Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Model.cpp « libslic3r « src « xs - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 73234d3ebbf77d55aede48e2c05e980d0eb382dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
#include "Model.hpp"
#include "Geometry.hpp"

#include "Format/AMF.hpp"
#include "Format/OBJ.hpp"
#include "Format/PRUS.hpp"
#include "Format/STL.hpp"
#include "Format/3mf.hpp"

#include <numeric>
#include <libnest2d.h>
#include <ClipperUtils.hpp>
#include "slic3r/GUI/GUI.hpp"

#include <float.h>

#include <boost/algorithm/string/predicate.hpp>
#include <boost/filesystem.hpp>
#include <boost/nowide/iostream.hpp>
#include <boost/algorithm/string/replace.hpp>

// #include <benchmark.h>
#include "SVG.hpp"
#include <Eigen/Dense>

namespace Slic3r {

    unsigned int Model::s_auto_extruder_id = 1;

Model::Model(const Model &other)
{
    // copy materials
    for (const auto &m : other.materials)
        this->add_material(m.first, *m.second);
    // copy objects
    this->objects.reserve(other.objects.size());
    for (const ModelObject *o : other.objects)
        this->add_object(*o, true);
}

Model& Model::operator=(Model other)
{
    this->swap(other);
    return *this;
}

void Model::swap(Model &other)
{
    std::swap(this->materials,  other.materials);
    std::swap(this->objects,    other.objects);
}

Model Model::read_from_file(const std::string &input_file, bool add_default_instances)
{
    Model model;
    
    bool result = false;
    if (boost::algorithm::iends_with(input_file, ".stl"))
        result = load_stl(input_file.c_str(), &model);
    else if (boost::algorithm::iends_with(input_file, ".obj"))
        result = load_obj(input_file.c_str(), &model);
    else if (!boost::algorithm::iends_with(input_file, ".zip.amf") && (boost::algorithm::iends_with(input_file, ".amf") ||
        boost::algorithm::iends_with(input_file, ".amf.xml")))
        result = load_amf(input_file.c_str(), nullptr, &model);
#ifdef SLIC3R_PRUS
    else if (boost::algorithm::iends_with(input_file, ".prusa"))
        result = load_prus(input_file.c_str(), &model);
#endif /* SLIC3R_PRUS */
    else
        throw std::runtime_error("Unknown file format. Input file must have .stl, .obj, .amf(.xml) or .prusa extension.");

    if (! result)
        throw std::runtime_error("Loading of a model file failed.");

    if (model.objects.empty())
        throw std::runtime_error("The supplied file couldn't be read because it's empty");
    
    for (ModelObject *o : model.objects)
        o->input_file = input_file;
    
    if (add_default_instances)
        model.add_default_instances();

    return model;
}

Model Model::read_from_archive(const std::string &input_file, PresetBundle* bundle, bool add_default_instances)
{
    Model model;

    bool result = false;
    if (boost::algorithm::iends_with(input_file, ".3mf"))
        result = load_3mf(input_file.c_str(), bundle, &model);
    else if (boost::algorithm::iends_with(input_file, ".zip.amf"))
        result = load_amf(input_file.c_str(), bundle, &model);
    else
        throw std::runtime_error("Unknown file format. Input file must have .3mf or .zip.amf extension.");

    if (!result)
        throw std::runtime_error("Loading of a model file failed.");

    if (model.objects.empty())
        throw std::runtime_error("The supplied file couldn't be read because it's empty");

    for (ModelObject *o : model.objects)
    {
        if (boost::algorithm::iends_with(input_file, ".zip.amf"))
        {
            // we remove the .zip part of the extension to avoid it be added to filenames when exporting
            o->input_file = boost::ireplace_last_copy(input_file, ".zip.", ".");
        }
        else
            o->input_file = input_file;
    }

    if (add_default_instances)
        model.add_default_instances();

    return model;
}

ModelObject* Model::add_object()
{
    this->objects.emplace_back(new ModelObject(this));
    return this->objects.back();
}

ModelObject* Model::add_object(const char *name, const char *path, const TriangleMesh &mesh)
{
    ModelObject* new_object = new ModelObject(this);
    this->objects.push_back(new_object);
    new_object->name = name;
    new_object->input_file = path;
    ModelVolume *new_volume = new_object->add_volume(mesh);
    new_volume->name = name;
    new_object->invalidate_bounding_box();
    return new_object;
}

ModelObject* Model::add_object(const char *name, const char *path, TriangleMesh &&mesh)
{
    ModelObject* new_object = new ModelObject(this);
    this->objects.push_back(new_object);
    new_object->name = name;
    new_object->input_file = path;
    ModelVolume *new_volume = new_object->add_volume(std::move(mesh));
    new_volume->name = name;
    new_object->invalidate_bounding_box();
    return new_object;
}

ModelObject* Model::add_object(const ModelObject &other, bool copy_volumes)
{
    ModelObject* new_object = new ModelObject(this, other, copy_volumes);
    this->objects.push_back(new_object);
    return new_object;
}

void Model::delete_object(size_t idx)
{
    ModelObjectPtrs::iterator i = this->objects.begin() + idx;
    delete *i;
    this->objects.erase(i);
}

void Model::delete_object(ModelObject* object)
{
    if (object == nullptr)
        return;

    for (ModelObjectPtrs::iterator it = objects.begin(); it != objects.end(); ++it)
    {
        ModelObject* obj = *it;
        if (obj == object)
        {
            delete obj;
            objects.erase(it);
            return;
        }
    }
}

void Model::clear_objects()
{
    for (ModelObject *o : this->objects)
        delete o;
    this->objects.clear();
}

void Model::delete_material(t_model_material_id material_id)
{
    ModelMaterialMap::iterator i = this->materials.find(material_id);
    if (i != this->materials.end()) {
        delete i->second;
        this->materials.erase(i);
    }
}

void Model::clear_materials()
{
    for (auto &m : this->materials)
        delete m.second;
    this->materials.clear();
}

