Welcome to mirror list, hosted at ThFree Co, Russian Federation.

ExPolygon.cpp « libslic3r « src « xs - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 9a4036ba3cddfa1f85f718cc858d5a2a2083e26c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
#include "BoundingBox.hpp"
#include "ExPolygon.hpp"
#include "Geometry.hpp"
#include "Polygon.hpp"
#include "Line.hpp"
#include "ClipperUtils.hpp"
#include "SVG.hpp"
#include "polypartition.h"
#include "poly2tri/poly2tri.h"
#include <algorithm>
#include <cassert>
#include <list>

namespace Slic3r {

ExPolygon::operator Points() const
{
    Points points;
    Polygons pp = *this;
    for (Polygons::const_iterator poly = pp.begin(); poly != pp.end(); ++poly) {
        for (Points::const_iterator point = poly->points.begin(); point != poly->points.end(); ++point)
            points.push_back(*point);
    }
    return points;
}

ExPolygon::operator Polygons() const
{
    return to_polygons(*this);
}

ExPolygon::operator Polylines() const
{
    return to_polylines(*this);
}

void
ExPolygon::scale(double factor)
{
    contour.scale(factor);
    for (Polygons::iterator it = holes.begin(); it != holes.end(); ++it) {
        (*it).scale(factor);
    }
}

void
ExPolygon::translate(double x, double y)
{
    contour.translate(x, y);
    for (Polygons::iterator it = holes.begin(); it != holes.end(); ++it) {
        (*it).translate(x, y);
    }
}

void
ExPolygon::rotate(double angle)
{
    contour.rotate(angle);
    for (Polygons::iterator it = holes.begin(); it != holes.end(); ++it) {
        (*it).rotate(angle);
    }
}

void
ExPolygon::rotate(double angle, const Point &center)
{
    contour.rotate(angle, center);
    for (Polygons::iterator it = holes.begin(); it != holes.end(); ++it) {
        (*it).rotate(angle, center);
    }
}

double
ExPolygon::area() const
{
    double a = this->contour.area();
    for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) {
        a -= -(*it).area();  // holes have negative area
    }
    return a;
}

bool
ExPolygon::is_valid() const
{
    if (!this->contour.is_valid() || !this->contour.is_counter_clockwise()) return false;
    for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) {
        if (!(*it).is_valid() || (*it).is_counter_clockwise()) return false;
    }
    return true;
}

bool
ExPolygon::contains(const Line &line) const
{
    return this->contains((Polyline)line);
}

bool
ExPolygon::contains(const Polyline &polyline) const
{
    return diff_pl((Polylines)polyline, *this).empty();
}

bool
ExPolygon::contains(const Polylines &polylines) const
{
    #if 0
    BoundingBox bbox = get_extents(polylines);
    bbox.merge(get_extents(*this));
    SVG svg(debug_out_path("ExPolygon_contains.svg"), bbox);
    svg.draw(*this);
    svg.draw_outline(*this);
    svg.draw(polylines, "blue");
    #endif
    Polylines pl_out = diff_pl(polylines, *this);
    #if 0
    svg.draw(pl_out, "red");
    #endif
    return pl_out.empty();
}

bool
ExPolygon::contains(const Point &point) const
{
    if (!this->contour.contains(point)) return false;
    for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) {
        if (it->contains(point)) return false;
    }
    return true;
}

// inclusive version of contains() that also checks whether point is on boundaries
bool
ExPolygon::contains_b(const Point &point) const
{
    return this->contains(point) || this->has_boundary_point(point);
}

bool
ExPolygon::has_boundary_point(const Point &point) const
{
    if (this->contour.has_boundary_point(point)) return true;
    for (Polygons::const_iterator h = this->holes.begin(); h != this->holes.end(); ++h) {
        if (h->has_boundary_point(point)) return true;
    }
    return false;
}

bool
ExPolygon::overlaps(const ExPolygon &other) const
{
    #if 0
    BoundingBox bbox = get_extents(other);
    bbox.merge(get_extents(*this));
    static int iRun = 0;
    SVG svg(debug_out_path("ExPolygon_overlaps-%d.svg", iRun ++), bbox);
    svg.draw(*this);
    svg.draw_outline(*this);
    svg.draw_outline(other, "blue");
    #endif
    Polylines pl_out = intersection_pl((Polylines)other, *this);
    #if 0
    svg.draw(pl_out, "red");
    #endif
    if (! pl_out.empty())
        return true; 
    return ! other.contour.points.empty() && this->contains_b(other.contour.points.front());
}

void ExPolygon::simplify_p(double tolerance, Polygons* polygons) const
{
    Polygons pp = this->simplify_p(tolerance);
    polygons->insert(polygons->end(), pp.begin(), pp.end());
}

Polygons ExPolygon::simplify_p(double tolerance) const
{
    Polygons pp;
    pp.reserve(this->holes.size() + 1);
    // contour
    {
        Polygon p = this->contour;
        p.points.push_back(p.points.front());
        p.points = MultiPoint::_douglas_peucker(p.points, tolerance);
        p.points.pop_back();
        pp.emplace_back(std::move(p));
    }
    // holes
    for (Polygon p : this->holes) {
        p.points.push_back(p.points.front());
        p.points = MultiPoint::_douglas_peucker(p.points, tolerance);
        p.points.pop_back();
        pp.emplace_back(std::move(p));
    }
    return simplify_polygons(pp);
}

ExPolygons ExPolygon::simplify(double tolerance) const
{
    return union_ex(this->simplify_p(tolerance));
}

void ExPolygon::simplify(double tolerance, ExPolygons* expolygons) const
{
    append(*expolygons, this->simplify(tolerance));
}

