/* * Copyright © 2018, VideoLAN and dav1d authors * Copyright © 2018, Two Orioles, LLC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "common/frame.h" #include "src/thread_task.h" #include "src/fg_apply.h" // This function resets the cur pointer to the first frame theoretically // executable after a task completed (ie. each time we update some progress or // insert some tasks in the queue). // When frame_idx is set, it can be either from a completed task, or from tasks // inserted in the queue, in which case we have to make sure the cur pointer // isn't past this insert. // The special case where frame_idx is UINT_MAX is to handle the reset after // completing a task and locklessly signaling progress. In this case we don't // enter a critical section, which is needed for this function, so we set an // atomic for a delayed handling, happening here. Meaning we can call this // function without any actual update other than what's in the atomic, hence // this special case. static inline int reset_task_cur(const Dav1dContext *const c, struct TaskThreadData *const ttd, unsigned frame_idx) { const unsigned first = atomic_load(&ttd->first); unsigned reset_frame_idx = atomic_exchange(&ttd->reset_task_cur, UINT_MAX); if (reset_frame_idx < first) { if (frame_idx == UINT_MAX) return 0; reset_frame_idx = UINT_MAX; } if (!ttd->cur && c->fc[first].task_thread.task_cur_prev == NULL) return 0; if (reset_frame_idx != UINT_MAX) { if (frame_idx == UINT_MAX) { if (reset_frame_idx > first + ttd->cur) return 0; ttd->cur = reset_frame_idx - first; goto cur_found; } } else if (frame_idx == UINT_MAX) return 0; if (frame_idx < first) frame_idx += c->n_fc; const unsigned min_frame_idx = umin(reset_frame_idx, frame_idx); const unsigned cur_frame_idx = first + ttd->cur; if (ttd->cur < c->n_fc && cur_frame_idx < min_frame_idx) return 0; for (ttd->cur = min_frame_idx - first; ttd->cur < c->n_fc; ttd->cur++) if (c->fc[(first + ttd->cur) % c->n_fc].task_thread.task_head) break; cur_found: for (unsigned i = ttd->cur; i < c->n_fc; i++) c->fc[(first + i) % c->n_fc].task_thread.task_cur_prev = NULL; return 1; } static inline void reset_task_cur_async(struct TaskThreadData *const ttd, unsigned frame_idx, unsigned n_frames) { const unsigned first = atomic_load(&ttd->first); if (frame_idx < first) frame_idx += n_frames; unsigned last_idx = frame_idx; do { frame_idx = last_idx; last_idx = atomic_exchange(&ttd->reset_task_cur, frame_idx); } while (last_idx < frame_idx); if (frame_idx == first && atomic_load(&ttd->first) != first) { unsigned expected = frame_idx; atomic_compare_exchange_strong(&ttd->reset_task_cur, &expected, UINT_MAX); } } static void insert_tasks_between(Dav1dFrameContext *const f, Dav1dTask *const first, Dav1dTask *const last, Dav1dTask *const a, Dav1dTask *const b, const int cond_signal) { struct TaskThreadData *const ttd = f->task_thread.ttd; if (atomic_load(f->c->flush)) return; assert(!a || a->next == b); if (!a) f->task_thread.task_head = first; else a->next = first; if (!b) f->task_thread.task_tail = last; last->next = b; reset_task_cur(f->c, ttd, first->frame_idx); if (cond_signal && !atomic_fetch_or(&ttd->cond_signaled, 1)) pthread_cond_signal(&ttd->cond); } static void insert_tasks(Dav1dFrameContext *const f, Dav1dTask *const