Welcome to mirror list, hosted at ThFree Co, Russian Federation.

MedialAxis.cpp « libslic3r « src « xs - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4fbbf5344e7c4518c4cf5152bd44e710aba57ea8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
#include "BoundingBox.hpp"
#include "ExPolygon.hpp"
#include "Geometry.hpp"
#include "Polygon.hpp"
#include "Line.hpp"
#include "ClipperUtils.hpp"
#include "SVG.hpp"
#include "polypartition.h"
#include "poly2tri/poly2tri.h"
#include <algorithm>
#include <cassert>
#include <list>

namespace Slic3r {

int MedialAxis::id = 0;
    
void
MedialAxis::build(Polylines* polylines)
{
    ThickPolylines tp;
    this->build(&tp);
    polylines->insert(polylines->end(), tp.begin(), tp.end());
}

void
MedialAxis::polyline_from_voronoi(const Lines& voronoi_edges, ThickPolylines* polylines)
{
    this->lines = voronoi_edges;
    construct_voronoi(lines.begin(), lines.end(), &this->vd);

    /*
    // DEBUG: dump all Voronoi edges
    {
        for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
            if (edge->is_infinite()) continue;
            
            ThickPolyline polyline;
            polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
            polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
            polylines->push_back(polyline);
        }
        return;
    }
    */
    
    typedef const VD::vertex_type vert_t;
    typedef const VD::edge_type   edge_t;
    
    // collect valid edges (i.e. prune those not belonging to MAT)
    // note: this keeps twins, so it inserts twice the number of the valid edges
    this->valid_edges.clear();
    {
        std::set<const VD::edge_type*> seen_edges;
        for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
            // if we only process segments representing closed loops, none if the
            // infinite edges (if any) would be part of our MAT anyway
            if (edge->is_secondary() || edge->is_infinite()) continue;
        
            // don't re-validate twins
            if (seen_edges.find(&*edge) != seen_edges.end()) continue;  // TODO: is this needed?
            seen_edges.insert(&*edge);
            seen_edges.insert(edge->twin());
            
            if (!this->validate_edge(&*edge)) continue;
            this->valid_edges.insert(&*edge);
            this->valid_edges.insert(edge->twin());
        }
    }
    this->edges = this->valid_edges;
    
    // iterate through the valid edges to build polylines
    while (!this->edges.empty()) {
        const edge_t* edge = *this->edges.begin();
        
        // start a polyline
        ThickPolyline polyline;
        polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
        polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
        polyline.width.push_back(this->thickness[edge].first);
        polyline.width.push_back(this->thickness[edge].second);
        
        // remove this edge and its twin from the available edges
        (void)this->edges.erase(edge);
        (void)this->edges.erase(edge->twin());
        
        // get next points
        this->process_edge_neighbors(edge, &polyline);
        
        // get previous points
        {
            ThickPolyline rpolyline;
            this->process_edge_neighbors(edge->twin(), &rpolyline);
            polyline.points.insert(polyline.points.begin(), rpolyline.points.rbegin(), rpolyline.points.rend());
            polyline.width.insert(polyline.width.begin(), rpolyline.width.rbegin(), rpolyline.width.rend());
            polyline.endpoints.first = rpolyline.endpoints.second;
        }
        
        assert(polyline.width.size() == polyline.points.size());
        
        // prevent loop endpoints from being extended
        if (polyline.first_point().coincides_with(polyline.last_point())) {
            polyline.endpoints.first = false;
            polyline.endpoints.second = false;
        }
        
        // append polyline to result
        polylines->push_back(polyline);
    }

    #ifdef SLIC3R_DEBUG
    {
        static int iRun = 0;
        dump_voronoi_to_svg(this->lines, this->vd, polylines, debug_out_path("MedialAxis-%d.svg", iRun ++).c_str());
        printf("Thick lines: ");
        for (ThickPolylines::const_iterator it = polylines->begin(); it != polylines->end(); ++ it) {
            ThickLines lines = it->thicklines();
            for (ThickLines::const_iterator it2 = lines.begin(); it2 != lines.end(); ++ it2) {
                printf("%f,%f ", it2->a_width, it2->b_width);
            }
        }
        printf("\n");
    }
    #endif /* SLIC3R_DEBUG */
}

void
MedialAxis::process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline)
{
    while (true) {
        // Since rot_next() works on the edge starting point but we want
        // to find neighbors on the ending point, we just swap edge with
        // its twin.
        const VD::edge_type* twin = edge->twin();
    
        // count neighbors for this edge
        std::vector<const VD::edge_type*> neighbors;
        for (const VD::edge_type* neighbor = twin->rot_next(); neighbor != twin;
            neighbor = neighbor->rot_next()) {
            if (this->valid_edges.count(neighbor) > 0) neighbors.push_back(neighbor);
        }
    
        // if we have a single neighbor then we can continue recursively
        if (neighbors.size() == 1) {
            const VD::edge_type* neighbor = neighbors.front();
            
            // break if this is a closed loop
            if (this->edges.count(neighbor) == 0) return;
            
            Point new_point(neighbor->vertex1()->x(), neighbor->vertex1()->y());
            polyline->points.push_back(new_point);
            polyline->width.push_back(this->thickness[neighbor].second);
            
            (void)this->edges.erase(neighbor);
            (void)this->edges.erase(neighbor->twin());
            edge = neighbor;
        } else if (neighbors.size() == 0) {
            polyline->endpoints.second = true;
            return;
        } else {
            // T-shaped or star-shaped joint
            return;
        }
    }
}

bool
MedialAxis::validate_edge(const VD::edge_type* edge)
{
    // prevent overflows and detect almost-infinite edges
    if (std::abs(edge->vertex0()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) || 
        std::abs(edge->vertex0()->y()) > double(CLIPPER_MAX_COORD_UNSCALED) || 
        std::abs(edge->vertex1()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) ||
        std::abs(edge->vertex1()->y()) > double(CLIPPER_MAX_COORD_UNSCALED))
        return false;

    // construct the line representing this edge of the Voronoi diagram
    const Line line(
        Point( edge->vertex0()->x(), edge->vertex0()->y() ),
        Point( edge->vertex1()->x(), edge->vertex1()->y() )
    );
    
    // discard edge if it lies outside the supplied shape
    // this could maybe be optimized (checking inclusion of the endpoints
    // might give false positives as they might belong to the contour itself)
    if (line.a.coincides_with(line.b)) {
        // in this case, contains(line) returns a false positive
        if (!this->expolygon.contains(line.a)) return false;
    } else {
        if (!this->expolygon.contains(line)) return false;
    }
    
    // retrieve the original line segments which generated the edge we're checking
    const VD::cell_type* cell_l = edge->cell();
    const VD::cell_type* cell_r = edge->twin()->cell();
    const Line &segment_l = this->retrieve_segment(cell_l);
    const Line &segment_r = this->retrieve_segment(cell_r);
    
    
    //SVG svg("edge.svg");
    //svg.draw(this->expolygon.expolygon);
    //svg.draw(line);
    //svg.draw(segment_l, "red");
    //svg.draw(segment_r, "blue");
    //svg.Close();
    //
    