/// remove point that are at SCALED_EPSILON * 2 distance.
void remove_point_too_near(ThickPolyline* to_reduce) {
        const int32_t smallest = SCALED_EPSILON * 2;
        uint32_t id = 1;
        while (id < to_reduce->points.size() - 2) {
            uint32_t newdist = min(to_reduce->points[id].distance_to(to_reduce->points[id - 1])
                , to_reduce->points[id].distance_to(to_reduce->points[id + 1]));
            if (newdist < smallest) {
                to_reduce->points.erase(to_reduce->points.begin() + id);
                to_reduce->width.erase(to_reduce->width.begin() + id);
            } else {
                ++id;
            }
        }
}

/// add points  from pattern to to_modify at the same % of the length
/// so not add if an other point is present at the correct position
void add_point_same_percent(ThickPolyline* pattern, ThickPolyline* to_modify) {
    const double to_modify_length = to_modify->length();
    const double percent_epsilon = SCALED_EPSILON / to_modify_length;
    const double pattern_length = pattern->length();

    double percent_length = 0;
    for (uint32_t idx_point = 1; idx_point < pattern->points.size() - 1; ++idx_point) {
        percent_length += pattern->points[idx_point-1].distance_to(pattern->points[idx_point]) / pattern_length;
        //find position 
        uint32_t idx_other = 1;
        double percent_length_other_before = 0;
        double percent_length_other = 0;
        while (idx_other < to_modify->points.size()) {
            percent_length_other_before = percent_length_other;
            percent_length_other += to_modify->points[idx_other-1].distance_to(to_modify->points[idx_other])
                / to_modify_length;
            if (percent_length_other > percent_length - percent_epsilon) {
                //if higher (we have gone over it)
                break;
            }
            ++idx_other;
        }
        if (percent_length_other > percent_length + percent_epsilon) {
            //insert a new point before the position
            double percent_dist = (percent_length - percent_length_other_before) / (percent_length_other - percent_length_other_before);
            coordf_t new_width = to_modify->width[idx_other - 1] * (1 - percent_dist);
            new_width += to_modify->width[idx_other] * (percent_dist);
            Point new_point;
            new_point.x = (coord_t)((double)(to_modify->points[idx_other - 1].x) * (1 - percent_dist));
            new_point.x += (coord_t)((double)(to_modify->points[idx_other].x) * (percent_dist));
            new_point.y = (coord_t)((double)(to_modify->points[idx_other - 1].y) * (1 - percent_dist));
            new_point.y += (coord_t)((double)(to_modify->points[idx_other].y) * (percent_dist));
            to_modify->width.insert(to_modify->width.begin() + idx_other, new_width);
            to_modify->points.insert(to_modify->points.begin() + idx_other, new_point);
        }
    }
}

/// find the nearest angle in the contour (or 2 nearest if it's difficult to choose) 
/// return 1 for an angle of 90° and 0 for an angle of 0° or 180°
double get_coeff_from_angle_countour(Point &point, const ExPolygon &contour) {
    double nearestDist = point.distance_to(contour.contour.points.front());
    Point nearest = contour.contour.points.front();
    uint32_t id_nearest = 0;
    double nearDist = nearestDist;
    Point near = nearest;
    uint32_t id_near=0;
    for (uint32_t id_point = 1; id_point < contour.contour.points.size(); ++id_point) {
        if (nearestDist > point.distance_to(contour.contour.points[id_point])) {
            nearestDist = point.distance_to(contour.contour.points[id_point]);
            near = nearest;
            nearest = contour.contour.points[id_point];
            id_near = id_nearest;
            id_nearest = id_point;
        }
    }
    double angle = 0;
    Point point_before = id_nearest == 0 ? contour.contour.points.back() : contour.contour.points[id_nearest - 1];
    Point point_after = id_nearest == contour.contour.points.size()-1 ? contour.contour.points.front() : contour.contour.points[id_nearest + 1];
    //compute angle
    angle = min(nearest.ccw_angle(point_before, point_after), nearest.ccw_angle(point_after, point_before));
    //compute the diff from 90°
    angle = abs(angle - PI / 2);
    if (near != nearest && max(nearestDist, nearDist) + SCALED_EPSILON < nearest.distance_to(near)) {
        //not only nearest
        Point point_before = id_near == 0 ? contour.contour.points.back() : contour.contour.points[id_near - 1];
        Point point_after = id_near == contour.contour.points.size() - 1 ? contour.contour.points.front() : contour.contour.points[id_near + 1];
        double angle2 = min(nearest.ccw_angle(point_before, point_after), nearest.ccw_angle(point_after, point_before));
        angle2 = abs(angle - PI / 2);
        angle = (angle + angle2) / 2;
    }

    return 1-(angle/(PI/2));
}

void
ExPolygon::medial_axis(const ExPolygon &bounds, double max_width, double min_width, ThickPolylines* polylines, double height) const
{
    // init helper object
    Slic3r::Geometry::MedialAxis ma(max_width, min_width, this);
    ma.lines = this->lines();
    
    // compute the Voronoi diagram and extract medial axis polylines
    ThickPolylines pp;
    ma.build(&pp);
    

    //{
    //    stringstream stri;
    //    stri << "medial_axis" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(bounds);
    //    svg.draw(*this);
    //    svg.draw(pp);
    //    svg.Close();
    //}
    
    /* Find the maximum width returned; we're going to use this for validating and 
       filtering the output segments. */
    double max_w = 0;
    for (ThickPolylines::const_iterator it = pp.begin(); it != pp.end(); ++it)
        max_w = fmaxf(max_w, *std::max_element(it->width.begin(), it->width.end()));

    concatThickPolylines(pp);
    //reoder pp by length (ascending) It's really important to do that to avoid building the line from the width insteand of the length
    std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) { return a.length() < b.length(); });