ModelMaterial* Model::add_material(t_model_material_id material_id)
{
    ModelMaterial* material = this->get_material(material_id);
    if (material == nullptr)
        material = this->materials[material_id] = new ModelMaterial(this);
    return material;
}

ModelMaterial* Model::add_material(t_model_material_id material_id, const ModelMaterial &other)
{
    // delete existing material if any
    ModelMaterial* material = this->get_material(material_id);
    delete material;
    // set new material
    material = new ModelMaterial(this, other);
    this->materials[material_id] = material;
    return material;
}

// makes sure all objects have at least one instance
bool Model::add_default_instances()
{
    // apply a default position to all objects not having one
    for (ModelObject *o : this->objects)
        if (o->instances.empty())
            o->add_instance();
    return true;
}

// this returns the bounding box of the *transformed* instances
BoundingBoxf3 Model::bounding_box() const
{
    BoundingBoxf3 bb;
    for (ModelObject *o : this->objects)
        bb.merge(o->bounding_box());
    return bb;
}

BoundingBoxf3 Model::transformed_bounding_box() const
{
    BoundingBoxf3 bb;
    for (const ModelObject* obj : this->objects)
        bb.merge(obj->tight_bounding_box(false));
    return bb;
}

void Model::center_instances_around_point(const Pointf &point)
{
//    BoundingBoxf3 bb = this->bounding_box();
    BoundingBoxf3 bb;
    for (ModelObject *o : this->objects)
        for (size_t i = 0; i < o->instances.size(); ++ i)
            bb.merge(o->instance_bounding_box(i, false));

    Sizef3 size = bb.size();
    coordf_t shift_x = -bb.min.x + point.x - size.x/2;
    coordf_t shift_y = -bb.min.y + point.y - size.y/2;
    for (ModelObject *o : this->objects) {
        for (ModelInstance *i : o->instances)
            i->offset.translate(shift_x, shift_y);
        o->invalidate_bounding_box();
    }
}

// flattens everything to a single mesh
TriangleMesh Model::mesh() const
{
    TriangleMesh mesh;
    for (const ModelObject *o : this->objects)
        mesh.merge(o->mesh());
    return mesh;
}

static bool _arrange(const Pointfs &sizes, coordf_t dist, const BoundingBoxf* bb, Pointfs &out)
{
    if (sizes.empty())
        // return if the list is empty or the following call to BoundingBoxf constructor will lead to a crash
        return true;

    // we supply unscaled data to arrange()
    bool result = Slic3r::Geometry::arrange(
        sizes.size(),               // number of parts
        BoundingBoxf(sizes).max,    // width and height of a single cell
        dist,                       // distance between cells
        bb,                         // bounding box of the area to fill
        out                         // output positions
    );

    if (!result && bb != nullptr) {
        // Try to arrange again ignoring bb
        result = Slic3r::Geometry::arrange(
            sizes.size(),               // number of parts
            BoundingBoxf(sizes).max,    // width and height of a single cell
            dist,                       // distance between cells
            nullptr,                    // bounding box of the area to fill
            out                         // output positions
        );
    }
    
    return result;
}

namespace arr {

using namespace libnest2d;

std::string toString(const Model& model) {
    std::stringstream  ss;

    ss << "{\n";

    for(auto objptr : model.objects) {
        if(!objptr) continue;

        auto rmesh = objptr->raw_mesh();

        for(auto objinst : objptr->instances) {
            if(!objinst) continue;

            Slic3r::TriangleMesh tmpmesh = rmesh;
            tmpmesh.scale(objinst->scaling_factor);
            objinst->transform_mesh(&tmpmesh);
            ExPolygons expolys = tmpmesh.horizontal_projection();
            for(auto& expoly_complex : expolys) {

                auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
                if(tmp.empty()) continue;
                auto expoly = tmp.front();
                expoly.contour.make_clockwise();
                for(auto& h : expoly.holes) h.make_counter_clockwise();

                ss << "\t{\n";
                ss << "\t\t{\n";

                for(auto v : expoly.contour.points) ss << "\t\t\t{"
                                                    << v.x << ", "
                                                    << v.y << "},\n";
                {
                    auto v = expoly.contour.points.front();
                    ss << "\t\t\t{" << v.x << ", " << v.y << "},\n";
                }
                ss << "\t\t},\n";

                // Holes:
                ss << "\t\t{\n";
//                for(auto h : expoly.holes) {
//                    ss << "\t\t\t{\n";
//                    for(auto v : h.points) ss << "\t\t\t\t{"
//                                           << v.x << ", "
//                                           << v.y << "},\n";
//                    {
//                        auto v = h.points.front();
//                        ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
//                    }
//                    ss << "\t\t\t},\n";
//                }
                ss << "\t\t},\n";

                ss << "\t},\n";
            }
        }
    }

    ss << "}\n";

    return ss.str();
}

void toSVG(SVG& svg, const Model& model) {
    for(auto objptr : model.objects) {
        if(!objptr) continue;

        auto rmesh = objptr->raw_mesh();

        for(auto objinst : objptr->instances) {
            if(!objinst) continue;

            Slic3r::TriangleMesh tmpmesh = rmesh;
            tmpmesh.scale(objinst->scaling_factor);
            objinst->transform_mesh(&tmpmesh);
            ExPolygons expolys = tmpmesh.horizontal_projection();
            svg.draw(expolys);
        }
    }
}

// A container which stores a pointer to the 3D object and its projected
// 2D shape from top view.
using ShapeData2D =
    std::vector<std::pair<Slic3r::ModelInstance*, Item>>;

ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
    ShapeData2D ret;

    auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
                    [](size_t s, ModelObject* o){
        return s + o->instances.size();
    });

    ret.reserve(s);

    for(auto objptr : model.objects) {
        if(objptr) {

            auto rmesh = objptr->raw_mesh();

            for(auto objinst : objptr->instances) {
                if(objinst) {
                    Slic3r::TriangleMesh tmpmesh = rmesh;
                    ClipperLib::PolygonImpl pn;

                    tmpmesh.scale(objinst->scaling_factor);

                    // TODO export the exact 2D projection
                    auto p = tmpmesh.convex_hull();

                    p.make_clockwise();
                    p.append(p.first_point());
                    pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );

                    // Efficient conversion to item.
                    Item item(std::move(pn));

                    // Invalid geometries would throw exceptions when arranging
                    if(item.vertexCount() > 3) {
                        item.rotation(objinst->rotation);
                        item.translation( {
                            ClipperLib::cInt(objinst->offset.x/SCALING_FACTOR),
                            ClipperLib::cInt(objinst->offset.y/SCALING_FACTOR)
                        });
                        ret.emplace_back(objinst, item);
                    }
                }
            }
        }
    }

    return ret;
}

/**
 * \brief Arranges the model objects on the screen.
 *
 * The arrangement considers multiple bins (aka. print beds) for placing all
 * the items provided in the model argument. If the items don't fit on one
 * print bed, the remaining will be placed onto newly created print beds.
 * The first_bin_only parameter, if set to true, disables this behaviour and
 * makes sure that only one print bed is filled and the remaining items will be
 * untouched. When set to false, the items which could not fit onto the
 * print bed will be placed next to the print bed so the user should see a
 * pile of items on the print bed and some other piles outside the print
 * area that can be dragged later onto the print bed as a group.
 *
 * \param model The model object with the 3D content.
 * \param dist The minimum distance which is allowed for any pair of items
 * on the print bed  in any direction.
 * \param bb The bounding box of the print bed. It corresponds to the 'bin'
 * for bin packing.
 * \param first_bin_only This parameter controls whether to place the
 * remaining items which do not fit onto the print area next to the print
 * bed or leave them untouched (let the user arrange them by hand or remove
 * them).
 */
bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
             bool first_bin_only,
             std::function<void(unsigned)> progressind)
{
    using ArrangeResult = _IndexedPackGroup<PolygonImpl>;

    bool ret = true;

    // Create the arranger config
    auto min_obj_distance = static_cast<Coord>(dist/SCALING_FACTOR);

    // Benchmark bench;

    // std::cout << "Creating model siluett..." << std::endl;

    // bench.start();
    // Get the 2D projected shapes with their 3D model instance pointers
    auto shapemap = arr::projectModelFromTop(model);
    // bench.stop();

    // std::cout << "Model siluett created in " << bench.getElapsedSec()
    //          << " seconds. " << "Min object distance = " << min_obj_distance << std::endl;

//    std::cout << "{" << std::endl;
//    std::for_each(shapemap.begin(), shapemap.end(),
//                  [] (ShapeData2D::value_type& it)
//    {
//        std::cout << "\t{" << std::endl;
//        Item& item = it.second;
//        for(auto& v : item) {
//            std::cout << "\t\t" << "{" << getX(v)
//                      << ", " << getY(v) << "},\n";
//        }
//        std::cout << "\t}," << std::endl;
//    });
//    std::cout << "}" << std::endl;
//    return true;

    bool hasbin = bb != nullptr && bb->defined;
    double area_max = 0;
    Item *biggest = nullptr;

    // Copy the references for the shapes only as the arranger expects a
    // sequence of objects convertible to Item or ClipperPolygon
    std::vector<std::reference_wrapper<Item>> shapes;
    shapes.reserve(shapemap.size());
    std::for_each(shapemap.begin(), shapemap.end(),
                  [&shapes, min_obj_distance, &area_max, &biggest,hasbin]
                  (ShapeData2D::value_type& it)
    {
        if(!hasbin) {
            Item& item = it.second;
            item.addOffset(min_obj_distance);
            auto b = ShapeLike::boundingBox(item.transformedShape());
            auto a = b.width()*b.height();
            if(area_max < a) {
                area_max = static_cast<double>(a);
                biggest = &item;
            }
        }

        shapes.push_back(std::ref(it.second));

    });

    Box bin;

    if(hasbin) {
        // Scale up the bounding box to clipper scale.
        BoundingBoxf bbb = *bb;
        bbb.scale(1.0/SCALING_FACTOR);

        bin = Box({
                    static_cast<libnest2d::Coord>(bbb.min.x),
                    static_cast<libnest2d::Coord>(bbb.min.y)
                },
                {
                    static_cast<libnest2d::Coord>(bbb.max.x),
                    static_cast<libnest2d::Coord>(bbb.max.y)
                });
    } else {
        // Just take the biggest item as bin... ?
        bin = ShapeLike::boundingBox(biggest->transformedShape());
    }

    // Will use the DJD selection heuristic with the BottomLeft placement
    // strategy
    using Arranger = Arranger<NfpPlacer, FirstFitSelection>;
    using PConf = Arranger::PlacementConfig;
    using SConf = Arranger::SelectionConfig;

    PConf pcfg;     // Placement configuration
    SConf scfg;     // Selection configuration

    // Align the arranged pile into the center of the bin
    pcfg.alignment = PConf::Alignment::CENTER;

    // TODO cannot use rotations until multiple objects of same geometry can
    // handle different rotations
    // arranger.useMinimumBoundigBoxRotation();
    pcfg.rotations = { 0.0 };