    /*  Calculate thickness of the cross-section at both the endpoints of this edge.
        Our Voronoi edge is part of a CCW sequence going around its Voronoi cell 
        located on the left side. (segment_l).
        This edge's twin goes around segment_r. Thus, segment_r is 
        oriented in the same direction as our main edge, and segment_l is oriented
        in the same direction as our twin edge.
        We used to only consider the (half-)distances to segment_r, and that works
        whenever segment_l and segment_r are almost specular and facing. However, 
        at curves they are staggered and they only face for a very little length
        (our very short edge represents such visibility).
        Both w0 and w1 can be calculated either towards cell_l or cell_r with equal
        results by Voronoi definition.
        When cell_l or cell_r don't refer to the segment but only to an endpoint, we
        calculate the distance to that endpoint instead.  */
    
    coordf_t w0 = cell_r->contains_segment()
        ? line.a.distance_to(segment_r)*2
        : line.a.distance_to(this->retrieve_endpoint(cell_r))*2;
    
    coordf_t w1 = cell_l->contains_segment()
        ? line.b.distance_to(segment_l)*2
        : line.b.distance_to(this->retrieve_endpoint(cell_l))*2;
    
    //don't remove the line that goes to the intersection of the contour
    // we use them to create nicer thin wall lines
    //if (cell_l->contains_segment() && cell_r->contains_segment()) {
    //    // calculate the relative angle between the two boundary segments
    //    double angle = fabs(segment_r.orientation() - segment_l.orientation());
    //    if (angle > PI) angle = 2*PI - angle;
    //    assert(angle >= 0 && angle <= PI);
    //    
    //    // fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction)
    //    // we're interested only in segments close to the second case (facing segments)
    //    // so we allow some tolerance.
    //    // this filter ensures that we're dealing with a narrow/oriented area (longer than thick)
    //    // we don't run it on edges not generated by two segments (thus generated by one segment
    //    // and the endpoint of another segment), since their orientation would not be meaningful
    //    if (PI - angle > PI/8) {
    //        // angle is not narrow enough
    //        
    //        // only apply this filter to segments that are not too short otherwise their 
    //        // angle could possibly be not meaningful
    //        if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON || line.length() >= this->min_width)
    //            return false;
    //    }
    //} else {
    //    if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON)
    //        return false;
    //}

    // don't do that before we try to fusion them
    //if (w0 < this->min_width && w1 < this->min_width)
    //    return false;
    //

    //shouldn't occur if perimeter_generator is well made
    if (w0 > this->max_width && w1 > this->max_width)
        return false;
    
    this->thickness[edge]         = std::make_pair(w0, w1);
    this->thickness[edge->twin()] = std::make_pair(w1, w0);
    
    return true;
}

const Line&
MedialAxis::retrieve_segment(const VD::cell_type* cell) const
{
    return lines[cell->source_index()];
}

const Point&
MedialAxis::retrieve_endpoint(const VD::cell_type* cell) const
{
    const Line& line = this->retrieve_segment(cell);
    if (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) {
        return line.a;
    } else {
        return line.b;
    }
}


/// remove point that are at SCALED_EPSILON * 2 distance.
void
remove_point_too_near(ThickPolyline* to_reduce)
{
    const coord_t smallest = SCALED_EPSILON * 2;
    size_t id = 1;
    while (id < to_reduce->points.size() - 1) {
        size_t newdist = min(to_reduce->points[id].distance_to(to_reduce->points[id - 1])
            , to_reduce->points[id].distance_to(to_reduce->points[id + 1]));
        if (newdist < smallest) {
            to_reduce->points.erase(to_reduce->points.begin() + id);
            to_reduce->width.erase(to_reduce->width.begin() + id);
            newdist = to_reduce->points[id].distance_to(to_reduce->points[id - 1]);
        }
        //go to next one
        //if you removed a point, it check if the next one isn't too near from the previous one.
        // if not, it byepass it.
        if (newdist > smallest) {
            ++id;
        }
    }
}

/// add points  from pattern to to_modify at the same % of the length
/// so not add if an other point is present at the correct position
void
add_point_same_percent(ThickPolyline* pattern, ThickPolyline* to_modify)
{
    const double to_modify_length = to_modify->length();
    const double percent_epsilon = SCALED_EPSILON / to_modify_length;
    const double pattern_length = pattern->length();

    double percent_length = 0;
    for (size_t idx_point = 1; idx_point < pattern->points.size() - 1; ++idx_point) {
        percent_length += pattern->points[idx_point-1].distance_to(pattern->points[idx_point]) / pattern_length;
        //find position 
        size_t idx_other = 1;
        double percent_length_other_before = 0;
        double percent_length_other = 0;
        while (idx_other < to_modify->points.size()) {
            percent_length_other_before = percent_length_other;
            percent_length_other += to_modify->points[idx_other-1].distance_to(to_modify->points[idx_other])
                / to_modify_length;
            if (percent_length_other > percent_length - percent_epsilon) {
                //if higher (we have gone over it)
                break;
            }
            ++idx_other;
        }
        if (percent_length_other > percent_length + percent_epsilon) {
            //insert a new point before the position
            double percent_dist = (percent_length - percent_length_other_before) / (percent_length_other - percent_length_other_before);
            coordf_t new_width = to_modify->width[idx_other - 1] * (1 - percent_dist);
            new_width += to_modify->width[idx_other] * (percent_dist);
            Point new_point;
            new_point.x = (coord_t)((double)(to_modify->points[idx_other - 1].x) * (1 - percent_dist));
            new_point.x += (coord_t)((double)(to_modify->points[idx_other].x) * (percent_dist));
            new_point.y = (coord_t)((double)(to_modify->points[idx_other - 1].y) * (1 - percent_dist));
            new_point.y += (coord_t)((double)(to_modify->points[idx_other].y) * (percent_dist));
            to_modify->width.insert(to_modify->width.begin() + idx_other, new_width);
            to_modify->points.insert(to_modify->points.begin() + idx_other, new_point);
        }
    }
}