    // Aligned fusion: Fusion the bits at the end of lines by "increasing thickness"
    // For that, we have to find other lines,
    // and with a next point no more distant than the max width.
    // Then, we can merge the bit from the first point to the second by following the mean.
    //
    int id_f = 0;
    bool changes = true;

    
    while (changes) {
        changes = false;
        for (size_t i = 0; i < pp.size(); ++i) {
            ThickPolyline& polyline = pp[i];
            
            //simple check to see if i can be fusionned
            if (!polyline.endpoints.first && !polyline.endpoints.second) continue;
            

            ThickPolyline* best_candidate = nullptr;
            float best_dot = -1;
            int best_idx = 0;
            double dot_poly_branch = 0;
            double dot_candidate_branch = 0;
            
            // find another polyline starting here
            for (size_t j = i + 1; j < pp.size(); ++j) {
                ThickPolyline& other = pp[j];
                if (polyline.last_point().coincides_with(other.last_point())) {
                    polyline.reverse();
                    other.reverse();
                } else if (polyline.first_point().coincides_with(other.last_point())) {
                    other.reverse();
                } else if (polyline.first_point().coincides_with(other.first_point())) {
                } else if (polyline.last_point().coincides_with(other.first_point())) {
                    polyline.reverse();
                } else {
                    continue;
                }
                //std::cout << " try : " << i << ":" << j << " : " << 
                //    (polyline.points.size() < 2 && other.points.size() < 2) <<
                //    (!polyline.endpoints.second || !other.endpoints.second) <<
                //    ((polyline.points.back().distance_to(other.points.back())
                //    + (polyline.width.back() + other.width.back()) / 4)
                //    > max_width*1.05) <<
                //    (abs(polyline.length() - other.length()) > max_width / 2) << "\n";

                //// mergeable tests
                if (polyline.points.size() < 2 && other.points.size() < 2) continue;
                if (!polyline.endpoints.second || !other.endpoints.second) continue;
                // test if the new width will not be too big if a fusion occur
                //note that this isn't the real calcul. It's just to avoid merging lines too far apart.
                if (
                    ((polyline.points.back().distance_to(other.points.back())
                        + (polyline.width.back() + other.width.back()) / 4)
                        > max_width*1.05))
                        continue;
                // test if the lines are not too different in length.
                if (abs(polyline.length() - other.length()) > max_width / 2) continue;


                //test if we don't merge with something too different and without any relevance.
                double coeffSizePolyI = 1;
                if (polyline.width.back() == 0) {
                    coeffSizePolyI = 0.1 + 0.9*get_coeff_from_angle_countour(polyline.points.back(), *this);
                }
                double coeffSizeOtherJ = 1;
                if (other.width.back() == 0) {
                    coeffSizeOtherJ = 0.1+0.9*get_coeff_from_angle_countour(other.points.back(), *this);
                }
                if (abs(polyline.length()*coeffSizePolyI - other.length()*coeffSizeOtherJ) > max_width / 2) continue;

                //compute angle to see if it's better than previous ones (straighter = better).
                Pointf v_poly(polyline.lines().front().vector().x, polyline.lines().front().vector().y);
                v_poly.scale(1 / std::sqrt(v_poly.x*v_poly.x + v_poly.y*v_poly.y));
                Pointf v_other(other.lines().front().vector().x, other.lines().front().vector().y);
                v_other.scale(1 / std::sqrt(v_other.x*v_other.x + v_other.y*v_other.y));
                float other_dot = v_poly.x*v_other.x + v_poly.y*v_other.y;

                // Get the branch/line in wich we may merge, if possible
                // with that, we can decide what is important, and how we can merge that.
                // angle_poly - angle_candi =90° => one is useless
                // both angle are equal => both are useful with same strength
                // ex: Y => | both are useful to crete a nice line
                // ex2: TTTTT => -----  these 90° useless lines should be discarded
                bool find_main_branch = false;
                int biggest_main_branch_id = 0;
                int biggest_main_branch_length = 0;
                for (size_t k = 0; k < pp.size(); ++k) {
                    //std::cout << "try to find main : " << k << " ? " << i << " " << j << " ";
                    if (k == i | k == j) continue;
                    ThickPolyline& main = pp[k];
                    if (polyline.first_point().coincides_with(main.last_point())) {
                        main.reverse();
                        if (!main.endpoints.second)
                            find_main_branch = true;
                        else if (biggest_main_branch_length < main.length()) {
                            biggest_main_branch_id = k;
                            biggest_main_branch_length = main.length();
                        }
                    } else if (polyline.first_point().coincides_with(main.first_point())) {
                        if (!main.endpoints.second)
                            find_main_branch = true;
                        else if (biggest_main_branch_length < main.length()) {
                            biggest_main_branch_id = k;
                            biggest_main_branch_length = main.length();
                        }
                    }
                    if (find_main_branch) {
                        //use this variable to store the good index and break to compute it
                        biggest_main_branch_id = k;
                        break;
                    }
                }
                if (!find_main_branch && biggest_main_branch_length == 0) {
                    // nothing -> it's impossible!
                    dot_poly_branch = 0.707;
                    dot_candidate_branch = 0.707;
                    //std::cout << "no main branch... impossible!!\n";
                } else if (!find_main_branch && 
                    (pp[biggest_main_branch_id].length() < polyline.length() || pp[biggest_main_branch_id].length() < other.length()) ){
                    //the main branch should have no endpoint or be bigger!
                    //here, it have an endpoint, and is not the biggest -> bad!
                    continue;
                } else {
                    //compute the dot (biggest_main_branch_id)
                    Pointf v_poly(polyline.lines().front().vector().x, polyline.lines().front().vector().y);
                    v_poly.scale(1 / std::sqrt(v_poly.x*v_poly.x + v_poly.y*v_poly.y));
                    Pointf v_candid(other.lines().front().vector().x, other.lines().front().vector().y);
                    v_candid.scale(1 / std::sqrt(v_candid.x*v_candid.x + v_candid.y*v_candid.y));
                    Pointf v_branch(-pp[biggest_main_branch_id].lines().front().vector().x, -pp[biggest_main_branch_id].lines().front().vector().y);
                    v_branch.scale(1 / std::sqrt(v_branch.x*v_branch.x + v_branch.y*v_branch.y));
                    dot_poly_branch = v_poly.x*v_branch.x + v_poly.y*v_branch.y;
                    dot_candidate_branch = v_candid.x*v_branch.x + v_candid.y*v_branch.y;
                    if (dot_poly_branch < 0) dot_poly_branch = 0;
                    if (dot_candidate_branch < 0) dot_candidate_branch = 0;
                }
                //test if it's useful to merge or not
                //ie, don't merge  'T' but ok for 'Y', merge only lines of not disproportionate different length (ratio max: 4)
                if (dot_poly_branch < 0.1 || dot_candidate_branch < 0.1 ||
                    (polyline.length()>other.length() ? polyline.length() / other.length() : other.length() / polyline.length()) > 4) {
                    continue;
                }
                if (other_dot > best_dot) {
                    best_candidate = &other;
                    best_idx = j;
                    best_dot = other_dot;
                }
            }
            if (best_candidate != nullptr) {
                // delete very near points
                remove_point_too_near(&polyline);
                remove_point_too_near(best_candidate);