    // Magic: we will specify what is the goal of arrangement...
    // In this case we override the default object function because we
    // (apparently) don't care about pack efficiency and all we care is that the
    // larger items go into the center of the pile and smaller items orbit it
    // so the resulting pile has a circle-like shape.
    // This is good for the print bed's heat profile.
    // As a side effect, the arrange procedure is a lot faster (we do not need
    // to calculate the convex hulls)
    pcfg.object_function = [&bin](
            NfpPlacer::Pile pile,   // The currently arranged pile
            double /*area*/,        // Sum area of items (not needed)
            double norm,            // A norming factor for physical dimensions
            double penality)        // Min penality in case of bad arrangement
    {
        auto bb = ShapeLike::boundingBox(pile);

        // We will optimize to the diameter of the circle around the bounding
        // box and use the norming factor to get rid of the physical dimensions
        double score = PointLike::distance(bb.minCorner(),
                                           bb.maxCorner()) / norm;

        // If it does not fit into the print bed we will beat it
        // with a large penality
        if(!NfpPlacer::wouldFit(bb, bin)) score = 2*penality - score;

        return score;
    };

    // Create the arranger object
    Arranger arranger(bin, min_obj_distance, pcfg, scfg);

    // Set the progress indicator for the arranger.
    arranger.progressIndicator(progressind);

    // std::cout << "Arranging model..." << std::endl;
    // bench.start();

    // Arrange and return the items with their respective indices within the
    // input sequence.
    auto result = arranger.arrangeIndexed(shapes.begin(), shapes.end());

    // bench.stop();
    // std::cout << "Model arranged in " << bench.getElapsedSec()
    //           << " seconds." << std::endl;


    auto applyResult = [&shapemap](ArrangeResult::value_type& group,
            Coord batch_offset)
    {
        for(auto& r : group) {
            auto idx = r.first;     // get the original item index
            Item& item = r.second;  // get the item itself

            // Get the model instance from the shapemap using the index
            ModelInstance *inst_ptr = shapemap[idx].first;

            // Get the tranformation data from the item object and scale it
            // appropriately
            auto off = item.translation();
            Radians rot = item.rotation();
            Pointf foff(off.X*SCALING_FACTOR + batch_offset,
                        off.Y*SCALING_FACTOR);

            // write the tranformation data into the model instance
            inst_ptr->rotation = rot;
            inst_ptr->offset = foff;
        }
    };

    // std::cout << "Applying result..." << std::endl;
    // bench.start();
    if(first_bin_only) {
        applyResult(result.front(), 0);
    } else {

        const auto STRIDE_PADDING = 1.2;

        Coord stride = static_cast<Coord>(STRIDE_PADDING*
                                          bin.width()*SCALING_FACTOR);
        Coord batch_offset = 0;

        for(auto& group : result) {
            applyResult(group, batch_offset);

            // Only the first pack group can be placed onto the print bed. The
            // other objects which could not fit will be placed next to the
            // print bed
            batch_offset += stride;
        }
    }
    // bench.stop();
    // std::cout << "Result applied in " << bench.getElapsedSec()
    //           << " seconds." << std::endl;

    for(auto objptr : model.objects) objptr->invalidate_bounding_box();

    return ret && result.size() == 1;
}
}

/*  arrange objects preserving their instance count
    but altering their instance positions */
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb,
                            std::function<void(unsigned)> progressind)
{
    bool ret = false;
    if(bb != nullptr && bb->defined) {
        ret = arr::arrange(*this, dist, bb, false, progressind);
//        std::fstream out("out.cpp", std::fstream::out);
//        if(out.good()) {
//            out << "const TestData OBJECTS = \n";
//            out << arr::toString(*this);
//        }
//        out.close();
//        SVG svg("out.svg");
//        arr::toSVG(svg, *this);
//        svg.Close();
    } else {
        // get the (transformed) size of each instance so that we take
        // into account their different transformations when packing
        Pointfs instance_sizes;
        Pointfs instance_centers;
        for (const ModelObject *o : this->objects)
            for (size_t i = 0; i < o->instances.size(); ++ i) {
                // an accurate snug bounding box around the transformed mesh.
                BoundingBoxf3 bbox(o->instance_bounding_box(i, true));
                instance_sizes.push_back(bbox.size());
                instance_centers.push_back(bbox.center());
            }

        Pointfs positions;
        if (! _arrange(instance_sizes, dist, bb, positions))
            return false;

        size_t idx = 0;
        for (ModelObject *o : this->objects) {
            for (ModelInstance *i : o->instances) {
                i->offset = positions[idx] - instance_centers[idx];
                ++ idx;
            }
            o->invalidate_bounding_box();
        }
    }

    return ret;
}

// Duplicate the entire model preserving instance relative positions.
void Model::duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb)
{
    Pointfs model_sizes(copies_num-1, this->bounding_box().size());
    Pointfs positions;
    if (! _arrange(model_sizes, dist, bb, positions))
        CONFESS("Cannot duplicate part as the resulting objects would not fit on the print bed.\n");
    
    // note that this will leave the object count unaltered
    
    for (ModelObject *o : this->objects) {
        // make a copy of the pointers in order to avoid recursion when appending their copies
        ModelInstancePtrs instances = o->instances;
        for (const ModelInstance *i : instances) {
            for (const Pointf &pos : positions) {
                ModelInstance *instance = o->add_instance(*i);
                instance->offset.translate(pos);
            }
        }
        o->invalidate_bounding_box();
    }
}

/*  this will append more instances to each object
    and then automatically rearrange everything */
void Model::duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb)
{
    for (ModelObject *o : this->objects) {
        // make a copy of the pointers in order to avoid recursion when appending their copies
        ModelInstancePtrs instances = o->instances;
        for (const ModelInstance *i : instances)
            for (size_t k = 2; k <= copies_num; ++ k)
                o->add_instance(*i);
    }
    
    this->arrange_objects(dist, bb);
}

void Model::duplicate_objects_grid(size_t x, size_t y, coordf_t dist)
{
    if (this->objects.size() > 1) throw "Grid duplication is not supported with multiple objects";
    if (this->objects.empty()) throw "No objects!";