/// find the nearest angle in the contour (or 2 nearest if it's difficult to choose) 
/// return 1 for an angle of 90° and 0 for an angle of 0° or 180°
/// find the nearest angle in the contour (or 2 nearest if it's difficult to choose) 
/// return 1 for an angle of 90° and 0 for an angle of 0° or 180°
double
get_coeff_from_angle_countour(Point &point, const ExPolygon &contour, coord_t min_dist_between_point) {
    double nearestDist = point.distance_to(contour.contour.points.front());
    Point nearest = contour.contour.points.front();
    size_t id_nearest = 0;
    double nearDist = nearestDist;
    Point near = nearest;
    size_t id_near = 0;
    for (size_t id_point = 1; id_point < contour.contour.points.size(); ++id_point) {
        if (nearestDist > point.distance_to(contour.contour.points[id_point])) {
            //update near
            id_near = id_nearest;
            near = nearest;
            nearDist = nearestDist;
            //update nearest
            nearestDist = point.distance_to(contour.contour.points[id_point]);
            nearest = contour.contour.points[id_point];
            id_nearest = id_point;
        }
    }
    double angle = 0;
    size_t id_before = id_nearest == 0 ? contour.contour.points.size() - 1 : id_nearest - 1;
    Point point_before = id_nearest == 0 ? contour.contour.points.back() : contour.contour.points[id_nearest - 1];
    //Search one point far enough to be relevant
    while (nearest.distance_to(point_before) < min_dist_between_point) {
        point_before = id_before == 0 ? contour.contour.points.back() : contour.contour.points[id_before - 1];
        id_before = id_before == 0 ? contour.contour.points.size() - 1 : id_before - 1;
        //don't loop
        if (id_before == id_nearest) {
            id_before = id_nearest == 0 ? contour.contour.points.size() - 1 : id_nearest - 1;
            point_before = id_nearest == 0 ? contour.contour.points.back() : contour.contour.points[id_nearest - 1];
            break;
        }
    }
    size_t id_after = id_nearest == contour.contour.points.size() - 1 ? 0 : id_nearest + 1;
    Point point_after = id_nearest == contour.contour.points.size() - 1 ? contour.contour.points.front() : contour.contour.points[id_nearest + 1];
    //Search one point far enough to be relevant
    while (nearest.distance_to(point_after) < min_dist_between_point) {
        point_after = id_after == contour.contour.points.size() - 1 ? contour.contour.points.front() : contour.contour.points[id_after + 1];
        id_after = id_after == contour.contour.points.size() - 1 ? 0 : id_after + 1;
        //don't loop
        if (id_after == id_nearest) {
            id_after = id_nearest == contour.contour.points.size() - 1 ? 0 : id_nearest + 1;
            point_after = id_nearest == contour.contour.points.size() - 1 ? contour.contour.points.front() : contour.contour.points[id_nearest + 1];
            break;
        }
    }
    //compute angle
    angle = nearest.ccw_angle(point_before, point_after);
    if (angle >= PI) angle = 2 * PI - angle;  // smaller angle
    //compute the diff from 90°
    angle = abs(angle - PI / 2);
    if (near.coincides_with(nearest) && max(nearestDist, nearDist) + SCALED_EPSILON < nearest.distance_to(near)) {
        //not only nearest
        Point point_before = id_near == 0 ? contour.contour.points.back() : contour.contour.points[id_near - 1];
        Point point_after = id_near == contour.contour.points.size() - 1 ? contour.contour.points.front() : contour.contour.points[id_near + 1];
        double angle2 = min(nearest.ccw_angle(point_before, point_after), nearest.ccw_angle(point_after, point_before));
        angle2 = abs(angle - PI / 2);
        angle = (angle + angle2) / 2;
    }

    return 1 - (angle / (PI / 2));
}

double
dot(Line l1, Line l2)
{
    Vectorf v_1 = normalize(Vectorf(l1.b.x - l1.a.x, l1.b.y - l1.a.y));
    Vectorf v_2 = normalize(Vectorf(l2.b.x - l2.a.x, l2.b.y - l2.a.y));
    return v_1.x*v_2.x + v_1.y*v_2.y;
}

void
MedialAxis::fusion_curve(ThickPolylines &pp)
{
    //fusion Y with only 1 '0' value => the "0" branch "pull" the cross-point
    bool changes = false;
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline& polyline = pp[i];
        // only consider 2-point polyline with endpoint
        if (polyline.points.size() != 2) continue;
        if (polyline.endpoints.first) polyline.reverse();
        else if (!polyline.endpoints.second) continue;
        if (polyline.width.back() > EPSILON) continue;

        //check my length is small
        coord_t length = (coord_t)polyline.length();
        if (length > max_width) continue;

        size_t closest_point_idx = this->expolygon.contour.closest_point_index(polyline.points.back());

        //check the 0-wodth point is on the contour.
        if (closest_point_idx == (size_t)-1) continue;

        size_t prev_idx = closest_point_idx == 0 ? this->expolygon.contour.points.size() - 1 : closest_point_idx - 1;
        size_t next_idx = closest_point_idx == this->expolygon.contour.points.size() - 1 ? 0 : closest_point_idx + 1;
        double mindot = 1;
        mindot = min(mindot, abs(dot(Line(polyline.points[polyline.points.size() - 1], polyline.points[polyline.points.size() - 2]),
            (Line(this->expolygon.contour.points[closest_point_idx], this->expolygon.contour.points[prev_idx])))));
        mindot = min(mindot, abs(dot(Line(polyline.points[polyline.points.size() - 1], polyline.points[polyline.points.size() - 2]),
            (Line(this->expolygon.contour.points[closest_point_idx], this->expolygon.contour.points[next_idx])))));

        //compute angle
        double coeff_contour_angle = this->expolygon.contour.points[closest_point_idx].ccw_angle(this->expolygon.contour.points[prev_idx], this->expolygon.contour.points[next_idx]);
        if (coeff_contour_angle >= PI) coeff_contour_angle = 2 * PI - coeff_contour_angle;  // smaller angle
        //compute the diff from 90°
        coeff_contour_angle = abs(coeff_contour_angle - PI / 2);


        // look if other end is a cross point with almost 90° angle
        double sum_dot = 0;
        double min_dot = 0;
        // look if other end is a cross point with multiple other branch
        vector<size_t> crosspoint;
        for (size_t j = 0; j < pp.size(); ++j) {
            if (j == i) continue;
            ThickPolyline& other = pp[j];
            if (polyline.first_point().coincides_with(other.last_point())) {
                other.reverse();
                crosspoint.push_back(j);
                double dot_temp = dot(Line(polyline.points[0], polyline.points[1]), (Line(other.points[0], other.points[1])));
                min_dot = min(min_dot, abs(dot_temp));
                sum_dot += dot_temp;
            } else if (polyline.first_point().coincides_with(other.first_point())) {
                crosspoint.push_back(j);
                double dot_temp = dot(Line(polyline.points[0], polyline.points[1]), (Line(other.points[0], other.points[1])));
                min_dot = min(min_dot, abs(dot_temp));
                sum_dot += dot_temp;
            }
        }
        //only consider very shallow angle for contour
        if (mindot > 0.15 &&
            (1 - (coeff_contour_angle / (PI / 2))) > 0.2) continue;

        //check if it's a line that we can pull
        if (crosspoint.size() != 2) continue;
        if (sum_dot > 0.2) continue;
        if (min_dot > 0.5) continue;

        //don't pull, it distords the line if there are too many points.
        //// pull it a bit, depends on my size, the dot?, and the coeff at my 0-end (~14% for a square, almost 0 for a gentle curve)
        //coord_t length_pull = polyline.length();
        //length_pull *= 0.144 * get_coeff_from_angle_countour(polyline.points.back(), this->expolygon, min(min_width, polyline.length() / 2));

        ////compute dir
        //Vectorf pull_direction(polyline.points[1].x - polyline.points[0].x, polyline.points[1].y - polyline.points[0].y);
        //pull_direction = normalize(pull_direction);
        //pull_direction.x *= length_pull;
        //pull_direction.y *= length_pull;

        ////pull the points
        //Point &p1 = pp[crosspoint[0]].points[0];
        //p1.x = p1.x + (coord_t)pull_direction.x;
        //p1.y = p1.y + (coord_t)pull_direction.y;

        //Point &p2 = pp[crosspoint[1]].points[0];
        //p2.x = p2.x + (coord_t)pull_direction.x;
        //p2.y = p2.y + (coord_t)pull_direction.y;

        //delete the now unused polyline
        pp.erase(pp.begin() + i);
        --i;
        changes = true;
    }
    if (changes) {
        concatThickPolylines(pp);
        ///reorder, in case of change
        std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) { return a.length() < b.length(); });
    }
}

void
MedialAxis::fusion_corners(ThickPolylines &pp)
{

    //fusion Y with only 1 '0' value => the "0" branch "pull" the cross-point
    bool changes = false;
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline& polyline = pp[i];
        // only consider polyline with 0-end
        if (polyline.points.size() != 2) continue;
        if (polyline.endpoints.first) polyline.reverse();
        else if (!polyline.endpoints.second) continue;
        if (polyline.width.back() > 0) continue;

