Welcome to mirror list, hosted at ThFree Co, Russian Federation.

THCTensorMathPairwise.cu « THC « lib - github.com/torch/cutorch.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e7d05736f82b1300d1f3e67e7eb18627cfd83dd2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#include "THCTensorMath.h"
#include "THCGeneral.h"
#include "THCHalf.h"
#include "THCTensorCopy.h"
#include "THCApply.cuh"
#include "THCNumerics.cuh"

template <typename T>
struct TensorAddConstantOp {
  TensorAddConstantOp(T v) : val(v) {}
  __device__ __forceinline__ void operator()(T* out, T* in) {
    *out = *in + val;
  }

  __device__ __forceinline__ void operator()(T* v) {
    *v += val;
  }

  const T val;
};

#ifdef CUDA_HALF_TENSOR
template <>
struct TensorAddConstantOp<half> {
#ifdef CUDA_HALF_INSTRUCTIONS
  TensorAddConstantOp(half v) : val(v) {}
#else
  TensorAddConstantOp(half v) : fval(THC_half2float(v)) {}
#endif

  __device__ __forceinline__ void operator()(half* out, half* in) {
#ifdef CUDA_HALF_INSTRUCTIONS
    *out = __hadd(*in, val);
#else
    float fin = __half2float(*in);
    float fout = fin + fval;
    *out = __float2half(fout);
#endif
  }

  __device__ __forceinline__ void operator()(half* v) {
#ifdef CUDA_HALF_INSTRUCTIONS
    *v = __hadd(*v, val);
#else
    float fv = __half2float(*v);
    fv += fval;
    *v = __float2half(fv);
#endif
  }

#ifdef CUDA_HALF_INSTRUCTIONS
  const half val;
#else
  const float fval;
#endif
};
#endif // CUDA_HALF_TENSOR


template <typename T>
struct TensorSubConstantOp {
  TensorSubConstantOp(T v) : val(v) {}
  __device__ __forceinline__ void operator()(T* out, T* in) {
    *out = *in - val;
  }

  __device__ __forceinline__ void operator()(T* v) {
    *v -= val;
  }

  const T val;
};


#ifdef CUDA_HALF_TENSOR
template <>
struct TensorSubConstantOp<half> {
#ifdef CUDA_HALF_INSTRUCTIONS
  TensorSubConstantOp(half v): val(THC_float2half(-(THC_half2float(v)))) {}
#else
  TensorSubConstantOp(half v): fval(-(THC_half2float(v))) {}
#endif

  __device__ __forceinline__ void operator()(half* out, half* in) {
#ifdef CUDA_HALF_INSTRUCTIONS
    *out = __hadd(*in, val);
#else
    float fin = __half2float(*in);
    float fout = fin + fval;
    *out = __float2half(fout);
#endif
  }

  __device__ __forceinline__ void operator()(half* v) {
#ifdef CUDA_HALF_INSTRUCTIONS
    *v = __hadd(*v, val);
#else
    float fv = __half2float(*v);
    fv += fval;
    *v = __float2half(fv);
#endif
  }

#ifdef CUDA_HALF_INSTRUCTIONS
  const half val;
#else
  const float fval;
#endif
};
#endif // CUDA_HALF_TENSOR


template <typename T>
struct TensorMulConstantOp {
  TensorMulConstantOp(T v) : val(v) {}
  __device__ __forceinline__ void operator()(T* out, T* in) {
    *out = *in * val;
  }

  __device__ __forceinline__ void operator()(T* v) {
    *v *= val;
  }

  const T val;
};

#ifdef CUDA_HALF_TENSOR
template <>
struct TensorMulConstantOp<half> {
#ifdef CUDA_HALF_INSTRUCTIONS
  TensorMulConstantOp(half v) : val(v) {}
#else
  TensorMulConstantOp(half v) : fval(THC_half2float(v)) {}
#endif

  __device__ __forceinline__ void operator()(half* out, half* in) {
#ifdef CUDA_HALF_INSTRUCTIONS
    *out = __hmul(*in, val);
#else
    float fin = __half2float(*in);
    float fout = fin * fval;
    *out = __float2half(fout);
#endif
  }

  __device__ __forceinline__ void operator()(half* v) {
#ifdef CUDA_HALF_INSTRUCTIONS
    *v = __hmul(*v, val);
#else
    float fv = __half2float(*v);
    fv *= fval;
    *v = __float2half(fv);
#endif
  }

#ifdef CUDA_HALF_INSTRUCTIONS
  const half val;
#else
  const float fval;
#endif
};
#endif // CUDA_HALF_TENSOR

template <typename T>
struct TensorDivConstantOp {
  TensorDivConstantOp(T v) : val(v) {}
  __device__ __forceinline__ void operator()(T* out, T* in) {
    *out = *in / val;
  }