                // add point at the same pos than the other line to have a nicer fusion
                add_point_same_percent(&polyline, best_candidate);
                add_point_same_percent(best_candidate, &polyline);

                //get the angle of the nearest points of the contour to see : _| (good) \_ (average) __(bad)
                //sqrt because the result are nicer this way: don't over-penalize /_ angles
                //TODO: try if we can achieve a better result if we use a different algo if the angle is <90°
                const double coeff_angle_poly = (get_coeff_from_angle_countour(polyline.points.back(), *this));
                const double coeff_angle_candi = (get_coeff_from_angle_countour(best_candidate->points.back(), *this));

                //this will encourage to follow the curve, a little, because it's shorter near the center
                //without that, it tends to go to the outter rim.
                double weight_poly = 2 - polyline.length() / max(polyline.length(), best_candidate->length());
                double weight_candi = 2 - best_candidate->length() / max(polyline.length(), best_candidate->length());
                weight_poly *= coeff_angle_poly;
                weight_candi *= coeff_angle_candi;
                const double coeff_poly = (dot_poly_branch * weight_poly) / (dot_poly_branch * weight_poly + dot_candidate_branch * weight_candi);
                const double coeff_candi = 1.0 - coeff_poly;
                //iterate the points
                // as voronoi should create symetric thing, we can iterate synchonously
                unsigned int idx_point = 1;
                while (idx_point < min(polyline.points.size(), best_candidate->points.size())) {
                    //fusion
                    polyline.points[idx_point].x = polyline.points[idx_point].x * coeff_poly + best_candidate->points[idx_point].x * coeff_candi;
                    polyline.points[idx_point].y = polyline.points[idx_point].y * coeff_poly + best_candidate->points[idx_point].y * coeff_candi;
                   
                    // The width decrease with distance from the centerline.
                    // This formula is what works the best, even if it's not perfect (created empirically).  0->3% error on a gap fill on some tests.
                    //If someone find  an other formula based on the properties of the voronoi algorithm used here, and it works better, please use it.
                    //or maybe just use the distance to nearest edge in bounds...
                    double value_from_current_width = 0.5*polyline.width[idx_point] * dot_poly_branch / max(dot_poly_branch, dot_candidate_branch);
                    value_from_current_width += 0.5*best_candidate->width[idx_point] * dot_candidate_branch / max(dot_poly_branch, dot_candidate_branch);
                    double value_from_dist = 2 * polyline.points[idx_point].distance_to(best_candidate->points[idx_point]);
                    value_from_dist *= sqrt(min(dot_poly_branch, dot_candidate_branch) / max(dot_poly_branch, dot_candidate_branch));
                    polyline.width[idx_point] = value_from_current_width + value_from_dist;
                    //failsafe
                    if (polyline.width[idx_point] > max_width) polyline.width[idx_point] = max_width;

                    ++idx_point;
                }
                if (idx_point < best_candidate->points.size()) {
                    if (idx_point + 1 < best_candidate->points.size()) {
                        //create a new polyline
                        pp.emplace_back();
                        pp.back().endpoints.first = true;
                        pp.back().endpoints.second = best_candidate->endpoints.second;
                        for (int idx_point_new_line = idx_point; idx_point_new_line < best_candidate->points.size(); ++idx_point_new_line) {
                            pp.back().points.push_back(best_candidate->points[idx_point_new_line]);
                            pp.back().width.push_back(best_candidate->width[idx_point_new_line]);
                        }
                    } else {
                        //Add last point
                        polyline.points.push_back(best_candidate->points[idx_point]);
                        polyline.width.push_back(best_candidate->width[idx_point]);
                        //select if an end opccur
                        polyline.endpoints.second &= best_candidate->endpoints.second;
                    }

                } else {
                    //select if an end opccur
                    polyline.endpoints.second &= best_candidate->endpoints.second;
                }