        //check my length is small
        coord_t length = polyline.length();
        if (length > max_width) continue;

        // look if other end is a cross point with multiple other branch
        vector<size_t> crosspoint;
        for (size_t j = 0; j < pp.size(); ++j) {
            if (j == i) continue;
            ThickPolyline& other = pp[j];
            if (polyline.first_point().coincides_with(other.last_point())) {
                other.reverse();
                crosspoint.push_back(j);
            } else if (polyline.first_point().coincides_with(other.first_point())) {
                crosspoint.push_back(j);
            }
        }
        //check if it's a line that we can pull
        if (crosspoint.size() != 2) continue;

        // check if i am at the external side of a curve
        double angle1 = polyline.points[0].ccw_angle(polyline.points[1], pp[crosspoint[0]].points[1]);
        if (angle1 >= PI) angle1 = 2 * PI - angle1;  // smaller angle
        double angle2 = polyline.points[0].ccw_angle(polyline.points[1], pp[crosspoint[1]].points[1]);
        if (angle2 >= PI) angle2 = 2 * PI - angle2;  // smaller angle
        if (angle1 + angle2 < PI) continue;

        //check if is smaller or the other ones are not endpoits
        if (pp[crosspoint[0]].endpoints.second && length > pp[crosspoint[0]].length()) continue;
        if (pp[crosspoint[1]].endpoints.second && length > pp[crosspoint[1]].length()) continue;

        //FIXME: also pull (a bit less) points that are near to this one.
        // if true, pull it a bit, depends on my size, the dot?, and the coeff at my 0-end (~14% for a square, almost 0 for a gentle curve)
        coord_t length_pull = polyline.length();
        length_pull *= 0.144 * get_coeff_from_angle_countour(polyline.points.back(), this->expolygon, min(min_width, polyline.length() / 2));

        //compute dir
        Vectorf pull_direction(polyline.points[1].x - polyline.points[0].x, polyline.points[1].y - polyline.points[0].y);
        pull_direction = normalize(pull_direction);
        pull_direction.x *= length_pull;
        pull_direction.y *= length_pull;

        //pull the points
        Point &p1 = pp[crosspoint[0]].points[0];
        p1.x = p1.x + pull_direction.x;
        p1.y = p1.y + pull_direction.y;

        Point &p2 = pp[crosspoint[1]].points[0];
        p2.x = p2.x + pull_direction.x;
        p2.y = p2.y + pull_direction.y;

        //delete the now unused polyline
        pp.erase(pp.begin() + i);
        --i;
        changes = true;
    }
    if (changes) {
        concatThickPolylines(pp);
        ///reorder, in case of change
        std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) { return a.length() < b.length(); });
    }
}


void
MedialAxis::extends_line(ThickPolyline& polyline, const ExPolygons& anchors, const coord_t join_width)
{
    // extend initial and final segments of each polyline if they're actual endpoints
    // We assign new endpoints to temporary variables because in case of a single-line
    // polyline, after we extend the start point it will be caught by the intersection()
    // call, so we keep the inner point until we perform the second intersection() as well
    if (polyline.endpoints.second && !bounds.has_boundary_point(polyline.points.back())) {
        Line line(*(polyline.points.end() - 2), polyline.points.back());

        // prevent the line from touching on the other side, otherwise intersection() might return that solution
        if (polyline.points.size() == 2) line.a = line.midpoint();

        line.extend_end(max_width);
        Point new_back;
        if (this->expolygon.contour.has_boundary_point(polyline.points.back())) {
            new_back = polyline.points.back();
        } else {
            (void)this->expolygon.contour.first_intersection(line, &new_back);
            // safety check if no intersection
            if (new_back.x == 0 && new_back.y == 0) return;
            polyline.points.push_back(new_back);
            polyline.width.push_back(polyline.width.back());
        }
        Point new_bound;
        (void)bounds.contour.first_intersection(line, &new_bound);
        // safety check if no intersection
        if (new_bound.x == 0 && new_bound.y == 0) return;
       /* if (new_bound.coincides_with_epsilon(new_back)) {
            return;
        }*/
        // find anchor
        Point best_anchor;
        double shortest_dist = max_width;
        for (const ExPolygon& a : anchors) {
            Point p_maybe_inside = a.contour.centroid();
            double test_dist = new_bound.distance_to(p_maybe_inside) + new_back.distance_to(p_maybe_inside);
            //if (test_dist < max_width / 2 && (test_dist < shortest_dist || shortest_dist < 0)) {
            double angle_test = new_back.ccw_angle(p_maybe_inside, line.a);
            if (angle_test > PI) angle_test = 2 * PI - angle_test;
            if (test_dist < max_width && test_dist<shortest_dist && abs(angle_test) > PI / 2) {
                shortest_dist = test_dist;
                best_anchor = p_maybe_inside;
            }
        }
        if (best_anchor.x != 0 && best_anchor.y != 0) {
            Point p_obj = best_anchor + new_bound;
            p_obj.x /= 2;
            p_obj.y /= 2;
            Line l2 = Line(new_back, p_obj);
            l2.extend_end(max_width);
            (void)bounds.contour.first_intersection(l2, &new_bound);
        }
        if (new_bound.coincides_with_epsilon(new_back)) {
            return;
        }
        polyline.points.push_back(new_bound);
        //polyline.width.push_back(join_width);
        //it thickens the line a bit too early, imo
        polyline.width.push_back(polyline.width.back());
    }
}

void
MedialAxis::main_fusion(ThickPolylines& pp)
{
    //int idf = 0;
    //reoder pp by length (ascending) It's really important to do that to avoid building the line from the width insteand of the length
    std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) {
        bool ahas0 = a.width.front() == 0 || a.width.back() == 0;
        bool bhas0 = b.width.front() == 0 || b.width.back() == 0;
        if (ahas0 && !bhas0) return true;
        if (!ahas0 && bhas0) return false;
        return a.length() < b.length();
    });

    bool changes = true;
    map<Point, double> coeff_angle_cache;
    while (changes) {
        changes = false;
        for (size_t i = 0; i < pp.size(); ++i) {
            ThickPolyline& polyline = pp[i];

            //simple check to see if i can be fusionned
            if (!polyline.endpoints.first && !polyline.endpoints.second) continue;


            ThickPolyline* best_candidate = nullptr;
            float best_dot = -1;
            size_t best_idx = 0;
            double dot_poly_branch = 0;
            double dot_candidate_branch = 0;

            // find another polyline starting here
            for (size_t j = i + 1; j < pp.size(); ++j) {
                ThickPolyline& other = pp[j];
                if (polyline.last_point().coincides_with(other.last_point())) {
                    polyline.reverse();
                    other.reverse();
                } else if (polyline.first_point().coincides_with(other.last_point())) {
                    other.reverse();
                } else if (polyline.first_point().coincides_with(other.first_point())) {
                } else if (polyline.last_point().coincides_with(other.first_point())) {
                    polyline.reverse();
                } else {
                    continue;
                }
                //std::cout << " try : " << i << ":" << j << " : " << 
                //    (polyline.points.size() < 2 && other.points.size() < 2) <<
                //    (!polyline.endpoints.second || !other.endpoints.second) <<
                //    ((polyline.points.back().distance_to(other.points.back())
                //    + (polyline.width.back() + other.width.back()) / 4)
                //    > max_width*1.05) <<
                //    (abs(polyline.length() - other.length()) > max_width) << "\n";