  __device__ __forceinline__ void operator()(T* v) {
    *v /= val;
  }

  const T val;
};

template <>
struct TensorDivConstantOp<float> {
  TensorDivConstantOp(float v) : val(1.f / v) {}
  __device__ __forceinline__ void operator()(float* out, float* in) {
    *out = *in * val;
  }

  __device__ __forceinline__ void operator()(float* v) {
    *v *= val;
  }

  const float val;
};

template <>
struct TensorDivConstantOp<double> {
  TensorDivConstantOp(double v) : val(1. / v) {}
  __device__ __forceinline__ void operator()(double* out, double* in) {
    *out = *in * val;
  }

  __device__ __forceinline__ void operator()(double* v) {
    *v *= val;
  }

  const double val;
};

#ifdef CUDA_HALF_TENSOR
template <>
struct TensorDivConstantOp<half> {
#ifdef CUDA_HALF_INSTRUCTIONS
  TensorDivConstantOp(half v) : val(ScalarInv<half>::to(v)) {}
#else
  TensorDivConstantOp(half v) : fval(1.f / THC_half2float(v)) {}
#endif
  __device__ __forceinline__ void operator()(half* out, half* in) {
#ifdef CUDA_HALF_INSTRUCTIONS
    *out = __hmul(*in, val);
#else
    float fin = __half2float(*in);
    float fout = fin * fval;
    *out = __float2half(fout);
#endif
  }

  __device__ __forceinline__ void operator()(half* v) {
#ifdef CUDA_HALF_INSTRUCTIONS
    *v = __hmul(*v, val);
#else
    float fv = __half2float(*v);
    fv *= fval;
    *v = __float2half(fv);
#endif
  }

#ifdef CUDA_HALF_INSTRUCTIONS
  const half val;
#else
  const float fval;
#endif
};
#endif // CUDA_HALF_TENSOR

template <int Upper>
struct TensorTriOp {
  TensorTriOp(float *start_, long stride0_, long stride1_, long k_)
    : start(start_), stride0(stride0_), stride1(stride1_), k(k_) {}

  __device__ __forceinline__ int mask(float *in) {
    ptrdiff_t n = in - start;
    long row, col;
    if (stride0 > stride1)
    {
      row = (long) (n / stride0);
      col = (long) ((n % stride0) / stride1);
    }
    else
    {
      row = (long) ((n % stride1) / stride0);
      col = (long) (n / stride1);
    }

    return Upper ? (col - row >= k) : (col - row <= k);
  }

  __device__ __forceinline__ void operator()(float* out, float* in) {
    *out = mask(in) ? *in : 0;
  }

  __device__ __forceinline__ void operator()(float* v) {
    if (!mask(v))
      *v = 0;
  }

  const float *start;
  const long stride0, stride1, k;
};

void THCudaTensor_tril(THCState *state, THCudaTensor *self_, THCudaTensor *src_, long k)
{
  THAssert(THCudaTensor_checkGPU(state, 2, self_, src_));
  THArgCheck(src_->nDimension == 2, 1, "expected a matrix");

  THCudaTensor *src = src_;
  if (self_ == src_)
    src = THCudaTensor_newContiguous(state, src_);

  long stride0 = src->stride[0];
  long stride1 = src->stride[1];
  float *start = THCudaTensor_data(state, src) + src->storageOffset;

  TensorTriOp<0> op(start, stride0, stride1, k);

  if (self_ == src_) {
    if (!THC_pointwiseApply1(state, src, op)) {
      THArgCheck(false, 2, CUTORCH_DIM_WARNING);
    }
  } else {
    THCudaTensor_resizeAs(state, self_, src);

    if (!THC_pointwiseApply2(state, self_, src, op)) {
      THArgCheck(false, 2, CUTORCH_DIM_WARNING);
    }
  }

  if (self_ == src_)
    THCudaTensor_freeCopyTo(state, src, src_);

  THCudaCheck(cudaGetLastError());
}

void THCudaTensor_triu(THCState *state, THCudaTensor *self_, THCudaTensor *src_, long k)
{
  THAssert(THCudaTensor_checkGPU(state, 2, self_, src_));
  THArgCheck(src_->nDimension == 2, 1, "expected a matrix");

  THCudaTensor *src = src_;
  if (self_ == src_)
    src = THCudaTensor_newContiguous(state, src_);

  long stride0 = src->stride[0];
  long stride1 = src->stride[1];
  float *start = THCudaTensor_data(state, src) + src->storageOffset;