                //remove points that are the same or too close each other, ie simplify
                for (unsigned int idx_point = 1; idx_point < polyline.points.size(); ++idx_point) {
                    if (polyline.points[idx_point - 1].distance_to(polyline.points[idx_point]) < SCALED_EPSILON) {
                        if (idx_point < polyline.points.size() -1) {
                            polyline.points.erase(polyline.points.begin() + idx_point);
                            polyline.width.erase(polyline.width.begin() + idx_point);
                        } else {
                            polyline.points.erase(polyline.points.begin() + idx_point - 1);
                            polyline.width.erase(polyline.width.begin() + idx_point - 1);
                        }
                        --idx_point;
                    }
                }
                //remove points that are outside of the geometry
                for (unsigned int idx_point = 0; idx_point < polyline.points.size(); ++idx_point) {
                    if (!bounds.contains_b(polyline.points[idx_point])) {
                        polyline.points.erase(polyline.points.begin() + idx_point);
                        polyline.width.erase(polyline.width.begin() + idx_point);
                        --idx_point;
                    }
                }
                if (polyline.points.size() < 2) {
                    //remove self
                    pp.erase(pp.begin() + i);
                    --i;
                    --best_idx;
                }

                pp.erase(pp.begin() + best_idx);
                changes = true;
                break;
            }
        }
        if (changes) {
            concatThickPolylines(pp);
            ///reorder, in case of change
            std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) { return a.length() < b.length(); });
        }
    }

    // remove too small extrusion at start & end of polylines
    changes = false;
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline& polyline = pp[i];
        // remove bits with too small extrusion
        while (polyline.points.size() > 1 && polyline.width.front() < min_width && polyline.endpoints.first) {
            //try to split if possible
            if (polyline.width[1] > min_width) {
                double percent_can_keep = (min_width - polyline.width[0]) / (polyline.width[1] - polyline.width[0]);
                if (polyline.points.front().distance_to(polyline.points[1]) * percent_can_keep > max_width / 2
                    && polyline.points.front().distance_to(polyline.points[1])* (1 - percent_can_keep) > max_width / 2) {
                    //Can split => move the first point and assign a new weight.
                    //the update of endpoints wil be performed in concatThickPolylines
                    polyline.points.front().x = polyline.points.front().x + 
                        (coord_t)((polyline.points[1].x - polyline.points.front().x) * percent_can_keep);
                    polyline.points.front().y = polyline.points.front().y + 
                        (coord_t)((polyline.points[1].y - polyline.points.front().y) * percent_can_keep);
                    polyline.width.front() = min_width;
                    changes = true;
                    break;
                }
            }
            polyline.points.erase(polyline.points.begin());
            polyline.width.erase(polyline.width.begin());
            changes = true;
        }
        while (polyline.points.size() > 1 && polyline.width.back() < min_width && polyline.endpoints.second) {
            //try to split if possible
            if (polyline.width[polyline.points.size()-2] > min_width) {
                double percent_can_keep = (min_width - polyline.width.back()) / (polyline.width[polyline.points.size() - 2] - polyline.width.back());
                if (polyline.points.back().distance_to(polyline.points[polyline.points.size() - 2]) * percent_can_keep > max_width / 2
                    && polyline.points.back().distance_to(polyline.points[polyline.points.size() - 2]) * (1-percent_can_keep) > max_width / 2) {
                    //Can split => move the first point and assign a new weight.
                    //the update of endpoints wil be performed in concatThickPolylines
                    polyline.points.back().x = polyline.points.back().x + 
                        (coord_t)((polyline.points[polyline.points.size() - 2].x - polyline.points.back().x) * percent_can_keep);
                    polyline.points.back().y = polyline.points.back().y + 
                        (coord_t)((polyline.points[polyline.points.size() - 2].y - polyline.points.back().y) * percent_can_keep);
                    polyline.width.back() = min_width;
                    changes = true;
                    break;
                }
            }
            polyline.points.erase(polyline.points.end()-1);
            polyline.width.erase(polyline.width.end() - 1);
            changes = true;
        }
        if (polyline.points.size() < 2) {
            //remove self if too small
            pp.erase(pp.begin() + i);
            --i;
        }
    }
    if (changes) concatThickPolylines(pp);

    // Loop through all returned polylines in order to extend their endpoints to the 
    //   expolygon boundaries
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline& polyline = pp[i];

        // extend initial and final segments of each polyline if they're actual endpoints
        // We assign new endpoints to temporary variables because in case of a single-line
        // polyline, after we extend the start point it will be caught by the intersection()
        // call, so we keep the inner point until we perform the second intersection() as well
        Point new_front = polyline.points.front();
        Point new_back = polyline.points.back();
        if (polyline.endpoints.first && !bounds.has_boundary_point(new_front)) {
            Line line(polyline.points[1], polyline.points.front());

            // prevent the line from touching on the other side, otherwise intersection() might return that solution
            if (polyline.points.size() == 2) line.a = line.midpoint();

            line.extend_end(max_width);
            (void)bounds.contour.first_intersection(line, &new_front);
        }
        if (polyline.endpoints.second && !bounds.has_boundary_point(new_back)) {
            Line line(
                *(polyline.points.end() - 2),
                polyline.points.back()
                );

            // prevent the line from touching on the other side, otherwise intersection() might return that solution
            if (polyline.points.size() == 2) line.a = line.midpoint();
            line.extend_end(max_width);

            (void)bounds.contour.first_intersection(line, &new_back);
        }
        polyline.points.front() = new_front;
        polyline.points.back() = new_back;

    }


    // concatenate, but even where multiple thickpolyline join, to create nice long strait polylines
    /*  If we removed any short polylines we now try to connect consecutive polylines
        in order to allow loop detection. Note that this algorithm is greedier than 
        MedialAxis::process_edge_neighbors() as it will connect random pairs of 
        polylines even when more than two start from the same point. This has no 
        drawbacks since we optimize later using nearest-neighbor which would do the 
        same, but should we use a more sophisticated optimization algorithm we should
        not connect polylines when more than two meet. 
        Optimisation of the old algorithm : now we select the most "strait line" choice 
        when we merge with an other line at a point with more than two meet.
        */
    changes = false;
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline& polyline = pp[i];
        if (polyline.endpoints.first && polyline.endpoints.second) continue; // optimization
            