                //// mergeable tests
                if (polyline.points.size() < 2 && other.points.size() < 2) continue;
                if (!polyline.endpoints.second || !other.endpoints.second) continue;
                // test if the new width will not be too big if a fusion occur
                //note that this isn't the real calcul. It's just to avoid merging lines too far apart.
                if (
                    ((polyline.points.back().distance_to(other.points.back())
                    + (polyline.width.back() + other.width.back()) / 4)
                > max_width*1.05))
                    continue;
                // test if the lines are not too different in length.
                if (abs(polyline.length() - other.length()) > max_width) continue;


                //test if we don't merge with something too different and without any relevance.
                double coeffSizePolyI = 1;
                if (polyline.width.back() == 0) {
                    coeffSizePolyI = 0.1 + 0.9*get_coeff_from_angle_countour(polyline.points.back(), this->expolygon, min(min_width, polyline.length() / 2));
                }
                double coeffSizeOtherJ = 1;
                if (other.width.back() == 0) {
                    coeffSizeOtherJ = 0.1 + 0.9*get_coeff_from_angle_countour(other.points.back(), this->expolygon, min(min_width, polyline.length() / 2));
                }
                //std::cout << " try2 : " << i << ":" << j << " : "
                //    << (abs(polyline.length()*coeffSizePolyI - other.length()*coeffSizeOtherJ) > max_width / 2)
                //    << (abs(polyline.length()*coeffSizePolyI - other.length()*coeffSizeOtherJ) > max_width)
                //    << "\n";
                if (abs(polyline.length()*coeffSizePolyI - other.length()*coeffSizeOtherJ) > max_width / 2) continue;


                //compute angle to see if it's better than previous ones (straighter = better).
                //we need to add how strait we are from our main.
                float test_dot = dot(polyline.lines().front(), other.lines().front());

                // Get the branch/line in wich we may merge, if possible
                // with that, we can decide what is important, and how we can merge that.
                // angle_poly - angle_candi =90° => one is useless
                // both angle are equal => both are useful with same strength
                // ex: Y => | both are useful to crete a nice line
                // ex2: TTTTT => -----  these 90° useless lines should be discarded
                bool find_main_branch = false;
                size_t biggest_main_branch_id = 0;
                coord_t biggest_main_branch_length = 0;
                for (size_t k = 0; k < pp.size(); ++k) {
                    //std::cout << "try to find main : " << k << " ? " << i << " " << j << " ";
                    if (k == i | k == j) continue;
                    ThickPolyline& main = pp[k];
                    if (polyline.first_point().coincides_with(main.last_point())) {
                        main.reverse();
                        if (!main.endpoints.second)
                            find_main_branch = true;
                        else if (biggest_main_branch_length < main.length()) {
                            biggest_main_branch_id = k;
                            biggest_main_branch_length = main.length();
                        }
                    } else if (polyline.first_point().coincides_with(main.first_point())) {
                        if (!main.endpoints.second)
                            find_main_branch = true;
                        else if (biggest_main_branch_length < main.length()) {
                            biggest_main_branch_id = k;
                            biggest_main_branch_length = main.length();
                        }
                    }
                    if (find_main_branch) {
                        //use this variable to store the good index and break to compute it
                        biggest_main_branch_id = k;
                        break;
                    }
                }
                if (!find_main_branch && biggest_main_branch_length == 0) {
                    // nothing -> it's impossible!
                    dot_poly_branch = 0.707;
                    dot_candidate_branch = 0.707;
                    //std::cout << "no main branch... impossible!!\n";
                } else if (!find_main_branch && (
                    (pp[biggest_main_branch_id].length() < polyline.length() && (polyline.width.back() != 0 || pp[biggest_main_branch_id].width.back() ==0)) 
                    || (pp[biggest_main_branch_id].length() < other.length() && (other.width.back() != 0 || pp[biggest_main_branch_id].width.back() == 0)))) {
                    //the main branch should have no endpoint or be bigger!
                    //here, it have an endpoint, and is not the biggest -> bad!
                    continue;
                } else {
                    //compute the dot (biggest_main_branch_id)
                    dot_poly_branch = -dot(Line(polyline.points[0], polyline.points[1]), Line(pp[biggest_main_branch_id].points[0], pp[biggest_main_branch_id].points[1]));
                    dot_candidate_branch = -dot(Line(other.points[0], other.points[1]), Line(pp[biggest_main_branch_id].points[0], pp[biggest_main_branch_id].points[1]));
                    if (dot_poly_branch < 0) dot_poly_branch = 0;
                    if (dot_candidate_branch < 0) dot_candidate_branch = 0;
                    if (pp[biggest_main_branch_id].width.back()>0)
                        test_dot += 2 * dot_poly_branch ;
                }
                //test if it's useful to merge or not
                //ie, don't merge  'T' but ok for 'Y', merge only lines of not disproportionate different length (ratio max: 4) (or they are both with 0-width end)
                if (dot_poly_branch < 0.1 || dot_candidate_branch < 0.1 ||
                    (
                        ((polyline.length()>other.length() ? polyline.length() / other.length() : other.length() / polyline.length()) > 4) 
                        && !(polyline.width.back() == 0 && other.width.back()==0)
                    ) ){
                    continue;
                }
                if (test_dot > best_dot) {
                    best_candidate = &other;
                    best_idx = j;
                    best_dot = test_dot;
                }
            }
            if (best_candidate != nullptr) {
                //idf++;
                //std::cout << " == fusion " << id <<" : "<< idf << " ==\n";
                // delete very near points
                remove_point_too_near(&polyline);
                remove_point_too_near(best_candidate);

                // add point at the same pos than the other line to have a nicer fusion
                add_point_same_percent(&polyline, best_candidate);
                add_point_same_percent(best_candidate, &polyline);

                //get the angle of the nearest points of the contour to see : _| (good) \_ (average) __(bad)
                //sqrt because the result are nicer this way: don't over-penalize /_ angles
                //TODO: try if we can achieve a better result if we use a different algo if the angle is <90°
                const double coeff_angle_poly = (coeff_angle_cache.find(polyline.points.back()) != coeff_angle_cache.end())
                    ? coeff_angle_cache[polyline.points.back()]
                    : (get_coeff_from_angle_countour(polyline.points.back(), this->expolygon, min(min_width, polyline.length() / 2)));
                const double coeff_angle_candi = (coeff_angle_cache.find(best_candidate->points.back()) != coeff_angle_cache.end())
                    ? coeff_angle_cache[best_candidate->points.back()]
                    : (get_coeff_from_angle_countour(best_candidate->points.back(), this->expolygon, min(min_width, best_candidate->length() / 2)));