    ModelObject* object = this->objects.front();
    object->clear_instances();

    Sizef3 size = object->bounding_box().size();

    for (size_t x_copy = 1; x_copy <= x; ++x_copy) {
        for (size_t y_copy = 1; y_copy <= y; ++y_copy) {
            ModelInstance* instance = object->add_instance();
            instance->offset.x = (size.x + dist) * (x_copy-1);
            instance->offset.y = (size.y + dist) * (y_copy-1);
        }
    }
}

bool Model::looks_like_multipart_object() const
{
    if (this->objects.size() <= 1)
        return false;
    double zmin = std::numeric_limits<double>::max();
    for (const ModelObject *obj : this->objects) {
        if (obj->volumes.size() > 1 || obj->config.keys().size() > 1)
            return false;
        for (const ModelVolume *vol : obj->volumes) {
            double zmin_this = vol->mesh.bounding_box().min.z;
            if (zmin == std::numeric_limits<double>::max())
                zmin = zmin_this;
            else if (std::abs(zmin - zmin_this) > EPSILON)
                // The volumes don't share zmin.
                return true;
        }
    }
    return false;
}

void Model::convert_multipart_object(unsigned int max_extruders)
{
    if (this->objects.empty())
        return;
    
    ModelObject* object = new ModelObject(this);
    object->input_file = this->objects.front()->input_file;

    reset_auto_extruder_id();

    for (const ModelObject* o : this->objects)
        for (const ModelVolume* v : o->volumes)
        {
            ModelVolume* new_v = object->add_volume(*v);
            if (new_v != nullptr)
            {
                new_v->name = o->name;
                new_v->config.set_deserialize("extruder", get_auto_extruder_id_as_string(max_extruders));
            }
        }

    for (const ModelInstance* i : this->objects.front()->instances)
        object->add_instance(*i);
    
    this->clear_objects();
    this->objects.push_back(object);
}

void Model::adjust_min_z()
{
    if (objects.empty())
        return;

    if (bounding_box().min.z < 0.0)
    {
        for (ModelObject* obj : objects)
        {
            if (obj != nullptr)
            {
                coordf_t obj_min_z = obj->bounding_box().min.z;
                if (obj_min_z < 0.0)
                    obj->translate(0.0, 0.0, -obj_min_z);
            }
        }
    }
}

unsigned int Model::get_auto_extruder_id(unsigned int max_extruders)
{
    unsigned int id = s_auto_extruder_id;

    if (++s_auto_extruder_id > max_extruders)
        reset_auto_extruder_id();

    return id;
}

std::string Model::get_auto_extruder_id_as_string(unsigned int max_extruders)
{
    char str_extruder[64];
    sprintf(str_extruder, "%ud", get_auto_extruder_id(max_extruders));
    return str_extruder;
}

void Model::reset_auto_extruder_id()
{
    s_auto_extruder_id = 1;
}

ModelObject::ModelObject(Model *model, const ModelObject &other, bool copy_volumes) :  
    name(other.name),
    input_file(other.input_file),
    instances(),
    volumes(),
    config(other.config),
    layer_height_ranges(other.layer_height_ranges),
    layer_height_profile(other.layer_height_profile),
    layer_height_profile_valid(other.layer_height_profile_valid),
    origin_translation(other.origin_translation),
    m_bounding_box(other.m_bounding_box),
    m_bounding_box_valid(other.m_bounding_box_valid),
    m_model(model)
{
    if (copy_volumes) {
        this->volumes.reserve(other.volumes.size());
        for (ModelVolumePtrs::const_iterator i = other.volumes.begin(); i != other.volumes.end(); ++i)
            this->add_volume(**i);
    }
    
    this->instances.reserve(other.instances.size());
    for (ModelInstancePtrs::const_iterator i = other.instances.begin(); i != other.instances.end(); ++i)
        this->add_instance(**i);
}

ModelObject& ModelObject::operator=(ModelObject other)
{
    this->swap(other);
    return *this;
}

void ModelObject::swap(ModelObject &other)
{
    std::swap(this->input_file,             other.input_file);
    std::swap(this->instances,              other.instances);
    std::swap(this->volumes,                other.volumes);
    std::swap(this->config,                 other.config);
    std::swap(this->layer_height_ranges,    other.layer_height_ranges);
    std::swap(this->layer_height_profile,   other.layer_height_profile);
    std::swap(this->layer_height_profile_valid,    other.layer_height_profile_valid);
    std::swap(this->origin_translation,     other.origin_translation);
    std::swap(m_bounding_box,               other.m_bounding_box);
    std::swap(m_bounding_box_valid,         other.m_bounding_box_valid);
}

ModelObject::~ModelObject()
{
    this->clear_volumes();
    this->clear_instances();
}

ModelVolume* ModelObject::add_volume(const TriangleMesh &mesh)
{
    ModelVolume* v = new ModelVolume(this, mesh);
    this->volumes.push_back(v);
    this->invalidate_bounding_box();
    return v;
}

ModelVolume* ModelObject::add_volume(TriangleMesh &&mesh)
{
    ModelVolume* v = new ModelVolume(this, std::move(mesh));
    this->volumes.push_back(v);
    this->invalidate_bounding_box();
    return v;
}

