local SpatialDivisiveNormalization, parent = torch.class('nn.SpatialDivisiveNormalization','nn.Module') function SpatialDivisiveNormalization:__init(nInputPlane, kernel, threshold, thresval) parent.__init(self) -- get args self.nInputPlane = nInputPlane or 1 self.kernel = kernel or torch.Tensor(9,9):fill(1) self.threshold = threshold or 1e-4 self.thresval = thresval or threshold or 1e-4 local kdim = self.kernel:nDimension() -- check args if kdim ~= 2 and kdim ~= 1 then error(' averaging kernel must be 2D or 1D') end if (self.kernel:size(1) % 2) == 0 or (kdim == 2 and (self.kernel:size(2) % 2) == 0) then error(' averaging kernel must have ODD dimensions') end -- padding values local padH = math.floor(self.kernel:size(1)/2) local padW = padH if kdim == 2 then padW = math.floor(self.kernel:size(2)/2) end -- create convolutional mean estimator self.meanestimator = nn.Sequential() self.meanestimator:add(nn.SpatialZeroPadding(padW, padW, padH, padH)) if kdim == 2 then self.meanestimator:add(nn.SpatialConvolution(self.nInputPlane, 1, self.kernel:size(2), self.kernel:size(1))) else self.meanestimator:add(nn.SpatialConvolutionMap(nn.tables.oneToOne(self.nInputPlane), self.kernel:size(1), 1)) self.meanestimator:add(nn.SpatialConvolution(self.nInputPlane, 1, 1, self.kernel:size(1))) end self.meanestimator:add(nn.Replicate(self.nInputPlane,1,3)) -- create convolutional std estimator self.stdestimator = nn.Sequential() self.stdestimator:add(nn.Square()) self.stdestimator:add(nn.SpatialZeroPadding(padW, padW, padH, padH)) if kdim == 2 then self.stdestimator:add(nn.SpatialConvolution(self.nInputPlane, 1, self.kernel:size(2), self.kernel:size(1))) else self.stdestimator:add(nn.SpatialConvolutionMap(nn.tables.oneToOne(self.nInputPlane), self.kernel:size(1), 1)) self.stdestimator:add(nn.SpatialConvolution(self.nInputPlane, 1, 1, self.kernel:size(1))) end self.stdestimator:add(nn.Replicate(self.nInputPlane,1,3)) self.stdestimator:add(nn.Sqrt()) -- set kernel and bias if kdim == 2 then self.kernel:div(self.kernel:sum() * self.nInputPlane) for i = 1,self.nInputPlane do self.meanestimator.modules[2].weight[1][i] = self.kernel self.stdestimator.modules[3].weight[1][i] = self.kernel end self.meanestimator.modules[2].bias:zero() self.stdestimator.modules[3].bias:zero() else self.kernel:div(self.kernel:sum() * math.sqrt(self.nInputPlane)) for i = 1,self.nInputPlane do self.meanestimator.modules[2].weight[i]:copy(self.kernel) self.meanestimator.modules[3].weight[1][i]:copy(self.kernel) self.stdestimator.modules[3].weight[i]:copy(self.kernel) self.stdestimator.modules[4].weight[1][i]:copy(self.kernel) end self.meanestimator.modules[2].bias:zero() self.meanestimator.modules[3].bias:zero() self.stdestimator.modules[3].bias:zero() self.stdestimator.modules[4].bias:zero() end -- other operation self.normalizer = nn.CDivTable() self.divider = nn.CDivTable() self.thresholder = nn.Threshold(self.threshold, self.thresval) -- coefficient array, to adjust side effects self.coef = torch.Tensor(1,1,1) end function SpatialDivisiveNormalization:updateOutput(input) self.localstds = self.stdestimator:updateOutput(input) -- compute side coefficients local dim = input:dim() if self.localstds:dim() ~= self.coef:dim() or (input:size(dim) ~= self.coef:size(dim)) or (input:size(dim-1) ~= self.coef:size(dim-1)) then self.ones = self.ones or input.new() if dim == 4 then -- batch mode self.ones:resizeAs(input[1]):fill(1) local coef = self.meanestimator:updateOutput(self.ones) self._coef = self._coef or input.new() self._coef:resizeAs(coef):copy(coef) -- make contiguous for view self.coef = self._coef:view(1,table.unpack(self._coef:size():totable())):expandAs(self.localstds) else self.ones:resizeAs(input):fill(1) self.coef = self.meanestimator:updateOutput(self.ones) end end -- normalize std dev self.adjustedstds = self.divider:updateOutput{self.localstds, self.coef} self.thresholdedstds = self.thresholder:updateOutput(self.adjustedstds) self.output = self.normalizer:updateOutput{input, self.thresholdedstds} -- done return self.output end function SpatialDivisiveNormalization:updateGradInput(input, gradOutput) -- resize grad self.gradInput:resizeAs(input):zero() -- backprop through all modules local gradnorm = self.normalizer:updateGradInput({input, self.thresholdedstds}, gradOutput) local gradadj = self.thresholder:updateGradInput(self.adjustedstds, gradnorm[2]) local graddiv = self.divider:updateGradInput({self.localstds, self.coef}, gradadj) self.gradInput:add(self.stdestimator:updateGradInput(input, graddiv[1])) self.gradInput:add(gradnorm[1]) -- done return self.gradInput end function SpatialDivisiveNormalization:clearState() if self.ones then self.ones:set() end if self._coef then self._coef:set() end self.meanestimator:clearState() self.stdestimator:clearState() return parent.clearState(self) end