                //this will encourage to follow the curve, a little, because it's shorter near the center
                //without that, it tends to go to the outter rim.
                //std::cout << " max(polyline.length(), best_candidate->length())=" << max(polyline.length(), best_candidate->length())
                //    << ", polyline.length()=" << polyline.length()
                //    << ", best_candidate->length()=" << best_candidate->length()
                //    << ", polyline.length() / max=" << (polyline.length() / max(polyline.length(), best_candidate->length()))
                //    << ", best_candidate->length() / max=" << (best_candidate->length() / max(polyline.length(), best_candidate->length()))
                //    << "\n";
                double weight_poly = 2 - (polyline.length() / max(polyline.length(), best_candidate->length()));
                double weight_candi = 2 - (best_candidate->length() / max(polyline.length(), best_candidate->length()));
                weight_poly *= coeff_angle_poly;
                weight_candi *= coeff_angle_candi;
                const double coeff_poly = (dot_poly_branch * weight_poly) / (dot_poly_branch * weight_poly + dot_candidate_branch * weight_candi);
                const double coeff_candi = 1.0 - coeff_poly;
                //std::cout << "coeff_angle_poly=" << coeff_angle_poly
                //    << ", coeff_angle_candi=" << coeff_angle_candi
                //    << ", weight_poly=" << (2 - (polyline.length() / max(polyline.length(), best_candidate->length())))
                //    << ", weight_candi=" << (2 - (best_candidate->length() / max(polyline.length(), best_candidate->length())))
                //    << ", sumpoly=" << weight_poly
                //    << ", sumcandi=" << weight_candi
                //    << ", dot_poly_branch=" << dot_poly_branch
                //    << ", dot_candidate_branch=" << dot_candidate_branch
                //    << ", coeff_poly=" << coeff_poly
                //    << ", coeff_candi=" << coeff_candi
                //    << "\n";
                //iterate the points
                // as voronoi should create symetric thing, we can iterate synchonously
                size_t idx_point = 1;
                while (idx_point < min(polyline.points.size(), best_candidate->points.size())) {
                    //fusion
                    polyline.points[idx_point].x = polyline.points[idx_point].x * coeff_poly + best_candidate->points[idx_point].x * coeff_candi;
                    polyline.points[idx_point].y = polyline.points[idx_point].y * coeff_poly + best_candidate->points[idx_point].y * coeff_candi;

                    // The width decrease with distance from the centerline.
                    // This formula is what works the best, even if it's not perfect (created empirically).  0->3% error on a gap fill on some tests.
                    //If someone find  an other formula based on the properties of the voronoi algorithm used here, and it works better, please use it.
                    //or maybe just use the distance to nearest edge in bounds...
                    double value_from_current_width = 0.5*polyline.width[idx_point] * dot_poly_branch / max(dot_poly_branch, dot_candidate_branch);
                    value_from_current_width += 0.5*best_candidate->width[idx_point] * dot_candidate_branch / max(dot_poly_branch, dot_candidate_branch);
                    double value_from_dist = 2 * polyline.points[idx_point].distance_to(best_candidate->points[idx_point]);
                    value_from_dist *= sqrt(min(dot_poly_branch, dot_candidate_branch) / max(dot_poly_branch, dot_candidate_branch));
                    polyline.width[idx_point] = value_from_current_width + value_from_dist;
                    //std::cout << "width:" << polyline.width[idx_point] << " = " << value_from_current_width << " + " << value_from_dist 
                    //    << " (<" << max_width << " && " << (bounds.contour.closest_point(polyline.points[idx_point])->distance_to(polyline.points[idx_point]) * 2.1)<<")\n";
                    //failsafes
                    if (polyline.width[idx_point] > max_width) 
                        polyline.width[idx_point] = max_width;
                    const coord_t max_width_contour = bounds.contour.closest_point(polyline.points[idx_point])->distance_to(polyline.points[idx_point]) * 2.1;
                    if (polyline.width[idx_point] > max_width_contour)
                        polyline.width[idx_point] = max_width_contour;

                    ++idx_point;
                }
                if (idx_point < best_candidate->points.size()) {
                    if (idx_point + 1 < best_candidate->points.size()) {
                        //create a new polyline
                        pp.emplace_back();
                        pp.back().endpoints.first = true;
                        pp.back().endpoints.second = best_candidate->endpoints.second;
                        for (size_t idx_point_new_line = idx_point; idx_point_new_line < best_candidate->points.size(); ++idx_point_new_line) {
                            pp.back().points.push_back(best_candidate->points[idx_point_new_line]);
                            pp.back().width.push_back(best_candidate->width[idx_point_new_line]);
                        }
                    } else {
                        //Add last point
                        polyline.points.push_back(best_candidate->points[idx_point]);
                        polyline.width.push_back(best_candidate->width[idx_point]);
                        //select if an end opccur
                        polyline.endpoints.second &= best_candidate->endpoints.second;
                    }

                } else {
                    //select if an end opccur
                    polyline.endpoints.second &= best_candidate->endpoints.second;
                }

                //remove points that are the same or too close each other, ie simplify
                for (size_t idx_point = 1; idx_point < polyline.points.size(); ++idx_point) {
                    if (polyline.points[idx_point - 1].distance_to(polyline.points[idx_point]) < SCALED_EPSILON) {
                        if (idx_point < polyline.points.size() - 1) {
                            polyline.points.erase(polyline.points.begin() + idx_point);
                            polyline.width.erase(polyline.width.begin() + idx_point);
                        } else {
                            polyline.points.erase(polyline.points.begin() + idx_point - 1);
                            polyline.width.erase(polyline.width.begin() + idx_point - 1);
                        }
                        --idx_point;
                    }
                }
                //remove points that are outside of the geometry
                for (size_t idx_point = 0; idx_point < polyline.points.size(); ++idx_point) {
                    if (!bounds.contains_b(polyline.points[idx_point])) {
                        polyline.points.erase(polyline.points.begin() + idx_point);
                        polyline.width.erase(polyline.width.begin() + idx_point);
                        --idx_point;
                    }
                }

                //update cache
                coeff_angle_cache[polyline.points.back()] = coeff_angle_poly * coeff_poly + coeff_angle_candi * coeff_candi;


                if (polyline.points.size() < 2) {
                    //remove self
                    pp.erase(pp.begin() + i);
                    --i;
                    --best_idx;
                }

                pp.erase(pp.begin() + best_idx);
                //{
                //    stringstream stri;
                //    stri << "medial_axis_2.0_aft_fus_" << id << "_" << idf << ".svg";
                //    SVG svg(stri.str());
                //    svg.draw(bounds);
                //    svg.draw(this->expolygon);
                //    svg.draw(pp);
                //    svg.Close();
                //}
                changes = true;
                break;
            }
        }
        if (changes) {
            concatThickPolylines(pp);
            ///reorder, in case of change
            std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) {
                bool ahas0 = a.width.front() == 0 || a.width.back() == 0;
                bool bhas0 = b.width.front() == 0 || b.width.back() == 0;
                if (ahas0 && !bhas0) return true;
                if (!ahas0 && bhas0) return false;
                return a.length() < b.length();
            });
        }
    }
}