ModelVolume* ModelObject::add_volume(const ModelVolume &other)
{
    ModelVolume* v = new ModelVolume(this, other);
    this->volumes.push_back(v);
    this->invalidate_bounding_box();
    return v;
}

void ModelObject::delete_volume(size_t idx)
{
    ModelVolumePtrs::iterator i = this->volumes.begin() + idx;
    delete *i;
    this->volumes.erase(i);
    this->invalidate_bounding_box();
}

void ModelObject::clear_volumes()
{
    for (ModelVolume *v : this->volumes)
        delete v;
    this->volumes.clear();
    this->invalidate_bounding_box();
}

ModelInstance* ModelObject::add_instance()
{
    ModelInstance* i = new ModelInstance(this);
    this->instances.push_back(i);
    this->invalidate_bounding_box();
    return i;
}

ModelInstance* ModelObject::add_instance(const ModelInstance &other)
{
    ModelInstance* i = new ModelInstance(this, other);
    this->instances.push_back(i);
    this->invalidate_bounding_box();
    return i;
}

void ModelObject::delete_instance(size_t idx)
{
    ModelInstancePtrs::iterator i = this->instances.begin() + idx;
    delete *i;
    this->instances.erase(i);
    this->invalidate_bounding_box();
}

void ModelObject::delete_last_instance()
{
    this->delete_instance(this->instances.size() - 1);
}

void ModelObject::clear_instances()
{
    for (ModelInstance *i : this->instances)
        delete i;
    this->instances.clear();
    this->invalidate_bounding_box();
}

// Returns the bounding box of the transformed instances.
// This bounding box is approximate and not snug.
const BoundingBoxf3& ModelObject::bounding_box() const
{
    if (! m_bounding_box_valid) {
        BoundingBoxf3 raw_bbox;
        for (const ModelVolume *v : this->volumes)
            if (! v->modifier)
                raw_bbox.merge(v->mesh.bounding_box());
        BoundingBoxf3 bb;
        for (const ModelInstance *i : this->instances)
            bb.merge(i->transform_bounding_box(raw_bbox));
        m_bounding_box = bb;
        m_bounding_box_valid = true;
    }
    return m_bounding_box;
}

BoundingBoxf3 ModelObject::tight_bounding_box(bool include_modifiers) const
{
    BoundingBoxf3 bb;

    for (const ModelVolume* vol : this->volumes)
    {
        if (include_modifiers || !vol->modifier)
        {
            for (const ModelInstance* inst : this->instances)
            {
                double c = cos(inst->rotation);
                double s = sin(inst->rotation);

                for (int f = 0; f < vol->mesh.stl.stats.number_of_facets; ++f)
                {
                    const stl_facet& facet = vol->mesh.stl.facet_start[f];

                    for (int i = 0; i < 3; ++i)
                    {
                        // original point
                        const stl_vertex& v = facet.vertex[i];
                        Pointf3 p((double)v.x, (double)v.y, (double)v.z);

                        // scale
                        p.x *= inst->scaling_factor;
                        p.y *= inst->scaling_factor;
                        p.z *= inst->scaling_factor;

                        // rotate Z
                        double x = p.x;
                        double y = p.y;
                        p.x = c * x - s * y;
                        p.y = s * x + c * y;

                        // translate
                        p.x += inst->offset.x;
                        p.y += inst->offset.y;

                        bb.merge(p);
                    }
                }
            }
        }
    }

    return bb;
}

// A mesh containing all transformed instances of this object.
TriangleMesh ModelObject::mesh() const
{
    TriangleMesh mesh;
    TriangleMesh raw_mesh = this->raw_mesh();
    for (const ModelInstance *i : this->instances) {
        TriangleMesh m = raw_mesh;
        i->transform_mesh(&m);
        mesh.merge(m);
    }
    return mesh;
}

// Non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
// Currently used by ModelObject::mesh(), to calculate the 2D envelope for 2D platter
// and to display the object statistics at ModelObject::print_info().
TriangleMesh ModelObject::raw_mesh() const
{
    TriangleMesh mesh;
    for (const ModelVolume *v : this->volumes)
        if (! v->modifier)
            mesh.merge(v->mesh);
    return mesh;
}

// A transformed snug bounding box around the non-modifier object volumes, without the translation applied.
// This bounding box is only used for the actual slicing.
BoundingBoxf3 ModelObject::raw_bounding_box() const
{
    BoundingBoxf3 bb;
    for (const ModelVolume *v : this->volumes)
        if (! v->modifier) {
            if (this->instances.empty()) CONFESS("Can't call raw_bounding_box() with no instances");
            bb.merge(this->instances.front()->transform_mesh_bounding_box(&v->mesh, true));
        }
    return bb;
}

// This returns an accurate snug bounding box of the transformed object instance, without the translation applied.
BoundingBoxf3 ModelObject::instance_bounding_box(size_t instance_idx, bool dont_translate) const
{
    BoundingBoxf3 bb;
    for (ModelVolume *v : this->volumes)
        if (! v->modifier)
            bb.merge(this->instances[instance_idx]->transform_mesh_bounding_box(&v->mesh, dont_translate));
    return bb;
}

void ModelObject::center_around_origin()
{
    // calculate the displacements needed to 
    // center this object around the origin
	BoundingBoxf3 bb;
	for (ModelVolume *v : this->volumes)
        if (! v->modifier)
			bb.merge(v->mesh.bounding_box());
    
    // first align to origin on XYZ
    Vectorf3 vector(-bb.min.x, -bb.min.y, -bb.min.z);
    
