--[[ ADAGRAD implementation for SGD ARGS: - `opfunc` : a function that takes a single input (X), the point of evaluation, and returns f(X) and df/dX - `x` : the initial point - `state` : a table describing the state of the optimizer; after each call the state is modified - `state.learningRate` : learning rate - `state.paramVariance` : vector of temporal variances of parameters - `state.weightDecay` : scalar that controls weight decay RETURN: - `x` : the new x vector - `f(x)` : the function, evaluated before the update ]] function optim.adagrad(opfunc, x, config, state) -- (0) get/update state if config == nil and state == nil then print('no state table, ADAGRAD initializing') end local config = config or {} local state = state or config local lr = config.learningRate or 1e-3 local lrd = config.learningRateDecay or 0 local wd = config.weightDecay or 0 state.evalCounter = state.evalCounter or 0 local nevals = state.evalCounter -- (1) evaluate f(x) and df/dx local fx,dfdx = opfunc(x) -- (2) weight decay with a single parameter if wd ~= 0 then dfdx:add(wd, x) end -- (3) learning rate decay (annealing) local clr = lr / (1 + nevals*lrd) -- (4) parameter update with single or individual learning rates if not state.paramVariance then state.paramVariance = torch.Tensor():typeAs(x):resizeAs(dfdx):zero() state.paramStd = torch.Tensor():typeAs(x):resizeAs(dfdx) end state.paramVariance:addcmul(1,dfdx,dfdx) state.paramStd:resizeAs(state.paramVariance):copy(state.paramVariance):sqrt() x:addcdiv(-clr, dfdx,state.paramStd:add(1e-10)) -- (5) update evaluation counter state.evalCounter = state.evalCounter + 1 -- return x*, f(x) before optimization return x,{fx} end