::slice(const std::vector &z, std::vector* layers) { std::vector layers_p; this->slice(z, &layers_p); layers->resize(z.size()); for (std::vector::const_iterator loops = layers_p.begin(); loops != layers_p.end(); ++loops) { #ifdef SLIC3R_DEBUG size_t layer_id = loops - layers_p.begin(); printf("Layer %zu (slice_z = %.2f): ", layer_id, z[layer_id]); #endif this->make_expolygons(*loops, &(*layers)[ loops - layers_p.begin() ]); } } void TriangleMeshSlicer::slice_facet(float slice_z, const stl_facet &facet, const int &facet_idx, const float &min_z, const float &max_z, std::vector* lines) const { std::vector points; std::vector< std::vector::size_type > points_on_layer; bool found_horizontal_edge = false; /* reorder vertices so that the first one is the one with lowest Z this is needed to get all intersection lines in a consistent order (external on the right of the line) */ int i = 0; if (facet.vertex[1].z == min_z) { // vertex 1 has lowest Z i = 1; } else if (facet.vertex[2].z == min_z) { // vertex 2 has lowest Z i = 2; } for (int j = i; (j-i) < 3; j++) { // loop through facet edges int edge_id = this->facets_edges[facet_idx][j % 3]; int a_id = this->mesh->stl.v_indices[facet_idx].vertex[j % 3]; int b_id = this->mesh->stl.v_indices[facet_idx].vertex[(j+1) % 3]; stl_vertex* a = &this->v_scaled_shared[a_id]; stl_vertex* b = &this->v_scaled_shared[b_id]; if (a->z == b->z && a->z == slice_z) { // edge is horizontal and belongs to the current layer /* We assume that this method is never being called for horizontal facets, so no other edge is going to be on this layer. */ stl_vertex* v0 = &this->v_scaled_shared[ this->mesh->stl.v_indices[facet_idx].vertex[0] ]; stl_vertex* v1 = &this->v_scaled_shared[ this->mesh->stl.v_indices[facet_idx].vertex[1] ]; stl_vertex* v2 = &this->v_scaled_shared[ this->mesh->stl.v_indices[facet_idx].vertex[2] ]; IntersectionLine line; if (min_z == max_z) { line.edge_type = feHorizontal; } else if (v0->z < slice_z || v1->z < slice_z || v2->z < slice_z) { line.edge_type = feTop; std::swap(a, b); std::swap(a_id, b_id); } else { line.edge_type = feBottom; } line.a.x = a->x; line.a.y = a->y; line.b.x = b->x; line.b.y = b->y; line.a_id = a_id; line.b_id = b_id; lines->push_back(line); found_horizontal_edge = true; // if this is a top or bottom edge, we can stop looping through edges // because we won't find anything interesting if (line.edge_type != feHorizontal) return; } else if (a->z == slice_z) { IntersectionPoint point; point.x = a->x; point.y = a->y; point.point_id = a_id; points.push_back(point); points_on_layer.push_back(points.size()-1); } else if (b->z == slice_z) { IntersectionPoint point; point.x = b->x; point.y = b->y; point.point_id = b_id; points.push_back(point); points_on_layer.push_back(points.size()-1); } else if ((a->z < slice_z && b->z > slice_z) || (b->z < slice_z && a->z > slice_z)) { // edge intersects the current layer; calculate intersection IntersectionPoint point; point.x = b->x + (a->x - b->x) * (slice_z - b->z) / (a->z - b->z); point.y = b->y + (a->y - b->y) * (slice_z - b->z) / (a->z - b->z); point.edge_id = edge_id; points.push_back(point); } } if (found_horizontal_edge) return; if (!points_on_layer.empty()) { // we can't have only one point on layer because each vertex gets detected // twice (once for each edge), and we can't have three points on layer because // we assume this code is not getting called for horizontal facets assert(points_on_layer.size() == 2); assert( points[ points_on_layer[0] ].point_id == points[ points_on_layer[1] ].point_id ); if (points.size() < 3) return; // no intersection point, this is a V-shaped facet tangent to plane points.erase( points.begin() + points_on_layer[1] ); } if (!points.empty()) { assert(points.size() == 2); // facets must intersect each plane 0 or 2 times IntersectionLine line; line.a.x = points[1].x; line.a.y = points[1].y; line.b.x = points[0].x; line.b.y = points[0].y; line.a_id = points[1].point_id; line.b_id = points[0].point_id; line.edge_a_id = points[1].edge_id; line.edge_b_id = points[0].edge_id; lines->push_back(line); return; } } void TriangleMeshSlicer::make_loops(std::vector &lines, Polygons* loops) { /* SVG svg("lines.svg"); for (IntersectionLines::iterator line = lines.begin(); line != lines.end(); ++line) { svg.AddLine(*line); } svg.Close(); */ // remove tangent edges for (IntersectionLines::iterator line = lines.begin(); line != lines.end(); ++line) { if (line->skip || line->edge_type == feNone) continue; /* if the line is a facet edge, find another facet edge having the same endpoints but in reverse order */ for (IntersectionLines::iterator line2 = line + 1; line2 != lines.end(); ++line2) { if (line2->skip || line2->edge_type == feNone) continue; // are these facets adjacent? (sharing a common edge on this layer) if (line->a_id == line2->a_id && line->b_id == line2->b_id) { line2->skip = true; /* if they are both oriented upwards or downwards (like a 'V') then we can remove both edges from this layer since it won't affect the sliced shape */ /* if one of them is oriented upwards and the other is oriented downwards, let's only keep one of them (it doesn't matter which one since all 'top' lines were reversed at slicing) */ if (line->edge_type == line2->edge_type) { line->skip = true; break; } } else if (line->a_id == line2->b_id && line->b_id == line2->a_id) { /* if this edge joins two horizontal facets, remove both of them */ if (line->edge_type == feHorizontal && line2->edge_type == feHorizontal) { line->skip = true; line2->skip = true; break; } } } } // build a map of lines by edge_a_id and a_id std::vector by_edge_a_id, by_a_id; by_edge_a_id.resize(this->mesh->stl.stats.number_of_facets * 3); by_a_id.resize(this->mesh->stl.stats.shared_vertices); for (IntersectionLines::iterator line = lines.begin(); line != lines.end(); ++line) { if (line->skip) continue; if (line->edge_a_id != -1) by_edge_a_id[line->edge_a_id].push_back(&(*line)); if (line->a_id != -1) by_a_id[line->a_id].push_back(&(*line)); } CYCLE: while (1) { // take first spare line and start a new loop IntersectionLine* first_line = NULL; for (IntersectionLines::iterator line = lines.begin(); line != lines.end(); ++line) { if (line->skip) continue; first_line = &(*line); break; } if (first_line == NULL) break; first_line->skip = true; IntersectionLinePtrs loop; loop.push_back(first_line); /* printf("first_line edge_a_id = %d, edge_b_id = %d, a_id = %d, b_id = %d, a = %d,%d, b = %d,%d\n", first_line->edge_a_id, first_line->edge_b_id, first_line->a_id, first_line->b_id, first_line->a.x, first_line->a.y, first_line->b.x, first_line->b.y); */ while (1) { // find a line starting where last one finishes IntersectionLine* next_line = NULL; if (loop.back()->edge_b_id != -1) { IntersectionLinePtrs* candidates = &(by_edge_a_id[loop.back()->edge_b_id]); for (IntersectionLinePtrs::iterator lineptr = candidates->begin(); lineptr != candidates->end(); ++lineptr) { if ((*lineptr)->skip) continue; next_line = *lineptr; break; } } if (next_line == NULL && loop.back()->b_id != -1) { IntersectionLinePtrs* candidates = &(by_a_id[loop.back()->b_id]); for (IntersectionLinePtrs::iterator lineptr = candidates->begin(); lineptr != candidates->end(); ++lineptr) { if ((*lineptr)->skip) continue; next_line = *lineptr; break; } } if (next_line == NULL) { // check whether we closed this loop if ((loop.front()->edge_a_id != -1 && loop.front()->edge_a_id == loop.back()->edge_b_id) || (loop.front()->a_id != -1 && loop.front()->a_id == loop.back()->b_id)) { // loop is complete Polygon p; p.points.reserve(loop.size()); for (IntersectionLinePtrs::iterator lineptr = loop.begin(); lineptr != loop.end(); ++lineptr) { p.points.push_back((*lineptr)->a); } loops->push_back(p); #ifdef SLIC3R_DEBUG