first, Dav1dTask *const last, const int cond_signal) { // insert task back into task queue Dav1dTask *t_ptr, *prev_t = NULL; for (t_ptr = f->task_thread.task_head; t_ptr; prev_t = t_ptr, t_ptr = t_ptr->next) { // entropy coding precedes other steps if (t_ptr->type == DAV1D_TASK_TYPE_TILE_ENTROPY) { if (first->type > DAV1D_TASK_TYPE_TILE_ENTROPY) continue; // both are entropy if (first->sby > t_ptr->sby) continue; if (first->sby < t_ptr->sby) { insert_tasks_between(f, first, last, prev_t, t_ptr, cond_signal); return; } // same sby } else { if (first->type == DAV1D_TASK_TYPE_TILE_ENTROPY) { insert_tasks_between(f, first, last, prev_t, t_ptr, cond_signal); return; } if (first->sby > t_ptr->sby) continue; if (first->sby < t_ptr->sby) { insert_tasks_between(f, first, last, prev_t, t_ptr, cond_signal); return; } // same sby if (first->type > t_ptr->type) continue; if (first->type < t_ptr->type) { insert_tasks_between(f, first, last, prev_t, t_ptr, cond_signal); return; } // same task type } // sort by tile-id assert(first->type == DAV1D_TASK_TYPE_TILE_RECONSTRUCTION || first->type == DAV1D_TASK_TYPE_TILE_ENTROPY); assert(first->type == t_ptr->type); assert(t_ptr->sby == first->sby); const int p = first->type == DAV1D_TASK_TYPE_TILE_ENTROPY; const int t_tile_idx = (int) (first - f->task_thread.tile_tasks[p]); const int p_tile_idx = (int) (t_ptr - f->task_thread.tile_tasks[p]); assert(t_tile_idx != p_tile_idx); if (t_tile_idx > p_tile_idx) continue; insert_tasks_between(f, first, last, prev_t, t_ptr, cond_signal); return; } // append at the end insert_tasks_between(f, first, last, prev_t, NULL, cond_signal); } static inline void insert_task(Dav1dFrameContext *const f, Dav1dTask *const t, const int cond_signal) { insert_tasks(f, t, t, cond_signal); } static inline void add_pending(Dav1dFrameContext *const f, Dav1dTask *const t) { pthread_mutex_lock(&f->task_thread.pending_tasks.lock); t->next = NULL; if (!f->task_thread.pending_tasks.head) f->task_thread.pending_tasks.head = t; else f->task_thread.pending_tasks.tail->next = t; f->task_thread.pending_tasks.tail = t; atomic_store(&f->task_thread.pending_tasks.merge, 1); pthread_mutex_unlock(&f->task_thread.pending_tasks.lock); } static inline int merge_pending_frame(Dav1dFrameContext *const f) { int const merge = atomic_load(&f->task_thread.pending_tasks.merge); if (merge) { pthread_mutex_lock(&f->task_thread.pending_tasks.lock); Dav1dTask *t = f->task_thread.pending_tasks.head; f->task_thread.pending_tasks.head = NULL; f->task_thread.pending_tasks.tail = NULL; atomic_store(&f->task_thread.pending_tasks.merge, 0); pthread_mutex_unlock(&f->task_thread.pending_tasks.lock); while (t) { Dav1dTask *const tmp = t->next; insert_task(f, t, 0); t = tmp; } } return merge; } static inline int merge_pending(const Dav1dContext *const c) { int res = 0; for (unsigned i = 0; i < c->n_fc; i++) res |= merge_pending_frame(&c->fc[i]); return res; } static int create_filter_sbrow(Dav1dFrameContext *const f, const int pass, Dav1dTask **res_t) { const int has_deblock = f->frame_hdr->loopfilter.level_y[0] || f->frame_hdr->loopfilter.level_y[1]; const int has_cdef = f->seq_hdr->cdef; const int has_resize = f->frame_hdr->width[0] != f->frame_hdr->width[1]; const int has_lr = f->lf.restore_planes; Dav1dTask *tasks = f->task_thread.tasks; const int uses_2pass = f->c->n_fc > 1; int num_tasks = f->sbh * (1 + uses_2pass); if (num_tasks > f->task_thread.num_tasks) { const size_t size = sizeof(Dav1dTask) * num_tasks; tasks = realloc(f->task_thread.tasks, size); if (!tasks) return -1; memset(tasks, 0, size); f->task_thread.tasks = tasks; f->task_thread.num_tasks = num_tasks; } tasks += f->sbh * (pass & 1); if (pass & 1) { f->frame_thread.entropy_progress = 0; } else { const int prog_sz = ((f->sbh + 31) & ~31) >> 5; if (prog_sz > f->frame_thread.prog_sz) { atomic_uint *const prog = realloc(f->frame_thread.frame_progress, 2 * prog_sz * sizeof(*prog)); if (!prog) return -1; f->frame_thread.frame_progress = prog; f->frame_thread.copy_lpf_progress = prog + prog_sz; } f->frame_thread.prog_sz = prog_sz; memset(f->frame_thread.frame_progress, 0, prog_sz * sizeof(atomic_uint)); memset(f->frame_thread.copy_lpf_progress, 0, prog_sz * sizeof(atomic_uint)); atomic_store(&f->frame_thread.deblock_progress, 0); } f->frame_thread.next_tile_row[pass & 1] = 0; Dav1dTask *t = &tasks[0]; t->sby = 0; t->recon_progress = 1; t->deblock_progress = 0; t->type = pass == 1 ? DAV1D_TASK_TYPE_ENTROPY_PROGRESS : has_deblock ? DAV1D_TASK_TYPE_DEBLOCK_COLS : has_cdef || has_lr /* i.e. LR backup */ ? DAV1D_TASK_TYPE_DEBLOCK_ROWS : has_resize ? DAV1D_TASK_TYPE_SUPER_RESOLUTION : DAV1D_TASK_TYPE_RECONSTRUCTION_PROGRESS; t->frame_idx = (int)(f - f->c->fc); *res_t = t; return 0; } int dav1d_task_create_tile_sbrow(Dav1dFrameContext *const f, const int pass, const int cond_signal) { Dav1dTask *tasks = f->task_thread.tile_tasks[0]; const int uses_2pass = f->c->n_fc > 1; const int num_tasks = f->frame_hdr->tiling.cols * f->frame_hdr->tiling.rows; if (pass < 2) { int alloc_num_tasks = num_tasks * (1 + uses_2pass); if (alloc_num_tasks > f->task_thread.num_tile_tasks) { const size_t size = sizeof(Dav1dTask) * alloc_num_tasks; tasks = realloc(f->task_thread.tile_tasks[0], size); if (!tasks) return -1; memset(tasks, 0, size); f->task_thread.tile_tasks[0] = tasks; f->task_thread.num_tile_tasks = alloc_num_tasks; } f->task_thread.tile_tasks[1] = tasks + num_tasks; } tasks += num_tasks * (pass & 1); Dav1dTask *pf_t; if (create_filter_sbrow(f, pass, &pf_t)) return -1; Dav1dTask *prev_t = NULL; for (int tile_idx = 0; tile_idx < num_tasks; tile_idx++) { Dav1dTileState *const ts = &f->ts[tile_idx]; Dav1dTask *t = &tasks[tile_idx]; t->sby = ts->tiling.row_start >> f->sb_shift; if (pf_t && t->sby) { prev_t->next = pf_t; prev_t = pf_t; pf_t = NULL; } t->recon_progress = 0; t->deblock_progress = 0; t->deps_skip = 0; t->type = pass != 1 ? DAV1D_TASK_TYPE_TILE_RECONSTRUCTION : DAV1D_TASK_TYPE_TILE_ENTROPY; t->frame_idx = (int)(f - f->c->fc); if (prev_t) prev_t->next = t; prev_t = t; } if (pf_t) { prev_t->next = pf_t; prev_t = pf_t; } prev_t->next = NULL; atomic_store(&f->task_thread.done[pass & 1], 0); // XXX in theory this could be done locklessly, at this point they are no // tasks in the frameQ, so no other runner should be using this lock, but // we must add both passes at once pthread_mutex_lock(&f->task_thread.pending_tasks.lock); assert(f->task_thread.pending_tasks.head == NULL || pass == 2); if (!f->task_thread.pending_tasks.head) f->task_thread.pending_tasks.head = &tasks[0]; else