void
MedialAxis::remove_too_thin_extrusion(ThickPolylines& pp)
{
    // remove too thin extrusion at start & end of polylines
    bool changes = false;
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline& polyline = pp[i];
        // remove bits with too small extrusion
        while (polyline.points.size() > 1 && polyline.width.front() < this->min_width && polyline.endpoints.first) {
            //try to split if possible
            if (polyline.width[1] > min_width) {
                double percent_can_keep = (min_width - polyline.width[0]) / (polyline.width[1] - polyline.width[0]);
                if (polyline.points.front().distance_to(polyline.points[1]) * percent_can_keep > this->max_width / 2
                    && polyline.points.front().distance_to(polyline.points[1])* (1 - percent_can_keep) > this->max_width / 2) {
                    //Can split => move the first point and assign a new weight.
                    //the update of endpoints wil be performed in concatThickPolylines
                    polyline.points.front().x = polyline.points.front().x +
                        (coord_t)((polyline.points[1].x - polyline.points.front().x) * percent_can_keep);
                    polyline.points.front().y = polyline.points.front().y +
                        (coord_t)((polyline.points[1].y - polyline.points.front().y) * percent_can_keep);
                    polyline.width.front() = min_width;
                    changes = true;
                    break;
                }
            }
            polyline.points.erase(polyline.points.begin());
            polyline.width.erase(polyline.width.begin());
            changes = true;
        }
        while (polyline.points.size() > 1 && polyline.width.back() < this->min_width && polyline.endpoints.second) {
            //try to split if possible
            if (polyline.width[polyline.points.size() - 2] > min_width) {
                double percent_can_keep = (min_width - polyline.width.back()) / (polyline.width[polyline.points.size() - 2] - polyline.width.back());
                if (polyline.points.back().distance_to(polyline.points[polyline.points.size() - 2]) * percent_can_keep > this->max_width / 2
                    && polyline.points.back().distance_to(polyline.points[polyline.points.size() - 2]) * (1 - percent_can_keep) > this->max_width / 2) {
                    //Can split => move the first point and assign a new weight.
                    //the update of endpoints wil be performed in concatThickPolylines
                    polyline.points.back().x = polyline.points.back().x +
                        (coord_t)((polyline.points[polyline.points.size() - 2].x - polyline.points.back().x) * percent_can_keep);
                    polyline.points.back().y = polyline.points.back().y +
                        (coord_t)((polyline.points[polyline.points.size() - 2].y - polyline.points.back().y) * percent_can_keep);
                    polyline.width.back() = min_width;
                    changes = true;
                    break;
                }
            }
            polyline.points.erase(polyline.points.end() - 1);
            polyline.width.erase(polyline.width.end() - 1);
            changes = true;
        }
        if (polyline.points.size() < 2) {
            //remove self if too small
            pp.erase(pp.begin() + i);
            --i;
        }
    }
    if (changes) concatThickPolylines(pp);
}

void
MedialAxis::concatenate_polylines_with_crossing(ThickPolylines& pp)
{

    // concatenate, but even where multiple thickpolyline join, to create nice long strait polylines
    /*  If we removed any short polylines we now try to connect consecutive polylines
    in order to allow loop detection. Note that this algorithm is greedier than
    MedialAxis::process_edge_neighbors() as it will connect random pairs of
    polylines even when more than two start from the same point. This has no
    drawbacks since we optimize later using nearest-neighbor which would do the
    same, but should we use a more sophisticated optimization algorithm we should
    not connect polylines when more than two meet.
    Optimisation of the old algorithm : now we select the most "strait line" choice
    when we merge with an other line at a point with more than two meet.
    */
    bool changes = false;
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline& polyline = pp[i];
        if (polyline.endpoints.first && polyline.endpoints.second) continue; // optimization

        ThickPolyline* best_candidate = nullptr;
        float best_dot = -1;
        size_t best_idx = 0;

        // find another polyline starting here
        for (size_t j = i + 1; j < pp.size(); ++j) {
            ThickPolyline& other = pp[j];
            if (polyline.last_point().coincides_with(other.last_point())) {
                other.reverse();
            } else if (polyline.first_point().coincides_with(other.last_point())) {
                polyline.reverse();
                other.reverse();
            } else if (polyline.first_point().coincides_with(other.first_point())) {
                polyline.reverse();
            } else if (!polyline.last_point().coincides_with(other.first_point())) {
                continue;
            }

            Pointf v_poly(polyline.lines().back().vector().x, polyline.lines().back().vector().y);
            v_poly.scale(1 / std::sqrt(v_poly.x*v_poly.x + v_poly.y*v_poly.y));
            Pointf v_other(other.lines().front().vector().x, other.lines().front().vector().y);
            v_other.scale(1 / std::sqrt(v_other.x*v_other.x + v_other.y*v_other.y));
            float other_dot = v_poly.x*v_other.x + v_poly.y*v_other.y;
            if (other_dot > best_dot) {
                best_candidate = &other;
                best_idx = j;
                best_dot = other_dot;
            }
        }
        if (best_candidate != nullptr) {

            polyline.points.insert(polyline.points.end(), best_candidate->points.begin() + 1, best_candidate->points.end());
            polyline.width.insert(polyline.width.end(), best_candidate->width.begin() + 1, best_candidate->width.end());
            polyline.endpoints.second = best_candidate->endpoints.second;
            assert(polyline.width.size() == polyline.points.size());
            changes = true;
            pp.erase(pp.begin() + best_idx);
        }
    }
    if (changes) concatThickPolylines(pp);
}

void
MedialAxis::remove_too_thin_points(ThickPolylines& pp)
{
    //remove too thin polylines points (inside a polyline : split it)
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline& polyline = pp[i];

        // remove bits with too small extrusion
        size_t idx_point = 0;
        while (idx_point<polyline.points.size()) {
            if (polyline.width[idx_point] < min_width) {
                if (idx_point == 0) {
                    //too thin at start
                    polyline.points.erase(polyline.points.begin());
                    polyline.width.erase(polyline.width.begin());
                    idx_point = 0;
                } else if (idx_point == 1) {
                    //too thin at start
                    polyline.points.erase(polyline.points.begin());
                    polyline.width.erase(polyline.width.begin());
                    polyline.points.erase(polyline.points.begin());
                    polyline.width.erase(polyline.width.begin());
                    idx_point = 0;
                } else if (idx_point == polyline.points.size() - 2) {
                    //too thin at (near) end
                    polyline.points.erase(polyline.points.end() - 1);
                    polyline.width.erase(polyline.width.end() - 1);
                    polyline.points.erase(polyline.points.end() - 1);
                    polyline.width.erase(polyline.width.end() - 1);
                } else if (idx_point == polyline.points.size() - 1) {
                    //too thin at end
                    polyline.points.erase(polyline.points.end() - 1);
                    polyline.width.erase(polyline.width.end() - 1);
                } else {
                    //too thin in middle : split
                    pp.emplace_back();
                    ThickPolyline &newone = pp.back();
                    newone.points.insert(newone.points.begin(), polyline.points.begin() + idx_point + 1, polyline.points.end());
                    newone.width.insert(newone.width.begin(), polyline.width.begin() + idx_point + 1, polyline.width.end());
                    polyline.points.erase(polyline.points.begin() + idx_point, polyline.points.end());
                    polyline.width.erase(polyline.width.begin() + idx_point, polyline.width.end());
                }
            } else idx_point++;

            if (polyline.points.size() < 2) {
                //remove self if too small
                pp.erase(pp.begin() + i);
                --i;
                break;
            }
        }
    }
}

void
MedialAxis::remove_too_short_polylines(ThickPolylines& pp, const coord_t min_size)
{
    //remove too short polyline
    bool changes = true;
    while (changes) {
        changes = false;

        double shortest_size = min_size;
        size_t shortest_idx = -1;
        for (size_t i = 0; i < pp.size(); ++i) {
            ThickPolyline& polyline = pp[i];
            // Remove the shortest polylines : polyline that are shorter than wider
            // (we can't do this check before endpoints extension and clipping because we don't
            // know how long will the endpoints be extended since it depends on polygon thickness
            // which is variable - extension will be <= max_width/2 on each side) 
            if ((polyline.endpoints.first || polyline.endpoints.second)
                && polyline.length() < max_width / 2) {
                if (shortest_size > polyline.length()) {
                    shortest_size = polyline.length();
                    shortest_idx = i;
                }