printf(" Discovered %s polygon of %d points\n", (p.is_counter_clockwise() ? "ccw" : "cw"), (int)p.points.size()); #endif goto CYCLE; } // we can't close this loop! //// push @failed_loops, [@loop]; //#ifdef SLIC3R_DEBUG printf(" Unable to close this loop having %d points\n", (int)loop.size()); //#endif goto CYCLE; } /* printf("next_line edge_a_id = %d, edge_b_id = %d, a_id = %d, b_id = %d, a = %d,%d, b = %d,%d\n", next_line->edge_a_id, next_line->edge_b_id, next_line->a_id, next_line->b_id, next_line->a.x, next_line->a.y, next_line->b.x, next_line->b.y); */ loop.push_back(next_line); next_line->skip = true; } } } class _area_comp { public: _area_comp(std::vector* _aa) : abs_area(_aa) {}; bool operator() (const size_t &a, const size_t &b) { return (*this->abs_area)[a] > (*this->abs_area)[b]; } private: std::vector* abs_area; }; void TriangleMeshSlicer::make_expolygons_simple(std::vector &lines, ExPolygons* slices) { Polygons loops; this->make_loops(lines, &loops); Polygons cw; for (Polygons::const_iterator loop = loops.begin(); loop != loops.end(); ++loop) { if (loop->area() >= 0) { ExPolygon ex; ex.contour = *loop; slices->push_back(ex); } else { cw.push_back(*loop); } } // assign holes to contours for (Polygons::const_iterator loop = cw.begin(); loop != cw.end(); ++loop) { int slice_idx = -1; double current_contour_area = -1; for (ExPolygons::iterator slice = slices->begin(); slice != slices->end(); ++slice) { if (slice->contour.contains_point(loop->points.front())) { double area = slice->contour.area(); if (area < current_contour_area || current_contour_area == -1) { slice_idx = slice - slices->begin(); current_contour_area = area; } } } (*slices)[slice_idx].holes.push_back(*loop); } } void TriangleMeshSlicer::make_expolygons(const Polygons &loops, ExPolygons* slices) { /* Input loops are not suitable for evenodd nor nonzero fill types, as we might get two consecutive concentric loops having the same winding order - and we have to respect such order. In that case, evenodd would create wrong inversions, and nonzero would ignore holes inside two concentric contours. So we're ordering loops and collapse consecutive concentric loops having the same winding order. TODO: find a faster algorithm for this, maybe with some sort of binary search. If we computed a "nesting tree" we could also just remove the consecutive loops having the same winding order, and remove the extra one(s) so that we could just supply everything to offset() instead of performing several union/diff calls. we sort by area assuming that the outermost loops have larger area; the previous sorting method, based on $b->contains_point($a->[0]), failed to nest loops correctly in some edge cases when original model had overlapping facets */ std::vector area; std::vector abs_area; std::vector sorted_area; // vector of indices for (Polygons::const_iterator loop = loops.begin(); loop != loops.end(); ++loop) { double a = loop->area(); area.push_back(a); abs_area.push_back(std::fabs(a)); sorted_area.push_back(loop - loops.begin()); } std::sort(sorted_area.begin(), sorted_area.end(), _area_comp(&abs_area)); // outer first // we don't perform a safety offset now because it might reverse cw loops Polygons p_slices; for (std::vector::const_iterator loop_idx = sorted_area.begin(); loop_idx != sorted_area.end(); ++loop_idx) { /* we rely on the already computed area to determine the winding order of the loops, since the Orientation() function provided by Clipper would do the same, thus repeating the calculation */ Polygons::const_iterator loop = loops.begin() + *loop_idx; if (area[*loop_idx] >= 0) { p_slices.push_back(*loop); } else { diff(p_slices, *loop, &p_slices); } } // perform a safety offset to merge very close facets (TODO: find test case for this) double safety_offset = scale_(0.0499); ExPolygons ex_slices; offset2(p_slices, &ex_slices, +safety_offset, -safety_offset); #ifdef