f->task_thread.pending_tasks.tail->next = &tasks[0]; f->task_thread.pending_tasks.tail = prev_t; atomic_store(&f->task_thread.pending_tasks.merge, 1); pthread_mutex_unlock(&f->task_thread.pending_tasks.lock); return 0; } void dav1d_task_frame_init(Dav1dFrameContext *const f) { const Dav1dContext *const c = f->c; atomic_store(&f->task_thread.init_done, 0); // schedule init task, which will schedule the remaining tasks Dav1dTask *const t = &f->task_thread.init_task; t->type = DAV1D_TASK_TYPE_INIT; t->frame_idx = (int)(f - c->fc); t->sby = 0; t->recon_progress = t->deblock_progress = 0; insert_task(f, t, 1); } void dav1d_task_delayed_fg(Dav1dContext *const c, Dav1dPicture *const out, const Dav1dPicture *const in) { struct TaskThreadData *const ttd = &c->task_thread; ttd->delayed_fg.in = in; ttd->delayed_fg.out = out; ttd->delayed_fg.type = DAV1D_TASK_TYPE_FG_PREP; atomic_init(&ttd->delayed_fg.progress[0], 0); atomic_init(&ttd->delayed_fg.progress[1], 0); pthread_mutex_lock(&ttd->lock); ttd->delayed_fg.exec = 1; pthread_cond_signal(&ttd->cond); pthread_cond_wait(&ttd->delayed_fg.cond, &ttd->lock); pthread_mutex_unlock(&ttd->lock); } static inline int ensure_progress(struct TaskThreadData *const ttd, Dav1dFrameContext *const f, Dav1dTask *const t, const enum TaskType type, atomic_int *const state, int *const target) { // deblock_rows (non-LR portion) depends on deblock of previous sbrow, // so ensure that completed. if not, re-add to task-queue; else, fall-through int p1 = atomic_load(state); if (p1 < t->sby) { t->type = type; t->recon_progress = t->deblock_progress = 0; *target = t->sby; add_pending(f, t); pthread_mutex_lock(&ttd->lock); return 1; } return 0; } static inline int check_tile(Dav1dTask *const t, Dav1dFrameContext *const f, const int frame_mt) { const int tp = t->type == DAV1D_TASK_TYPE_TILE_ENTROPY; const int tile_idx = (int)(t - f->task_thread.tile_tasks[tp]); Dav1dTileState *const ts = &f->ts[tile_idx]; const int p1 = atomic_load(&ts->progress[tp]); if (p1 < t->sby) return 1; int error = p1 == TILE_ERROR; error |= atomic_fetch_or(&f->task_thread.error, error); if (!error && frame_mt && !tp) { const int p2 = atomic_load(&ts->progress[1]); if (p2 <= t->sby) return 1; error = p2 == TILE_ERROR; error |= atomic_fetch_or(&f->task_thread.error, error); } if (!error && frame_mt && !IS_KEY_OR_INTRA(f->frame_hdr)) { // check reference state const Dav1dThreadPicture *p = &f->sr_cur; const int ss_ver = p->p.p.layout == DAV1D_PIXEL_LAYOUT_I420; const unsigned p_b = (t->sby + 1) << (f->sb_shift + 2); const int tile_sby = t->sby - (ts->tiling.row_start >> f->sb_shift); const int (*const lowest_px)[2] = ts->lowest_pixel[tile_sby]; for (int n = t->deps_skip; n < 7; n++, t->deps_skip++) { unsigned lowest; if (tp) { // if temporal mv refs are disabled, we only need this // for the primary ref; if segmentation is disabled, we // don't even need that lowest = p_b; } else { // +8 is postfilter-induced delay const int y = lowest_px[n][0] == INT_MIN ? INT_MIN : lowest_px[n][0] + 8; const int uv = lowest_px[n][1] == INT_MIN ? INT_MIN : lowest_px[n][1] * (1 << ss_ver) + 8; const int max = imax(y, uv); if (max == INT_MIN) continue; lowest = iclip(max, 1, f->refp[n].p.p.h); } const unsigned p3 = atomic_load(&f->refp[n].progress[!tp]); if (p3 < lowest) return 1; atomic_fetch_or(&f->task_thread.error, p3 == FRAME_ERROR); } } return 0; } static inline int get_frame_progress(const Dav1dContext *const c, const Dav1dFrameContext *const f) { unsigned frame_prog = c->n_fc > 1 ? atomic_load(&f->sr_cur.progress[1]) : 0; if (frame_prog >= FRAME_ERROR) return f->sbh - 1; int idx = frame_prog >> (f->sb_shift + 7); int prog; do { atomic_uint *state = &f->frame_thread.frame_progress[idx]; const unsigned val = ~atomic_load(state); prog = val ? ctz(val) : 32; if (prog != 32) break; prog = 0; } while (++idx < f->frame_thread.prog_sz); return ((idx << 5) | prog) - 1; } static inline void abort_frame(Dav1dFrameContext *const f, const int error) { atomic_store(&f->task_thread.error, error == DAV1D_ERR(EINVAL) ? 1 : -1); atomic_store(&f->task_thread.task_counter, 0); atomic_store(&f->task_thread.done[0], 1); atomic_store(&f->task_thread.done[1], 1); atomic_store(&f->sr_cur.progress[0], FRAME_ERROR); atomic_store(&f->sr_cur.progress[1], FRAME_ERROR); dav1d_decode_frame_exit(f, error); f->n_tile_data = 0; pthread_cond_signal(&f->task_thread.cond); } static inline void delayed_fg_task(const Dav1dContext *const c, struct TaskThreadData *const ttd) { const Dav1dPicture *const in = ttd->delayed_fg.in; Dav1dPicture *const out = ttd->delayed_fg.out; #if CONFIG_16BPC int off; if (out->p.bpc != 8) off = (out->p.bpc >> 1) - 4; #endif switch (ttd->delayed_fg.type) { case DAV1D_TASK_TYPE_FG_PREP: ttd->delayed_fg.exec = 0; if (atomic_load(&ttd->cond_signaled)) pthread_cond_signal(&ttd->cond); pthread_mutex_unlock(&ttd->lock); switch (out->p.bpc) { #if CONFIG_8BPC case 8: dav1d_prep_grain_8bpc(&c->dsp[0].fg, out, in, ttd->delayed_fg.scaling_8bpc, ttd->delayed_fg.grain_lut_8bpc); break; #endif #if CONFIG_16BPC case 10: case 12: dav1d_prep_grain_16bpc(&c->dsp[off].fg, out, in, ttd->delayed_fg.scaling_16bpc, ttd->delayed_fg.grain_lut_16bpc); break; #endif default: abort(); } ttd->delayed_fg.type = DAV1D_TASK_TYPE_FG_APPLY; pthread_mutex_lock(&ttd->lock); ttd->delayed_fg.exec = 1; // fall-through case DAV1D_TASK_TYPE_FG_APPLY:; int row = atomic_fetch_add(&ttd->delayed_fg.progress[0], 1); pthread_mutex_unlock(&ttd->lock); int progmax = (out->p.h + 31) >> 5; fg_apply_loop: if (row + 1 < progmax) pthread_cond_signal(&ttd->cond); else if (row + 1 >= progmax) { pthread_mutex_lock(&ttd->lock); ttd->delayed_fg.exec = 0; if (row >= progmax) goto end_add; pthread_mutex_unlock(&ttd->lock); } switch (out->p.bpc) { #if CONFIG_8BPC case 8: dav1d_apply_grain_row_8bpc(&c->dsp[0].fg, out, in, ttd->delayed_fg.scaling_8bpc, ttd->delayed_fg.grain_lut_8bpc, row); break; #endif #if CONFIG_16BPC case 10: case 12: dav1d_apply_grain_row_16bpc(&c->dsp[off].fg, out, in, ttd->delayed_fg.scaling_16bpc, ttd->delayed_fg.grain_lut_16bpc, row); break; #endif default: abort(); } row = atomic_fetch_add(&ttd->delayed_fg.progress[0], 1); int done = atomic_fetch_add(&ttd->delayed_fg.progress[1], 1) + 1; if (row < progmax) goto fg_apply_loop; pthread_mutex_lock(&ttd->lock); ttd->delayed_fg.exec = 0; end_add: done = atomic_fetch_add(&ttd->delayed_fg.progress[1], 1) + 1; progmax = atomic_load(&ttd->delayed_fg.progress[0]); // signal for completion only once the last runner reaches this if (done < progmax) break; pthread_cond_signal(&ttd->delayed_fg.cond); break; default: abort(); } } void *dav1d_worker_task(void *data) { Dav1dTaskContext *const tc = data; const Dav1dContext *const c = tc->c; struct TaskThreadData *const ttd = tc->task_thread.ttd; dav1d_set_thread_name("dav1d-worker"); pthread_mutex_lock(&ttd->lock); for (;;) { if (tc->task_thread.die) break; if (atomic_load(c->flush)) goto park; merge_pending(c); if (ttd->delayed_fg.exec) { // run delayed film grain first delayed_fg_task(c, ttd); continue; } Dav1dFrameContext *f; Dav1dTask *t, *prev_t = NULL; if (c->n_fc > 1) { // run init tasks second for (unsigned i = 0; i < c->n_fc; i++) { const unsigned first = atomic_load(&ttd->first); f = &c->fc[(first + i) % c->n_fc]; if (atomic_load(&f->task_thread.init_done)) continue; t = f->task_thread.task_head; if (!t) continue; if (t->type == DAV1D_TASK_TYPE_INIT) goto found; if (t->type == DAV1D_TASK_TYPE_INIT_CDF) { // XXX This can be a simple else, if adding tasks of both // passes at once (in dav1d_task_create_tile_sbrow). // Adding the tasks to the pending Q can result in a // thread merging them before setting init_done. // We will need to set init_done before adding to the // pending Q, so maybe return the tasks, set init_done, // and add to pending Q only then. const int p1 = f->in_cdf.progress ? atomic_load(f->in_cdf.progress) : 1; if (p1) { atomic_fetch_or(&f->task_thread.error, p1 == TILE_ERROR); goto found; } } } } while (ttd->cur < c->n_fc) { // run decoding tasks last const unsigned first = atomic_load(&ttd->first); f = &c->fc[(first + ttd->cur) % c->n_fc]; merge_pending_frame(f); prev_t = f->task_thread.task_cur_prev; t = prev_t ? prev_t->next : f->task_thread.task_head; while (t) { if (t->type == DAV1D_TASK_TYPE_INIT_CDF) goto next; else if (t->type == DAV1D_TASK_TYPE_TILE_ENTROPY || t->type == DAV1D_TASK_TYPE_TILE_RECONSTRUCTION) { // if not bottom sbrow of tile, this task will be re-added // after it's finished if (!check_tile(t, f, c->n_fc > 1)) goto found; } else if (t->recon_progress) { const int p = t->type == DAV1D_TASK_TYPE_ENTROPY_PROGRESS; int error = atomic_load(&f->task_thread.error); assert(!atomic_load(&f->task_thread.done[p]) || error); const int tile_row_base = f->frame_hdr->tiling.cols * f->frame_thread.next_tile_row[p]; if (p) { atomic_int *const prog = &f->frame_thread.entropy_progress; const int p1 = atomic_load(prog); if (p1 < t->sby) goto next; atomic_fetch_or(&f->task_thread.error, p1 == TILE_ERROR); } for (int tc = 0; tc < f->frame_hdr->tiling.cols; tc++) { Dav1dTileState *const ts = &f->ts[tile_row_base + tc]; const int p2 = atomic_load(&ts->progress[p]); if (p2 < t->recon_progress) goto next; atomic_fetch_or(&f->task_thread.error, p2 == TILE_ERROR); } if (t->sby + 1 < f->sbh) { // add sby+1 to list to replace this one Dav1dTask *next_t = &t[1]; *next_t = *t; next_t->sby++; const int ntr = f->frame_thread.next_tile_row[p] + 1; const int start = f->frame_hdr->tiling.row_start_sb[ntr]; if (next_t->sby == start) f->frame_thread.next_tile_row[p] = ntr; next_t->recon_progress = next_t->sby + 1; insert_task(f, next_t, 0); } goto found; } else if (t->type == DAV1D_TASK_TYPE_CDEF) { atomic_uint *prog = f->frame_thread.copy_lpf_progress; const int p1 = atomic_load(&prog[(t->sby - 1) >> 5]); if (p1 & (1U << ((t->sby - 1) & 31))) goto