        ThickPolyline* best_candidate = nullptr;
        float best_dot = -1;
        int best_idx = 0;

        // find another polyline starting here
        for (size_t j = i + 1; j < pp.size(); ++j) {
            ThickPolyline& other = pp[j];
            if (polyline.last_point().coincides_with(other.last_point())) {
                other.reverse();
            } else if (polyline.first_point().coincides_with(other.last_point())) {
                polyline.reverse();
                other.reverse();
            } else if (polyline.first_point().coincides_with(other.first_point())) {
                polyline.reverse();
            } else if (!polyline.last_point().coincides_with(other.first_point())) {
                continue;
            }

            Pointf v_poly(polyline.lines().back().vector().x, polyline.lines().back().vector().y);
            v_poly.scale(1 / std::sqrt(v_poly.x*v_poly.x + v_poly.y*v_poly.y));
            Pointf v_other(other.lines().front().vector().x, other.lines().front().vector().y);
            v_other.scale(1 / std::sqrt(v_other.x*v_other.x + v_other.y*v_other.y));
            float other_dot = v_poly.x*v_other.x + v_poly.y*v_other.y;
            if (other_dot > best_dot) {
                best_candidate = &other;
                best_idx = j;
                best_dot = other_dot;
            }
        }
        if (best_candidate != nullptr) {

            polyline.points.insert(polyline.points.end(), best_candidate->points.begin() + 1, best_candidate->points.end());
            polyline.width.insert(polyline.width.end(), best_candidate->width.begin() + 1, best_candidate->width.end());
            polyline.endpoints.second = best_candidate->endpoints.second;
            assert(polyline.width.size() == polyline.points.size());
            changes = true;
            pp.erase(pp.begin() + best_idx);
        }
    }
    if (changes) concatThickPolylines(pp);

    //remove too thin polylines points (inside a polyline : split it)
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline& polyline = pp[i];

        // remove bits with too small extrusion
        size_t idx_point = 0;
        while (idx_point<polyline.points.size()) {
            if (polyline.width[idx_point] < min_width) {
                if (idx_point == 0) {
                    //too thin at start
                    polyline.points.erase(polyline.points.begin());
                    polyline.width.erase(polyline.width.begin());
                    idx_point = 0;
                } else if (idx_point == 1) {
                    //too thin at start
                    polyline.points.erase(polyline.points.begin());
                    polyline.width.erase(polyline.width.begin());
                    polyline.points.erase(polyline.points.begin());
                    polyline.width.erase(polyline.width.begin());
                    idx_point = 0;
                } else if (idx_point == polyline.points.size() - 2) {
                    //too thin at (near) end
                    polyline.points.erase(polyline.points.end() - 1);
                    polyline.width.erase(polyline.width.end() - 1);
                    polyline.points.erase(polyline.points.end() - 1);
                    polyline.width.erase(polyline.width.end() - 1);
                } else if (idx_point == polyline.points.size() - 1) {
                    //too thin at end
                    polyline.points.erase(polyline.points.end() - 1);
                    polyline.width.erase(polyline.width.end() - 1);
                } else {
                    //too thin in middle : split
                    pp.emplace_back();
                    ThickPolyline &newone = pp.back();
                    newone.points.insert(newone.points.begin(), polyline.points.begin() + idx_point + 1, polyline.points.end());
                    newone.width.insert(newone.width.begin(), polyline.width.begin() + idx_point + 1, polyline.width.end());
                    polyline.points.erase(polyline.points.begin() + idx_point, polyline.points.end());
                    polyline.width.erase(polyline.width.begin() + idx_point, polyline.width.end());
                }
            } else idx_point++;

            if (polyline.points.size() < 2) {
                //remove self if too small
                pp.erase(pp.begin() + i);
                --i;
                break;
            }
        }
    }

    //remove too short polyline
    changes = true;
    while (changes) {
        changes = false;
        
        double shortest_size = max_w * 2;
        int32_t shortest_idx = -1;
        for (size_t i = 0; i < pp.size(); ++i) {
            ThickPolyline& polyline = pp[i];
            // Remove the shortest polylines : polyline that are shorter than wider
            // (we can't do this check before endpoints extension and clipping because we don't
            // know how long will the endpoints be extended since it depends on polygon thickness
            // which is variable - extension will be <= max_width/2 on each side) 
            if ((polyline.endpoints.first || polyline.endpoints.second)
                && polyline.length() < max_width / 2) {
               if (shortest_size > polyline.length()) {
                    shortest_size = polyline.length();
                    shortest_idx = i;
                }

            }
        }
        if (shortest_idx >= 0 && shortest_idx < pp.size()) {
            pp.erase(pp.begin() + shortest_idx);
            changes = true;
        }
        if (changes) concatThickPolylines(pp);
    }

    //TODO: reduce the flow at the intersection ( + ) points ?

