Welcome to mirror list, hosted at ThFree Co, Russian Federation.

VolumetricFullConvolution.c « generic « THNN « lib - github.com/torch/nn.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f69f84f67f8c48f61779e0eca39d0b257438408d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "generic/VolumetricFullConvolution.c"
#else

static void THNN_(vol2col)(
  const real *data_vol, const int channels,
  const int depth, const int height, const int width,
  const int kT, const int kH, const int kW,
  const int pT, const int pH, const int pW,
  const int dT, const int dH, const int dW,
  const int dilationT, const int dilationH, const int dilationW,
  real *data_col)
{
  int c, t, h, w;
  int depth_col  = (depth  + 2 * pT - (dilationT * (kT - 1) + 1)) / dT + 1;
  int height_col = (height + 2 * pH - (dilationH * (kH - 1) + 1)) / dH + 1;
  int width_col  = (width  + 2 * pW - (dilationW * (kW - 1) + 1)) / dW + 1;
  int channels_col = channels * kT * kH * kW;
  for (c = 0; c < channels_col; ++c)
  {
    int w_offset = c % kW;
    int h_offset = (c / kW) % kH;
    int t_offset = (c / kW / kH) % kT;
    int c_vol = c / kT / kH / kW;
    for (t = 0; t < depth_col; ++t)
    {
      for (h = 0; h < height_col; ++h)
      {
        for (w = 0; w < width_col; ++w)
        {
          int t_pad = t * dT - pT + t_offset * dilationT;
          int h_pad = h * dH - pH + h_offset * dilationH;
          int w_pad = w * dW - pW + w_offset * dilationW;
          if (t_pad >= 0 && t_pad < depth &&
              h_pad >= 0 && h_pad < height &&
              w_pad >= 0 && w_pad < width)
            data_col[((c * depth_col + t) * height_col + h) * width_col + w] =
              data_vol[((c_vol * depth + t_pad) * height + h_pad) * width + w_pad];
          else
            data_col[((c * depth_col + t) * height_col + h) * width_col + w] = 0;
        }
      }
    }
  }
}

static void THNN_(col2vol)(
  const real* data_col, const int channels,
  const int depth, const int height, const int width,
  const int kT, const int kH, const int kW,
  const int pT, const int pH, const int pW,
  const int dT, const int dH, const int dW,
  const int dilationT, const int dilationH, const int dilationW,
  real* data_vol)
{
  int c, t, h, w;
  memset(data_vol, 0, sizeof(real) * depth * height * width * channels);
  int depth_col  = (depth  + 2 * pT - (dilationT * (kT - 1) + 1)) / dT + 1;
  int height_col = (height + 2 * pH - (dilationH * (kH - 1) + 1)) / dH + 1;
  int width_col  = (width  + 2 * pW - (dilationW * (kW - 1) + 1)) / dW + 1;
  int channels_col = channels * kT * kH * kW;
  for (c = 0; c < channels_col; ++c)
  {
    int w_offset = c % kW;
    int h_offset = (c / kW) % kH;
    int t_offset = (c / kW / kH) % kT;
    int c_vol = c / kT / kH / kW;
    for (t = 0; t < depth_col; ++t)
    {
      for (h = 0; h < height_col; ++h)
      {
        for (w = 0; w < width_col; ++w)
        {
          int t_pad = t * dT - pT + t_offset * dilationT;
          int h_pad = h * dH - pH + h_offset * dilationH;
          int w_pad = w * dW - pW + w_offset * dilationW;
          if (t_pad >= 0 && t_pad < depth &&
              h_pad >= 0 && h_pad < height &&
              w_pad >= 0 && w_pad < width)
            data_vol[((c_vol * depth + t_pad) * height + h_pad) * width + w_pad] +=
              data_col[((c * depth_col + t) * height_col + h) * width_col + w];
        }
      }
    }
  }
}

void THNN_(VolumetricFullConvolution_updateOutput)(
  THNNState *state,
  THTensor *input,          // 4D or 5D (batch) tensor
  THTensor *output,
  THTensor *weight,         // weight tensor (nInputPlane x nOutputPlane x kT x kH x kW)
  THTensor *bias,
  THTensor *finput,         // internal columns buffer
  THTensor *fgradInput,     // internal ones buffer
  int dT, int dW, int dH,   // stride of the convolution
  int pT, int pW, int pH,   // padding
  int aT, int aW, int aH)   // extra output adjustment
{
  THTensor *columns = finput;
  THTensor *ones    = fgradInput;