SLIC3R_DEBUG size_t holes_count = 0; for (ExPolygons::const_iterator e = ex_slices.begin(); e != ex_slices.end(); ++e) { holes_count += e->holes.size(); } printf("%zu surface(s) having %zu holes detected from %zu polylines\n", ex_slices.size(), holes_count, loops.size()); #endif // append to the supplied collection slices->insert(slices->end(), ex_slices.begin(), ex_slices.end()); } void TriangleMeshSlicer::make_expolygons(std::vector &lines, ExPolygons* slices) { Polygons pp; this->make_loops(lines, &pp); this->make_expolygons(pp, slices); } void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower) { std::vector upper_lines, lower_lines; float scaled_z = scale_(z); for (int facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; facet_idx++) { stl_facet* facet = &this->mesh->stl.facet_start[facet_idx]; // find facet extents float min_z = fminf(facet->vertex[0].z, fminf(facet->vertex[1].z, facet->vertex[2].z)); float max_z = fmaxf(facet->vertex[0].z, fmaxf(facet->vertex[1].z, facet->vertex[2].z)); // intersect facet with cutting plane std::vector lines; this->slice_facet(scaled_z, *facet, facet_idx, min_z, max_z, &lines); // save intersection lines for generating correct triangulations for (std::vector::iterator it = lines.begin(); it != lines.end(); ++it) { if (it->edge_type == feTop) { lower_lines.push_back(*it); } else if (it->edge_type == feBottom) { upper_lines.push_back(*it); } else if (it->edge_type != feHorizontal) { lower_lines.push_back(*it); upper_lines.push_back(*it); } } if (min_z > z || (min_z == z && max_z > min_z)) { // facet is above the cut plane and does not belong to it if (upper != NULL) stl_add_facet(&upper->stl, facet); } else if (max_z < z || (max_z == z && max_z > min_z)) { // facet is below the cut plane and does not belong to it if (lower != NULL) stl_add_facet(&lower->stl, facet); } else if (min_z < z && max_z > z) { // facet is cut by the slicing plane // look for the vertex on whose side of the slicing plane there are no other vertices int isolated_vertex; if ( (facet->vertex[0].z > z) == (facet->vertex[1].z > z) ) { isolated_vertex = 2; } else if ( (facet->vertex[1].z > z) == (facet->vertex[2].z > z) ) { isolated_vertex = 0; } else { isolated_vertex = 1; } // get vertices starting from the isolated one stl_vertex* v0 = &facet->vertex[isolated_vertex]; stl_vertex* v1 = &facet->vertex[(isolated_vertex+1) % 3]; stl_vertex* v2 = &facet->vertex[(isolated_vertex+2) % 3]; // intersect v0-v1 and v2-v0 with cutting plane and make new vertices stl_vertex v0v1, v2v0; v0v1.x = v1->x + (v0->x - v1->x) * (z - v1->z) / (v0->z - v1->z); v0v1.y = v1->y + (v0->y - v1->y) * (z - v1->z) / (v0->z - v1->z); v0v1.z = z; v2v0.x = v2->x + (v0->x - v2->x) * (z - v2->z) / (v0->z - v2->z); v2v0.y = v2->y + (v0->y - v2->y) * (z - v2->z) / (v0->z - v2->z); v2v0.z = z; // build the triangular facet stl_facet triangle; triangle.normal = facet->normal; triangle.vertex[0] = *v0; triangle.vertex[1] = v0v1; triangle.vertex[2] = v2v0; // build the facets forming a quadrilateral on the other side stl_facet quadrilateral[2]; quadrilateral[0].normal = facet->normal; quadrilateral[0].vertex[0] = *v1; quadrilateral[0].vertex[1] = *v2; quadrilateral[0].vertex[2] = v0v1; quadrilateral[1].normal = facet->normal; quadrilateral[1].vertex[0] = *v2; quadrilateral[1].vertex[1] = v2v0; quadrilateral[1].vertex[2] = v0v1; if (v0->z > z) { if (upper != NULL) stl_add_facet(&upper->stl, &triangle); if (lower != NULL) { stl_add_facet(&lower->stl, &quadrilateral[0]); stl_add_facet(&lower->stl, &quadrilateral[1]); } } else { if (upper != NULL) { stl_add_facet(&upper->stl, &quadrilateral[0]); stl_add_facet(&upper->stl, &quadrilateral[1]); } if (lower != NULL) stl_add_facet(&lower->stl, &triangle); } } } // triangulate holes of upper mesh if (upper != NULL) { // compute shape of section ExPolygons