    //ensure the volume extruded is correct for what we have been asked
    // => don't over-extrude
    double surface = 0;
    double volume = 0;
    for (ThickPolyline& polyline : pp) {
        for (ThickLine l : polyline.thicklines()) {
            surface += l.length() * (l.a_width + l.b_width) / 2;
            double width_mean = (l.a_width + l.b_width) / 2;
            volume += height * (width_mean - height * (1. - 0.25 * PI)) * l.length();
        }
    }

    // compute bounds volume
    double boundsVolume = 0;
    boundsVolume += height*bounds.area();
    // add external "perimeter gap"
    double perimeterRoundGap = bounds.contour.length() * height * (1 - 0.25*PI) * 0.5;
    // add holes "perimeter gaps"
    double holesGaps = 0;
    for (auto hole = bounds.holes.begin(); hole != bounds.holes.end(); ++hole) {
        holesGaps += hole->length() * height * (1 - 0.25*PI) * 0.5;
    }
    boundsVolume += perimeterRoundGap + holesGaps;
    
    if (boundsVolume < volume) {
        //reduce width
        double reduce_by = boundsVolume / volume;
        for (ThickPolyline& polyline : pp) {
            for (ThickLine l : polyline.thicklines()) {
                l.a_width *= reduce_by;
                l.b_width *= reduce_by;
            }
        }
    }
    polylines->insert(polylines->end(), pp.begin(), pp.end());
}

void
ExPolygon::medial_axis(double max_width, double min_width, Polylines* polylines) const
{
    ThickPolylines tp;
    this->medial_axis(*this, max_width, min_width, &tp, max_width/2.0);
    polylines->insert(polylines->end(), tp.begin(), tp.end());
}

void
ExPolygon::get_trapezoids(Polygons* polygons) const
{
    ExPolygons expp;
    expp.push_back(*this);
    boost::polygon::get_trapezoids(*polygons, expp);
}

void
ExPolygon::get_trapezoids(Polygons* polygons, double angle) const
{
    ExPolygon clone = *this;
    clone.rotate(PI/2 - angle, Point(0,0));
    clone.get_trapezoids(polygons);
    for (Polygons::iterator polygon = polygons->begin(); polygon != polygons->end(); ++polygon)
        polygon->rotate(-(PI/2 - angle), Point(0,0));
}

// This algorithm may return more trapezoids than necessary
// (i.e. it may break a single trapezoid in several because
// other parts of the object have x coordinates in the middle)
void
ExPolygon::get_trapezoids2(Polygons* polygons) const
{
    // get all points of this ExPolygon
    Points pp = *this;
    
    // build our bounding box
    BoundingBox bb(pp);
    
    // get all x coordinates
    std::vector<coord_t> xx;
    xx.reserve(pp.size());
    for (Points::const_iterator p = pp.begin(); p != pp.end(); ++p)
        xx.push_back(p->x);
    std::sort(xx.begin(), xx.end());
    
    // find trapezoids by looping from first to next-to-last coordinate
    for (std::vector<coord_t>::const_iterator x = xx.begin(); x != xx.end()-1; ++x) {
        coord_t next_x = *(x + 1);
        if (*x == next_x) continue;
        
        // build rectangle
        Polygon poly;
        poly.points.resize(4);
        poly[0].x = *x;
        poly[0].y = bb.min.y;
        poly[1].x = next_x;
        poly[1].y = bb.min.y;
        poly[2].x = next_x;
        poly[2].y = bb.max.y;
        poly[3].x = *x;
        poly[3].y = bb.max.y;
        
        // intersect with this expolygon
        // append results to return value
        polygons_append(*polygons, intersection(poly, to_polygons(*this)));
    }
}

void
ExPolygon::get_trapezoids2(Polygons* polygons, double angle) const {
    ExPolygon clone = *this;
    clone.rotate(PI / 2 - angle, Point(0, 0));
    clone.get_trapezoids2(polygons);
    for (Polygons::iterator polygon = polygons->begin(); polygon != polygons->end(); ++polygon)
        polygon->rotate(-(PI / 2 - angle), Point(0, 0));
}

void
ExPolygon::get_trapezoids3_half(Polygons* polygons, float spacing) const {

    // get all points of this ExPolygon
    Points pp = *this;

    if (pp.empty()) return;

    // build our bounding box
    BoundingBox bb(pp);

    // get all x coordinates
    int min_x = pp[0].x, max_x = pp[0].x;
    std::vector<coord_t> xx;
    for (Points::const_iterator p = pp.begin(); p != pp.end(); ++p) {
        if (min_x > p->x) min_x = p->x;
        if (max_x < p->x) max_x = p->x;
    }
    for (int x = min_x; x < max_x-spacing/2; x += spacing) {
        xx.push_back(x);
    }
    xx.push_back(max_x);
    //std::sort(xx.begin(), xx.end());

    // find trapezoids by looping from first to next-to-last coordinate
    for (std::vector<coord_t>::const_iterator x = xx.begin(); x != xx.end() - 1; ++x) {
        coord_t next_x = *(x + 1);
        if (*x == next_x) continue;

        // build rectangle
        Polygon poly;
        poly.points.resize(4);
        poly[0].x = *x +spacing / 4;
        poly[0].y = bb.min.y;
        poly[1].x = next_x -spacing / 4;
        poly[1].y = bb.min.y;
        poly[2].x = next_x -spacing / 4;
        poly[2].y = bb.max.y;
        poly[3].x = *x +spacing / 4;
        poly[3].y = bb.max.y;

        // intersect with this expolygon
        // append results to return value
        polygons_append(*polygons, intersection(poly, to_polygons(*this)));
    }
}

// While this triangulates successfully, it's NOT a constrained triangulation
// as it will create more vertices on the boundaries than the ones supplied.
void
ExPolygon::triangulate(Polygons* polygons) const
{
    // first make trapezoids
    Polygons trapezoids;
    this->get_trapezoids2(&trapezoids);
    
    // then triangulate each trapezoid
    for (Polygons::iterator polygon = trapezoids.begin(); polygon != trapezoids.end(); ++polygon)
        polygon->triangulate_convex(polygons);
}

void
ExPolygon::triangulate_pp(Polygons* polygons) const
{
    // convert polygons
    std::list<TPPLPoly> input;
    