    // then center it on XY
    Sizef3 size = bb.size();
    vector.x -= size.x/2;
    vector.y -= size.y/2;
    
    this->translate(vector);
    this->origin_translation.translate(vector);
    
    if (!this->instances.empty()) {
        for (ModelInstance *i : this->instances) {
            // apply rotation and scaling to vector as well before translating instance,
            // in order to leave final position unaltered
            Vectorf3 v = vector.negative();
            v.rotate(i->rotation);
            v.scale(i->scaling_factor);
            i->offset.translate(v.x, v.y);
        }
        this->invalidate_bounding_box();
    }
}

void ModelObject::translate(coordf_t x, coordf_t y, coordf_t z)
{
    for (ModelVolume *v : this->volumes)
        v->mesh.translate(float(x), float(y), float(z));
    if (m_bounding_box_valid) 
        m_bounding_box.translate(x, y, z);
}

void ModelObject::scale(const Pointf3 &versor)
{
    for (ModelVolume *v : this->volumes)
        v->mesh.scale(versor);
    // reset origin translation since it doesn't make sense anymore
    this->origin_translation = Pointf3(0,0,0);
    this->invalidate_bounding_box();
}

void ModelObject::rotate(float angle, const Axis &axis)
{
    for (ModelVolume *v : this->volumes)
        v->mesh.rotate(angle, axis);
    this->origin_translation = Pointf3(0,0,0);
    this->invalidate_bounding_box();
}

void ModelObject::transform(const float* matrix3x4)
{
    if (matrix3x4 == nullptr)
        return;

    for (ModelVolume* v : volumes)
    {
        v->mesh.transform(matrix3x4);
    }

    origin_translation = Pointf3(0.0, 0.0, 0.0);
    invalidate_bounding_box();
}

void ModelObject::mirror(const Axis &axis)
{
    for (ModelVolume *v : this->volumes)
        v->mesh.mirror(axis);
    this->origin_translation = Pointf3(0,0,0);
    this->invalidate_bounding_box();
}

size_t ModelObject::materials_count() const
{
    std::set<t_model_material_id> material_ids;
    for (const ModelVolume *v : this->volumes)
        material_ids.insert(v->material_id());
    return material_ids.size();
}

size_t ModelObject::facets_count() const
{
    size_t num = 0;
    for (const ModelVolume *v : this->volumes)
        if (! v->modifier)
            num += v->mesh.stl.stats.number_of_facets;
    return num;
}

bool ModelObject::needed_repair() const
{
    for (const ModelVolume *v : this->volumes)
        if (! v->modifier && v->mesh.needed_repair())
            return true;
    return false;
}

void ModelObject::cut(coordf_t z, Model* model) const
{
    // clone this one to duplicate instances, materials etc.
    ModelObject* upper = model->add_object(*this);
    ModelObject* lower = model->add_object(*this);
    upper->clear_volumes();
    lower->clear_volumes();
    upper->input_file = "";
    lower->input_file = "";
    
    for (ModelVolume *volume : this->volumes) {
        if (volume->modifier) {
            // don't cut modifiers
            upper->add_volume(*volume);
            lower->add_volume(*volume);
        } else {
            TriangleMesh upper_mesh, lower_mesh;
            TriangleMeshSlicer tms(&volume->mesh);
            tms.cut(z, &upper_mesh, &lower_mesh);

            upper_mesh.repair();
            lower_mesh.repair();
            upper_mesh.reset_repair_stats();
            lower_mesh.reset_repair_stats();
            
            if (upper_mesh.facets_count() > 0) {
                ModelVolume* vol    = upper->add_volume(upper_mesh);
                vol->name           = volume->name;
                vol->config         = volume->config;
                vol->set_material(volume->material_id(), *volume->material());
            }
            if (lower_mesh.facets_count() > 0) {
                ModelVolume* vol    = lower->add_volume(lower_mesh);
                vol->name           = volume->name;
                vol->config         = volume->config;
                vol->set_material(volume->material_id(), *volume->material());
            }
        }
    }
}

void ModelObject::split(ModelObjectPtrs* new_objects)
{
    if (this->volumes.size() > 1) {
        // We can't split meshes if there's more than one volume, because
        // we can't group the resulting meshes by object afterwards
        new_objects->push_back(this);
        return;
    }
    
    ModelVolume* volume = this->volumes.front();
    TriangleMeshPtrs meshptrs = volume->mesh.split();
    for (TriangleMesh *mesh : meshptrs) {
        // Snap the mesh to Z=0.
        float z0 = FLT_MAX;
        
        mesh->repair();
        
        ModelObject* new_object = m_model->add_object(*this, false);
        new_object->input_file  = "";
        ModelVolume* new_volume = new_object->add_volume(*mesh);
        new_volume->name        = volume->name;
        new_volume->config      = volume->config;
        new_volume->modifier    = volume->modifier;
        new_volume->material_id(volume->material_id());
        
        new_objects->push_back(new_object);
        delete mesh;
    }
    
    return;
}

void ModelObject::print_info() const
{
    using namespace std;
    cout << fixed;
    boost::nowide::cout << "[" << boost::filesystem::path(this->input_file).filename().string() << "]" << endl;
    
    TriangleMesh mesh = this->raw_mesh();
    mesh.check_topology();
    BoundingBoxf3 bb = mesh.bounding_box();
    Sizef3 size = bb.size();
    cout << "size_x = " << size.x << endl;
    cout << "size_y = " << size.y << endl;
    cout << "size_z = " << size.z << endl;
    cout << "min_x = " << bb.min.x << endl;
    cout << "min_y = " << bb.min.y << endl;
    cout << "min_z = " << bb.min.z << endl;
    cout << "max_x = " << bb.max.x << endl;
    cout << "max_y = " << bb.max.y << endl;
    cout << "max_z = " << bb.max.z << endl;
    cout << "number_of_facets = " << mesh.stl.stats.number_of_facets  << endl;
    cout << "manifold = "   << (mesh.is_manifold() ? "yes" : "no") << endl;
    