  TensorTriOp<1> op(start, stride0, stride1, k);

  if (self_ == src_) {
    if (!THC_pointwiseApply1(state, src, op)) {
      THArgCheck(false, 2, CUTORCH_DIM_WARNING);
    }
  } else {
    THCudaTensor_resizeAs(state, self_, src);

    if (!THC_pointwiseApply2(state, self_, src, op)) {
      THArgCheck(false, 2, CUTORCH_DIM_WARNING);
    }
  }

  if (self_ == src_)
    THCudaTensor_freeCopyTo(state, src, src_);

  THCudaCheck(cudaGetLastError());
}

#include "generic/THCTensorMathPairwise.cu"
#include "THCGenerateAllTypes.h"

// Copy the kth diagonal of a matrix B to a vector A.
__global__ void THCudaTensor_copyFromDiagonal(float* a, float* b, long start, long size, long strideSum, long strideA) {
  for (long linearIndex = blockIdx.x * blockDim.x + threadIdx.x;
       linearIndex < size;
       linearIndex += gridDim.x * blockDim.x) {
    const long bOffset = start + strideSum * linearIndex;
    a[strideA * linearIndex] = b[bOffset];
  }
}

// Copy vector B to the kth diagonal of a matrix A
__global__ void THCudaTensor_copyToDiagonal(float* a, float* b, long start, long size, long strideSum, long strideB) {
  for (long linearIndex = blockIdx.x * blockDim.x + threadIdx.x;
       linearIndex < size;
       linearIndex += gridDim.x * blockDim.x) {
    const long aOffset = start + strideSum * linearIndex;
    a[aOffset] = b[strideB * linearIndex];
  }
}

void THCudaTensor_diag(THCState *state, THCudaTensor *self_, THCudaTensor *src_, long k){
  THAssert(THCudaTensor_checkGPU(state, 2, self_, src_));
  int nDimension = THCudaTensor_nDimension(state, src_);
  THArgCheck((nDimension == 2) || (nDimension == 1), 1, "expected a matrix or a vector");
  if (nDimension == 2) {
    long stride0 = THCudaTensor_stride(state, src_, 0);
    long stride1 = THCudaTensor_stride(state, src_, 1);
    long size0 = THCudaTensor_size(state, src_, 0);
    long size1 = THCudaTensor_size(state, src_, 1);
    long size = (k > 0) ? min((long long)size0, (long long)size1 - k) : min((long long)size0 + k, (long long)size1);
    THCudaTensor_resize1d(state, self_, size);
    long strideSelf = THCudaTensor_stride(state, self_, 0);
    const dim3 threads(min((long long)THCState_getCurrentDeviceProperties(state)->maxThreadsPerBlock, (long long)size));
    dim3 grid(min((long long)1024, (long long)THCCeilDiv(size, (long)threads.x)));
    long start = (k >= 0 ? k * stride1 : -k * stride0);
    THCudaTensor_copyFromDiagonal<<<grid, threads, 0, THCState_getCurrentStream(state)>>>
    (THCudaTensor_data(state, self_), THCudaTensor_data(state, src_), start, size, stride0 + stride1, strideSelf);
  } else {
    long totalElements = THCudaTensor_nElement(state, src_);
    long size = (k > 0) ? totalElements + k : totalElements - k;
    long strideSrc = THCudaTensor_stride(state, src_, 0);
    THCudaTensor_resize2d(state, self_, size, size);
    THCudaTensor_zero(state, self_);
    long stride0 = THCudaTensor_stride(state, self_, 0);
    long stride1 = THCudaTensor_stride(state, self_, 1);
    const dim3 threads(min((long long)THCState_getCurrentDeviceProperties(state)->maxThreadsPerBlock, (long long)size));
    dim3 grid(min((long long)1024, (long long)THCCeilDiv(size, (long)threads.x)));
    long start = (k >= 0 ? k * stride1 : -k * stride0);
    THCudaTensor_copyToDiagonal<<<grid, threads, 0, THCState_getCurrentStream(state)>>>
    (THCudaTensor_data(state, self_), THCudaTensor_data(state, src_), start, totalElements, stride0 + stride1, strideSrc);
  }
  THCudaCheck(cudaGetLastError());
}

float THCudaTensor_trace(THCState *state, THCudaTensor *src_) {
  THAssert(THCudaTensor_checkGPU(state, 1, src_));
  THArgCheck((src_->nDimension == 2), 1, "expected a matrix");
  THCudaTensor *diag = THCudaTensor_new(state);
  THCudaTensor_diag(state, diag, src_, 0);
  float trace = THCudaTensor_sumall(state, diag);
  THCudaTensor_free(state, diag);
  return trace;
}