  // number of input & output planes and kernel size is indirectly defined by the weight tensor
  THNN_ARGCHECK(weight->nDimension == 5, 4, weight,
		"5D (nOutputPlane x nInputPlane x kT x kH x kW) tensor "
		"expected for weight, but got: %s");

  const int nInputPlane  = (int)weight->size[0];
  const int nOutputPlane = (int)weight->size[1];
  const int kT           = (int)weight->size[2];
  const int kH           = (int)weight->size[3];
  const int kW           = (int)weight->size[4];

  THNN_ARGCHECK(input->nDimension == 4 || input->nDimension == 5, 2, input,
		"4D or 5D (batch mode) tensor expected for input, but got: %s");

  input = THTensor_(newContiguous)(input);
  int batch = 1;
  if (input->nDimension == 4)
  {
    THArgCheck(input->size[0] == nInputPlane, 2, "input channels and nInputPlane dont match");
    // Force batch
    batch = 0;
    THTensor_(resize5d)(input, 1, input->size[0], input->size[1], input->size[2], input->size[3]);
  }
  else
  {
    THArgCheck(input->size[1] == nInputPlane, 2, "input channels and nInputPlane dont match");
  }

  const long inputWidth   = input->size[4];
  const long inputHeight  = input->size[3];
  const long inputDepth   = input->size[2];
  const long outputWidth  = (inputWidth  - 1) * dW - 2*pW + kW + aW;
  const long outputHeight = (inputHeight - 1) * dH - 2*pH + kH + aH;
  const long outputDepth  = (inputDepth  - 1) * dT - 2*pT + kT + aT;

  // Batch size + input planes
  const long batchSize = input->size[0];

  // Resize output
  THTensor_(resize5d)(output, batchSize, nOutputPlane, outputDepth, outputHeight, outputWidth);

  // Resize temporary columns
  THTensor_(resize2d)(columns, nOutputPlane*kW*kH*kT, inputDepth*inputHeight*inputWidth);
  THTensor_(zero)(columns);

  // Define a buffer of ones, for bias accumulation
  // Note: this buffer can be shared with other modules, it only ever gets increased,
  // and always contains ones.
  if (ones->nDimension != 3 || ones->size[0]*ones->size[1]*ones->size[2] < outputDepth*outputHeight*outputWidth)
  {
    // Resize plane and fill with ones...
    THTensor_(resize3d)(ones, outputDepth, outputHeight, outputWidth);
    THTensor_(fill)(ones, 1);
  }

  // Helpers
  THTensor *input_n = THTensor_(new)();
  THTensor *output_n = THTensor_(new)();

  int elt;
  // For each elt in batch, do:
  for (elt = 0; elt < batchSize; ++elt)
  {
    // Matrix mulitply per output:
    THTensor_(select)(input_n, input, 0, elt);
    THTensor_(select)(output_n, output, 0, elt);

    // M,N,K are dims of matrix A and B
    // (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
    const long m = weight->size[1] * weight->size[2] * weight->size[3] * weight->size[4];
    const long n = columns->size[1];
    const long k = weight->size[0];

    // Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
    THBlas_(gemm)(
      'n', 't',
      n, m, k,
      1,
      THTensor_(data)(input_n), n,
      THTensor_(data)(weight), m,
      0,
      THTensor_(data)(columns), n
    );

    // Unpack columns back into input:
    THNN_(col2vol)(
      THTensor_(data)(columns),
      nOutputPlane, outputDepth, outputHeight, outputWidth,
      kT, kH, kW,
      pT, pH, pW,
      dT, dH, dW,
       1,  1,  1,
      THTensor_(data)(output_n)
    );

    // Do Bias after:
    // M,N,K are dims of matrix A and B
    // (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
    const long m_ = nOutputPlane;
    const long n_ = outputDepth * outputHeight * outputWidth;
    const long k_ = 1;

    // Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
    THBlas_(gemm)(
      't', 'n',
      n_, m_, k_,
      1,
      THTensor_(data)(ones), k_,
      THTensor_(data)(bias), k_,
      1,
      THTensor_(data)(output_n), n_
    );
  }

  // Free
  THTensor_(free)(input_n);
  THTensor_(free)(output_n);

  // Resize output
  if (batch == 0)
  {
    THTensor_(resize4d)(output, nOutputPlane, outputDepth, outputHeight, outputWidth);
    THTensor_(resize4d)(input, nInputPlane, inputDepth, inputHeight, inputWidth);
  }