    mesh.repair();  // this calculates number_of_parts
    if (mesh.needed_repair()) {
        mesh.repair();
        if (mesh.stl.stats.degenerate_facets > 0)
            cout << "degenerate_facets = "  << mesh.stl.stats.degenerate_facets << endl;
        if (mesh.stl.stats.edges_fixed > 0)
            cout << "edges_fixed = "        << mesh.stl.stats.edges_fixed       << endl;
        if (mesh.stl.stats.facets_removed > 0)
            cout << "facets_removed = "     << mesh.stl.stats.facets_removed    << endl;
        if (mesh.stl.stats.facets_added > 0)
            cout << "facets_added = "       << mesh.stl.stats.facets_added      << endl;
        if (mesh.stl.stats.facets_reversed > 0)
            cout << "facets_reversed = "    << mesh.stl.stats.facets_reversed   << endl;
        if (mesh.stl.stats.backwards_edges > 0)
            cout << "backwards_edges = "    << mesh.stl.stats.backwards_edges   << endl;
    }
    cout << "number_of_parts =  " << mesh.stl.stats.number_of_parts << endl;
    cout << "volume = "           << mesh.volume()                  << endl;
}

void ModelVolume::material_id(t_model_material_id material_id)
{
    this->_material_id = material_id;
    
    // ensure this->_material_id references an existing material
    (void)this->object->get_model()->add_material(material_id);
}

ModelMaterial* ModelVolume::material() const
{ 
    return this->object->get_model()->get_material(this->_material_id);
}

void ModelVolume::set_material(t_model_material_id material_id, const ModelMaterial &material)
{
    this->_material_id = material_id;
    (void)this->object->get_model()->add_material(material_id, material);
}

ModelMaterial* ModelVolume::assign_unique_material()
{
    Model* model = this->get_object()->get_model();
    
    // as material-id "0" is reserved by the AMF spec we start from 1
    this->_material_id = 1 + model->materials.size();  // watchout for implicit cast
    return model->add_material(this->_material_id);
}

// Split this volume, append the result to the object owning this volume.
// Return the number of volumes created from this one.
// This is useful to assign different materials to different volumes of an object.
size_t ModelVolume::split(unsigned int max_extruders)
{
    TriangleMeshPtrs meshptrs = this->mesh.split();
    if (meshptrs.size() <= 1) {
        delete meshptrs.front();
        return 1;
    }

    size_t idx = 0;
    size_t ivolume = std::find(this->object->volumes.begin(), this->object->volumes.end(), this) - this->object->volumes.begin();
    std::string name = this->name;

    Model::reset_auto_extruder_id();

    for (TriangleMesh *mesh : meshptrs) {
        mesh->repair();
        if (idx == 0)
            this->mesh = std::move(*mesh);
        else
            this->object->volumes.insert(this->object->volumes.begin() + (++ ivolume), new ModelVolume(object, *this, std::move(*mesh)));
        char str_idx[64];
        sprintf(str_idx, "_%d", idx + 1);
        this->object->volumes[ivolume]->name = name + str_idx;
        this->object->volumes[ivolume]->config.set_deserialize("extruder", Model::get_auto_extruder_id_as_string(max_extruders));
        delete mesh;
        ++ idx;
    }
    
    return idx;
}

void ModelInstance::transform_mesh(TriangleMesh* mesh, bool dont_translate) const
{
    mesh->rotate_z(this->rotation);                 // rotate around mesh origin
    mesh->scale(this->scaling_factor);              // scale around mesh origin
    if (!dont_translate)
        mesh->translate(this->offset.x, this->offset.y, 0);
}

BoundingBoxf3 ModelInstance::transform_mesh_bounding_box(const TriangleMesh* mesh, bool dont_translate) const
{
    // Rotate around mesh origin.
    double c = cos(this->rotation);
    double s = sin(this->rotation);
    BoundingBoxf3 bbox;
    for (int i = 0; i < mesh->stl.stats.number_of_facets; ++ i) {
        const stl_facet &facet = mesh->stl.facet_start[i];
        for (int j = 0; j < 3; ++ j) {
            stl_vertex v = facet.vertex[j];
            double xold = v.x;
            double yold = v.y;
            v.x = float(c * xold - s * yold);
            v.y = float(s * xold + c * yold);
            bbox.merge(Pointf3(v.x, v.y, v.z));
        }
    }
    if (! empty(bbox)) {
        // Scale the bounding box uniformly.
        if (std::abs(this->scaling_factor - 1.) > EPSILON) {
            bbox.min.x *= float(this->scaling_factor);
            bbox.min.y *= float(this->scaling_factor);
            bbox.min.z *= float(this->scaling_factor);
            bbox.max.x *= float(this->scaling_factor);
            bbox.max.y *= float(this->scaling_factor);
            bbox.max.z *= float(this->scaling_factor);
        }
        // Translate the bounding box.
        if (! dont_translate) {
            bbox.min.x += float(this->offset.x);
            bbox.min.y += float(this->offset.y);
            bbox.max.x += float(this->offset.x);
            bbox.max.y += float(this->offset.y);
        }
    }
    return bbox;
}

BoundingBoxf3 ModelInstance::transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate) const
{
    Eigen::Transform<float, 3, Eigen::Affine> matrix = Eigen::Transform<float, 3, Eigen::Affine>::Identity();
    if (!dont_translate)
        matrix.translate(Eigen::Vector3f((float)offset.x, (float)offset.y, 0.0f));

    matrix.rotate(Eigen::AngleAxisf(rotation, Eigen::Vector3f::UnitZ()));
    matrix.scale(scaling_factor);

    std::vector<float> m(16, 0.0f);
    ::memcpy((void*)m.data(), (const void*)matrix.data(), 16 * sizeof(float));
    return bbox.transformed(m);
}

void ModelInstance::transform_polygon(Polygon* polygon) const
{
    polygon->rotate(this->rotation);                // rotate around polygon origin
    polygon->scale(this->scaling_factor);           // scale around polygon origin
}

}