--[[ An implementation of AdaMax http://arxiv.org/pdf/1412.6980.pdf ARGS: - 'opfunc' : a function that takes a single input (X), the point of a evaluation, and returns f(X) and df/dX - 'x' : the initial point - 'config` : a table with configuration parameters for the optimizer - 'config.learningRate' : learning rate - 'config.beta1' : first moment coefficient - 'config.beta2' : second moment coefficient - 'config.epsilon' : for numerical stability - 'state' : a table describing the state of the optimizer; after each call the state is modified. RETURN: - `x` : the new x vector - `f(x)` : the function, evaluated before the update ]] function optim.adamax(opfunc, x, config, state) -- (0) get/update state local config = config or {} local state = state or config local lr = config.learningRate or 0.002 local beta1 = config.beta1 or 0.9 local beta2 = config.beta2 or 0.999 local epsilon = config.epsilon or 1e-38 local wd = config.weightDecay or 0 -- (1) evaluate f(x) and df/dx local fx, dfdx = opfunc(x) -- (2) weight decay if wd ~= 0 then dfdx:add(wd, x) end -- Initialization state.t = state.t or 0 -- Exponential moving average of gradient values state.m = state.m or x.new(dfdx:size()):zero() -- Exponential moving average of the infinity norm state.u = state.u or x.new(dfdx:size()):zero() -- A tmp tensor to hold the input to max() state.max = state.max or x.new(2, unpack(dfdx:size():totable())):zero() state.t = state.t + 1 -- Update biased first moment estimate. state.m:mul(beta1):add(1-beta1, dfdx) -- Update the exponentially weighted infinity norm. state.max[1]:copy(state.u):mul(beta2) state.max[2]:copy(dfdx):abs():add(epsilon) state.u:max(state.max, 1) local biasCorrection1 = 1 - beta1^state.t local stepSize = lr/biasCorrection1 -- (2) update x x:addcdiv(-stepSize, state.m, state.u) -- return x*, f(x) before optimization return x, {fx} end