  THTensor_(free)(input);
}

void THNN_(VolumetricFullConvolution_updateGradInput)(
  THNNState *state,
  THTensor *input,
  THTensor *gradOutput,
  THTensor *gradInput,
  THTensor *weight,
  THTensor *finput,
  THTensor *fgradInput,     // only used by cuda impl
  int dT, int dW, int dH,   // stride
  int pT, int pW, int pH,   // padding
  int aT, int aW, int aH)   // extra output adjustment
{
  THTensor *gradColumns = finput;

  // number of input & output planes and kernel size is indirectly defined by the weight tensor
  THNN_ARGCHECK(weight->nDimension == 5, 4, weight,
		"5D (nOutputPlane x nInputPlane x kT x kH x kW) tensor "
		"expected for weight, but got: %s");

  const int nInputPlane  = (int)weight->size[0];
  const int nOutputPlane = (int)weight->size[1];
  const int kT           = (int)weight->size[2];
  const int kH           = (int)weight->size[3];
  const int kW           = (int)weight->size[4];

  THNN_ARGCHECK(input->nDimension == 4 || input->nDimension == 5, 2, input,
		"4D or 5D (batch mode) tensor expected for input, but got: %s");

  input = THTensor_(newContiguous)(input);
  gradOutput = THTensor_(newContiguous)(gradOutput);

  int batch = 1;
  if (input->nDimension == 4)
  {
    // Force batch
    batch = 0;
    THTensor_(resize5d)(input, 1, input->size[0], input->size[1], input->size[2], input->size[3]);
    THTensor_(resize5d)(gradOutput, 1, gradOutput->size[0], gradOutput->size[1], gradOutput->size[2], gradOutput->size[3]);
  }

  const long inputWidth   = input->size[4];
  const long inputHeight  = input->size[3];
  const long inputDepth   = input->size[2];
  const long outputWidth  = (inputWidth  - 1) * dW - 2*pW + kW + aW;
  const long outputHeight = (inputHeight - 1) * dH - 2*pH + kH + aH;
  const long outputDepth  = (inputDepth  - 1) * dT - 2*pT + kT + aT;

  // Batch size + input planes
  const long batchSize = input->size[0];

  // Resize output
  THTensor_(resize5d)(gradInput, batchSize, nInputPlane, inputDepth, inputHeight, inputWidth);
  THTensor_(zero)(gradInput);

  // Resize temporary columns
  THTensor_(resize2d)(gradColumns, nOutputPlane*kW*kH*kT, inputDepth*inputHeight*inputWidth);

  // Helpers
  THTensor *gradInput_n = THTensor_(new)();
  THTensor *gradOutput_n = THTensor_(new)();

  int elt;
  // For each elt in batch, do:
  for (elt = 0; elt < batchSize; ++elt)
  {
    // Matrix mulitply per sample:
    THTensor_(select)(gradInput_n, gradInput, 0, elt);
    THTensor_(select)(gradOutput_n, gradOutput, 0, elt);

    // Extract columns:
    THNN_(vol2col)(
      THTensor_(data)(gradOutput_n),
      nOutputPlane, outputDepth, outputHeight, outputWidth,
      kT, kH, kW,
      pT, pH, pW,
      dT, dH, dW,
       1,  1,  1,
      THTensor_(data)(gradColumns)
    );

    // M,N,K are dims of matrix A and B
    // (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
    const long m = weight->size[0];
    const long n = gradColumns->size[1];
    const long k = weight->size[1] * weight->size[2] * weight->size[3] * weight->size[4];

    // Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
    THBlas_(gemm)(
      'n', 'n',
      n, m, k,
      1,
      THTensor_(data)(gradColumns), n,
      THTensor_(data)(weight), k,
      0,
      THTensor_(data)(gradInput_n), n
    );
  }

  // Free
  THTensor_(free)(gradInput_n);
  THTensor_(free)(gradOutput_n);

  // Resize output
  if (batch == 0)
  {
    THTensor_(resize4d)(gradOutput, nOutputPlane, outputDepth, outputHeight, outputWidth);
    THTensor_(resize4d)(input, nInputPlane, inputDepth, inputHeight, inputWidth);
    THTensor_(resize4d)(gradInput, nInputPlane, inputDepth, inputHeight, inputWidth);
  }