            }
        }
        if (shortest_idx >= 0 && shortest_idx < pp.size()) {
            pp.erase(pp.begin() + shortest_idx);
            changes = true;
        }
        if (changes) concatThickPolylines(pp);
    }
}

void
MedialAxis::ensure_not_overextrude(ThickPolylines& pp)
{
    //ensure the volume extruded is correct for what we have been asked
    // => don't over-extrude
    double surface = 0;
    double volume = 0;
    for (ThickPolyline& polyline : pp) {
        for (ThickLine l : polyline.thicklines()) {
            surface += l.length() * (l.a_width + l.b_width) / 2;
            double width_mean = (l.a_width + l.b_width) / 2;
            volume += height * (width_mean - height * (1. - 0.25 * PI)) * l.length();
        }
    }

    // compute bounds volume
    double boundsVolume = 0;
    boundsVolume += height*bounds.area();
    // add external "perimeter gap"
    double perimeterRoundGap = bounds.contour.length() * height * (1 - 0.25*PI) * 0.5;
    // add holes "perimeter gaps"
    double holesGaps = 0;
    for (auto hole = bounds.holes.begin(); hole != bounds.holes.end(); ++hole) {
        holesGaps += hole->length() * height * (1 - 0.25*PI) * 0.5;
    }
    boundsVolume += perimeterRoundGap + holesGaps;

    if (boundsVolume < volume) {
        //reduce width
        double reduce_by = boundsVolume / volume;
        for (ThickPolyline& polyline : pp) {
            for (ThickLine l : polyline.thicklines()) {
                l.a_width *= reduce_by;
                l.b_width *= reduce_by;
            }
        }
    }
}

ExPolygon 
MedialAxis::simplify_polygon_frontier()
{

    //simplify the boundary between us and the bounds.
    //int firstIdx = 0;
    //while (firstIdx < contour.points.size() && bounds.contour.contains(contour.points[firstIdx])) firstIdx++;
    ExPolygon simplified_poly = this->surface;
    if (&this->surface != &this->bounds) {
        bool need_intersect = false;
        for (size_t i = 0; i < simplified_poly.contour.points.size(); i++) {
            Point &p_check = simplified_poly.contour.points[i];
            //if (!find) {
            if (!bounds.has_boundary_point(p_check)) {
                //check if we put it at a bound point instead of delete it
                size_t prev_i = i == 0 ? simplified_poly.contour.points.size() - 1 : (i - 1);
                size_t next_i = i == simplified_poly.contour.points.size() - 1 ? 0 : (i + 1);
                const Point* closest = bounds.contour.closest_point(p_check);
                if (closest != nullptr && closest->distance_to(p_check) + SCALED_EPSILON
                    < min(p_check.distance_to(simplified_poly.contour.points[prev_i]), p_check.distance_to(simplified_poly.contour.points[next_i])) / 2) {
                    p_check.x = closest->x;
                    p_check.y = closest->y;
                    need_intersect = true;
                } else {
                    simplified_poly.contour.points.erase(simplified_poly.contour.points.begin() + i);
                    i--;
                }
            }
        }
        if (need_intersect) {
            ExPolygons simplified_polys = intersection_ex(simplified_poly, bounds);
            if (simplified_polys.size() == 1) {
                simplified_poly = simplified_polys[0];
            } else {
                simplified_poly = this->surface;
            }
        }
    }

    simplified_poly.remove_point_too_near(SCALED_RESOLUTION);
    return simplified_poly;
}

void
MedialAxis::build(ThickPolylines* polylines_out)
{
    this->id++;

    this->expolygon = simplify_polygon_frontier();


    // compute the Voronoi diagram and extract medial axis polylines
    ThickPolylines pp;
    this->polyline_from_voronoi(this->expolygon.lines(), &pp);
    

    //{
    //    stringstream stri;
    //    stri << "medial_axis_1_voronoi_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(bounds);
    //    svg.draw(this->expolygon);
    //    svg.draw(pp);
    //    svg.Close();
    //}
    
    /* Find the maximum width returned; we're going to use this for validating and 
       filtering the output segments. */
    double max_w = 0;
    for (ThickPolylines::const_iterator it = pp.begin(); it != pp.end(); ++it)
        max_w = fmaxf(max_w, *std::max_element(it->width.begin(), it->width.end()));


    fusion_curve(pp);
    //{
    //    stringstream stri;
    //    stri << "medial_axis_2_curve_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(bounds);
    //    svg.draw(this->expolygon);
    //    svg.draw(pp);
    //    svg.Close();
    //}

    concatThickPolylines(pp);

    // Aligned fusion: Fusion the bits at the end of lines by "increasing thickness"
    // For that, we have to find other lines,
    // and with a next point no more distant than the max width.
    // Then, we can merge the bit from the first point to the second by following the mean.
    //
    main_fusion(pp);
    //{
    //    stringstream stri;
    //    stri << "medial_axis_3_fusion_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(bounds);
    //    svg.draw(this->expolygon);
    //    svg.draw(pp);
    //    svg.Close();
    //}

    //fusion right-angle corners.
    fusion_corners(pp);

    //reduce extrusion when it's too thin to be printable
    remove_too_thin_extrusion(pp);
    //{
    //    stringstream stri;
    //    stri << "medial_axis_4_thinok_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(bounds);
    //    svg.draw(this->expolygon);
    //    svg.draw(pp);
    //    svg.Close();
    //}

    remove_too_thin_points(pp);
    //{
    //    stringstream stri;
    //    stri << "medial_axis_5.0_thuinner_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(bounds);
    //    svg.draw(this->expolygon);
    //    svg.draw(pp);
    //    svg.Close();
    //}

    // Loop through all returned polylines in order to extend their endpoints to the 
    //   expolygon boundaries
    const ExPolygons anchors = offset2_ex(diff_ex(this->bounds, this->expolygon), -SCALED_RESOLUTION, SCALED_RESOLUTION);
    for (size_t i = 0; i < pp.size(); ++i) {
        ThickPolyline& polyline = pp[i];
        extends_line(polyline, anchors, min_width);
        polyline.reverse();
        extends_line(polyline, anchors, min_width);
    }
    //{
    //    stringstream stri;
    //    stri << "medial_axis_5_expand_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(bounds);
    //    svg.draw(this->expolygon);
    //    svg.draw(pp);
    //    svg.Close();
    //}

    concatenate_polylines_with_crossing(pp);
    //{
    //    stringstream stri;
    //    stri << "medial_axis_6_concat_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(bounds);
    //    svg.draw(this->expolygon);
    //    svg.draw(pp);
    //    svg.Close();
    //}

    remove_too_short_polylines(pp, max_w * 2);
    //{
    //    stringstream stri;
    //    stri << "medial_axis_8_tooshort_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(bounds);
    //    svg.draw(this->expolygon);
    //    svg.draw(pp);
    //    svg.Close();
    //}

    //TODO: reduce the flow at the intersection ( + ) points ?
    ensure_not_overextrude(pp);
    //{
    //    stringstream stri;
    //    stri << "medial_axis_9_endn_" << id << ".svg";
    //    SVG svg(stri.str());
    //    svg.draw(bounds);
    //    svg.draw(this->expolygon);
    //    svg.draw(pp);
    //    svg.Close();
    //}

    polylines_out->insert(polylines_out->end(), pp.begin(), pp.end());

}

} // namespace Slic3r