section; this->make_expolygons_simple(upper_lines, §ion); // triangulate section Polygons triangles; for (ExPolygons::const_iterator expolygon = section.begin(); expolygon != section.end(); ++expolygon) expolygon->triangulate_p2t(&triangles); // convert triangles to facets and append them to mesh for (Polygons::const_iterator polygon = triangles.begin(); polygon != triangles.end(); ++polygon) { Polygon p = *polygon; p.reverse(); stl_facet facet; facet.normal.x = 0; facet.normal.y = 0; facet.normal.z = -1; for (size_t i = 0; i <= 2; ++i) { facet.vertex[i].x = unscale(p.points[i].x); facet.vertex[i].y = unscale(p.points[i].y); facet.vertex[i].z = z; } stl_add_facet(&upper->stl, &facet); } } // triangulate holes of lower mesh if (lower != NULL) { // compute shape of section ExPolygons section; this->make_expolygons_simple(lower_lines, §ion); // triangulate section Polygons triangles; for (ExPolygons::const_iterator expolygon = section.begin(); expolygon != section.end(); ++expolygon) expolygon->triangulate_p2t(&triangles); // convert triangles to facets and append them to mesh for (Polygons::const_iterator polygon = triangles.begin(); polygon != triangles.end(); ++polygon) { stl_facet facet; facet.normal.x = 0; facet.normal.y = 0; facet.normal.z = 1; for (size_t i = 0; i <= 2; ++i) { facet.vertex[i].x = unscale(polygon->points[i].x); facet.vertex[i].y = unscale(polygon->points[i].y); facet.vertex[i].z = z; } stl_add_facet(&lower->stl, &facet); } } stl_get_size(&(upper->stl)); stl_get_size(&(lower->stl)); } TriangleMeshSlicer::TriangleMeshSlicer(TriangleMesh* _mesh) : mesh(_mesh), v_scaled_shared(NULL) { // build a table to map a facet_idx to its three edge indices this->mesh->require_shared_vertices(); typedef std::pair t_edge; typedef std::vector t_edges; // edge_idx => a_id,b_id typedef std::map t_edges_map; // a_id,b_id => edge_idx this->facets_edges.resize(this->mesh->stl.stats.number_of_facets); { t_edges edges; // reserve() instad of resize() because otherwise we couldn't read .size() below to assign edge_idx edges.reserve(this->mesh->stl.stats.number_of_facets * 3); // number of edges = number of facets * 3 t_edges_map edges_map; for (int facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; facet_idx++) { this->facets_edges[facet_idx].resize(3); for (int i = 0; i <= 2; i++) { int a_id = this->mesh->stl.v_indices[facet_idx].vertex[i]; int b_id = this->mesh->stl.v_indices[facet_idx].vertex[(i+1) % 3]; int edge_idx; t_edges_map::const_iterator my_edge = edges_map.find(std::make_pair(b_id,a_id)); if (my_edge != edges_map.end()) { edge_idx = my_edge->second; } else { /* admesh can assign the same edge ID to more than two facets (which is still topologically correct), so we have to search for a duplicate of this edge too in case it was already seen in this orientation */ my_edge = edges_map.find(std::make_pair(a_id,b_id)); if (my_edge != edges_map.end()) { edge_idx = my_edge->second; } else { // edge isn't listed in table, so we insert it edge_idx = edges.size(); edges.push_back(std::make_pair(a_id,b_id)); edges_map[ edges[edge_idx] ] = edge_idx; } } this->facets_edges[facet_idx][i] = edge_idx; #ifdef SLIC3R_DEBUG printf(" [facet %d, edge %d] a_id = %d, b_id = %d --> edge %d\n", facet_idx, i, a_id, b_id, edge_idx); #endif } } } // clone shared vertices coordinates and scale them this->v_scaled_shared = (stl_vertex*)calloc(this->mesh->stl.stats.shared_vertices, sizeof(stl_vertex)); std::copy(this->mesh->stl.v_shared, this->mesh->stl.v_shared + this->mesh->stl.stats.shared_vertices, this->v_scaled_shared); for (int i = 0; i < this->mesh->stl.stats.shared_vertices; i++) { this->v_scaled_shared[i].x /= SCALING_FACTOR; this->v_scaled_shared[i].y /= SCALING_FACTOR; this->v_scaled_shared[i].z /= SCALING_FACTOR; } } TriangleMeshSlicer::~TriangleMeshSlicer() { if (this->v_scaled_shared != NULL) free(this->v_scaled_shared); } }