  THTensor_(free)(input);
  THTensor_(free)(gradOutput);
}

void THNN_(VolumetricFullConvolution_accGradParameters)(
  THNNState *state,
  THTensor *input,
  THTensor *gradOutput,
  THTensor *gradWeight,
  THTensor *gradBias,
  THTensor *finput,
  THTensor *fgradInput,
  int dT, int dW, int dH,   // stride
  int pT, int pW, int pH,   // padding
  int aT, int aW, int aH,   // extra output adjustment
  real scale)
{
  // number of input & output planes and kernel size is indirectly defined by the gradWeight tensor
  THNN_ARGCHECK(gradWeight->nDimension == 5, 4, gradWeight,
		"5D (nOutputPlane x nInputPlane x kT x kH x kW) tensor "
		"expected for gradWeight, but got: %s");

  int nInputPlane  = (int)gradWeight->size[0];
  int nOutputPlane = (int)gradWeight->size[1];
  int kT           = (int)gradWeight->size[2];
  int kH           = (int)gradWeight->size[3];
  int kW           = (int)gradWeight->size[4];

  THTensor *columns = finput;
  THTensor *ones = fgradInput;

  THNN_ARGCHECK(input->nDimension == 4 || input->nDimension == 5, 2, input,
		"4D or 5D (batch mode) tensor expected for input, but got: %s");

  input = THTensor_(newContiguous)(input);
  gradOutput = THTensor_(newContiguous)(gradOutput);

  int batch = 1;
  if (input->nDimension == 4)
  {
    // Force batch
    batch = 0;
    THTensor_(resize5d)(input, 1, input->size[0], input->size[1], input->size[2], input->size[3]);
    THTensor_(resize5d)(gradOutput, 1, gradOutput->size[0], gradOutput->size[1], gradOutput->size[2], gradOutput->size[3]);
  }

  const long inputWidth   = input->size[4];
  const long inputHeight  = input->size[3];
  const long inputDepth   = input->size[2];
  const long outputWidth  = (inputWidth  - 1) * dW - 2*pW + kW + aW;
  const long outputHeight = (inputHeight - 1) * dH - 2*pH + kH + aH;
  const long outputDepth  = (inputDepth  - 1) * dT - 2*pT + kT + aT;

  // Batch size + input planes
  const long batchSize = input->size[0];

  // Define a buffer of ones, for bias accumulation
  if (ones->nDimension != 3 || ones->size[0]*ones->size[1]*ones->size[2] < outputDepth*outputHeight*outputWidth)
  {
    // Resize plane and fill with ones...
    THTensor_(resize3d)(ones, outputDepth, outputHeight, outputWidth);
    THTensor_(fill)(ones, 1);
  }

  // Resize temporary columns
  THTensor_(resize2d)(columns, nOutputPlane*kW*kH*kT, inputDepth*inputHeight*inputWidth);

  // Helpers
  THTensor *input_n = THTensor_(new)();
  THTensor *gradOutput_n = THTensor_(new)();

  int elt;
  // For each elt in batch, do:
  for (elt = 0; elt < batchSize; ++elt)
  {
    // Matrix mulitply per output:
    THTensor_(select)(input_n, input, 0, elt);
    THTensor_(select)(gradOutput_n, gradOutput, 0, elt);

    // Extract columns:
    THNN_(vol2col)(
      THTensor_(data)(gradOutput_n), nOutputPlane,
      outputDepth, outputHeight, outputWidth,
      kT, kH, kW,
      pT, pH, pW,
      dT, dH, dW,
       1,  1,  1,
      THTensor_(data)(columns)
    );

    // M,N,K are dims of matrix A and B
    // (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
    const long n = columns->size[0];   // nOutputPlane * kt * kh * kw
    const long m = input_n->size[0];   // nInputPlane
    const long k = columns->size[1];   // inputHeight * inputWidth

    // Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
    THBlas_(gemm)(
      't', 'n',
      n, m, k,
      scale,
      THTensor_(data)(columns), k,
      THTensor_(data)(input_n), k,
      1,
      THTensor_(data)(gradWeight), n
    );

    // Do Bias:
    // M,N,K are dims of matrix A and B
    // (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
    const long m_ = nOutputPlane;
    const long k_ = outputDepth * outputHeight * outputWidth;

    // Do GEMV (note: this is a bit confusing because gemv assumes column-major matrices)
    THBlas_(gemv)(
      't',
      k_, m_,
      scale,
      THTensor_(data)(gradOutput_n), k_,
      THTensor_(data)(ones), 1,
      1,
      THTensor_(data)(gradBias), 1
    );
  }

  // Free
  THTensor_(free)(input_n);
  THTensor_(free)(gradOutput_n);

  // Resize
  if (batch == 0)
  {
    THTensor_(resize4d)(gradOutput, nOutputPlane, outputDepth, outputHeight, outputWidth);
    THTensor_(resize4d)(input, nInputPlane, inputDepth, inputHeight, inputWidth);
  }

  THTensor_(free)(input);
  THTensor_(free)(gradOutput);
}

#endif