    ExPolygons expp = union_ex(simplify_polygons(to_polygons(*this), true));
    
    for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) {
        // contour
        {
            TPPLPoly p;
            p.Init(int(ex->contour.points.size()));
            //printf(PRINTF_ZU "\n0\n", ex->contour.points.size());
            for (Points::const_iterator point = ex->contour.points.begin(); point != ex->contour.points.end(); ++point) {
                p[ point-ex->contour.points.begin() ].x = point->x;
                p[ point-ex->contour.points.begin() ].y = point->y;
                //printf("%ld %ld\n", point->x, point->y);
            }
            p.SetHole(false);
            input.push_back(p);
        }
    
        // holes
        for (Polygons::const_iterator hole = ex->holes.begin(); hole != ex->holes.end(); ++hole) {
            TPPLPoly p;
            p.Init(hole->points.size());
            //printf(PRINTF_ZU "\n1\n", hole->points.size());
            for (Points::const_iterator point = hole->points.begin(); point != hole->points.end(); ++point) {
                p[ point-hole->points.begin() ].x = point->x;
                p[ point-hole->points.begin() ].y = point->y;
                //printf("%ld %ld\n", point->x, point->y);
            }
            p.SetHole(true);
            input.push_back(p);
        }
    }
    
    // perform triangulation
    std::list<TPPLPoly> output;
    int res = TPPLPartition().Triangulate_MONO(&input, &output);
    if (res != 1) CONFESS("Triangulation failed");
    
    // convert output polygons
    for (std::list<TPPLPoly>::iterator poly = output.begin(); poly != output.end(); ++poly) {
        long num_points = poly->GetNumPoints();
        Polygon p;
        p.points.resize(num_points);
        for (long i = 0; i < num_points; ++i) {
            p.points[i].x = coord_t((*poly)[i].x);
            p.points[i].y = coord_t((*poly)[i].y);
        }
        polygons->push_back(p);
    }
}

void
ExPolygon::triangulate_p2t(Polygons* polygons) const
{
    ExPolygons expp = simplify_polygons_ex(*this, true);
    
    for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) {
        // TODO: prevent duplicate points

        // contour
        std::vector<p2t::Point*> ContourPoints;
        for (Points::const_iterator point = ex->contour.points.begin(); point != ex->contour.points.end(); ++point) {
            // We should delete each p2t::Point object
            ContourPoints.push_back(new p2t::Point(point->x, point->y));
        }
        p2t::CDT cdt(ContourPoints);

        // holes
        for (Polygons::const_iterator hole = ex->holes.begin(); hole != ex->holes.end(); ++hole) {
            std::vector<p2t::Point*> points;
            for (Points::const_iterator point = hole->points.begin(); point != hole->points.end(); ++point) {
                // will be destructed in SweepContext::~SweepContext
                points.push_back(new p2t::Point(point->x, point->y));
            }
            cdt.AddHole(points);
        }
        
        // perform triangulation
        cdt.Triangulate();
        std::vector<p2t::Triangle*> triangles = cdt.GetTriangles();
        
        for (std::vector<p2t::Triangle*>::const_iterator triangle = triangles.begin(); triangle != triangles.end(); ++triangle) {
            Polygon p;
            for (int i = 0; i <= 2; ++i) {
                p2t::Point* point = (*triangle)->GetPoint(i);
                p.points.push_back(Point(point->x, point->y));
            }
            polygons->push_back(p);
        }

        for(std::vector<p2t::Point*>::iterator it = ContourPoints.begin(); it != ContourPoints.end(); ++it) {
            delete *it;
        }
    }
}

Lines
ExPolygon::lines() const
{
    Lines lines = this->contour.lines();
    for (Polygons::const_iterator h = this->holes.begin(); h != this->holes.end(); ++h) {
        Lines hole_lines = h->lines();
        lines.insert(lines.end(), hole_lines.begin(), hole_lines.end());
    }
    return lines;
}

std::string
ExPolygon::dump_perl() const
{
    std::ostringstream ret;
    ret << "[" << this->contour.dump_perl();
    for (Polygons::const_iterator h = this->holes.begin(); h != this->holes.end(); ++h)
        ret << "," << h->dump_perl();
    ret << "]";
    return ret.str();
}

BoundingBox get_extents(const ExPolygon &expolygon)
{
    return get_extents(expolygon.contour);
}

BoundingBox get_extents(const ExPolygons &expolygons)
{
    BoundingBox bbox;
    if (! expolygons.empty()) {
        for (size_t i = 0; i < expolygons.size(); ++ i)
			if (! expolygons[i].contour.points.empty())
				bbox.merge(get_extents(expolygons[i]));
    }
    return bbox;
}

BoundingBox get_extents_rotated(const ExPolygon &expolygon, double angle)
{
    return get_extents_rotated(expolygon.contour, angle);
}

BoundingBox get_extents_rotated(const ExPolygons &expolygons, double angle)
{
    BoundingBox bbox;
    if (! expolygons.empty()) {
        bbox = get_extents_rotated(expolygons.front().contour, angle);
        for (size_t i = 1; i < expolygons.size(); ++ i)
            bbox.merge(get_extents_rotated(expolygons[i].contour, angle));
    }
    return bbox;
}

extern std::vector<BoundingBox> get_extents_vector(const ExPolygons &polygons)
{
    std::vector<BoundingBox> out;
    out.reserve(polygons.size());
    for (ExPolygons::const_iterator it = polygons.begin(); it != polygons.end(); ++ it)
        out.push_back(get_extents(*it));
    return out;
}

bool remove_sticks(ExPolygon &poly)
{
    return remove_sticks(poly.contour) || remove_sticks(poly.holes);
}

} // namespace Slic3r