found; } else { assert(t->deblock_progress); const int p1 = atomic_load(&f->frame_thread.deblock_progress); if (p1 >= t->deblock_progress) { atomic_fetch_or(&f->task_thread.error, p1 == TILE_ERROR); goto found; } } next: prev_t = t; t = t->next; f->task_thread.task_cur_prev = prev_t; } ttd->cur++; } if (reset_task_cur(c, ttd, UINT_MAX)) continue; if (merge_pending(c)) continue; park: tc->task_thread.flushed = 1; pthread_cond_signal(&tc->task_thread.td.cond); // we want to be woken up next time progress is signaled atomic_store(&ttd->cond_signaled, 0); pthread_cond_wait(&ttd->cond, &ttd->lock); tc->task_thread.flushed = 0; reset_task_cur(c, ttd, UINT_MAX); continue; found: // remove t from list if (prev_t) prev_t->next = t->next; else f->task_thread.task_head = t->next; if (!t->next) f->task_thread.task_tail = prev_t; if (t->type > DAV1D_TASK_TYPE_INIT_CDF && !f->task_thread.task_head) ttd->cur++; t->next = NULL; // we don't need to check cond_signaled here, since we found a task // after the last signal so we want to re-signal the next waiting thread // and again won't need to signal after that atomic_store(&ttd->cond_signaled, 1); pthread_cond_signal(&ttd->cond); pthread_mutex_unlock(&ttd->lock); found_unlocked:; const int flush = atomic_load(c->flush); int error = atomic_fetch_or(&f->task_thread.error, flush) | flush; // run it tc->f = f; int sby = t->sby; switch (t->type) { case DAV1D_TASK_TYPE_INIT: { assert(c->n_fc > 1); int res = dav1d_decode_frame_init(f); int p1 = f->in_cdf.progress ? atomic_load(f->in_cdf.progress) : 1; if (res || p1 == TILE_ERROR) { pthread_mutex_lock(&ttd->lock); abort_frame(f, res ? res : DAV1D_ERR(EINVAL)); reset_task_cur(c, ttd, t->frame_idx); } else { t->type = DAV1D_TASK_TYPE_INIT_CDF; if (p1) goto found_unlocked; add_pending(f, t); pthread_mutex_lock(&ttd->lock); } continue; } case DAV1D_TASK_TYPE_INIT_CDF: { assert(c->n_fc > 1); int res = DAV1D_ERR(EINVAL); if (!atomic_load(&f->task_thread.error)) res = dav1d_decode_frame_init_cdf(f); if (f->frame_hdr->refresh_context && !f->task_thread.update_set) { atomic_store(f->out_cdf.progress, res < 0 ? TILE_ERROR : 1); } if (!res) { assert(c->n_fc > 1); for (int p = 1; p <= 2; p++) { const int res = dav1d_task_create_tile_sbrow(f, p, 0); if (res) { pthread_mutex_lock(&ttd->lock); // memory allocation failed atomic_store(&f->task_thread.done[2 - p], 1); atomic_store(&f->task_thread.error, -1); atomic_fetch_sub(&f->task_thread.task_counter, f->frame_hdr->tiling.cols * f->frame_hdr->tiling.rows + f->sbh); atomic_store(&f->sr_cur.progress[p - 1], FRAME_ERROR); if (p == 2 && atomic_load(&f->task_thread.done[1])) { assert(!atomic_load(&f->task_thread.task_counter)); dav1d_decode_frame_exit(f, DAV1D_ERR(ENOMEM)); f->n_tile_data = 0; pthread_cond_signal(&f->task_thread.cond); atomic_store(&f->task_thread.init_done, 1); continue; } else { pthread_mutex_unlock(&ttd->lock); } } } atomic_store(&f->task_thread.init_done, 1); pthread_mutex_lock(&ttd->lock); } else { pthread_mutex_lock(&ttd->lock); abort_frame(f, res); reset_task_cur(c, ttd, t->frame_idx); atomic_store(&f->task_thread.init_done, 1); } continue; } case DAV1D_TASK_TYPE_TILE_ENTROPY: case DAV1D_TASK_TYPE_TILE_RECONSTRUCTION: { const int p = t->type == DAV1D_TASK_TYPE_TILE_ENTROPY; const int tile_idx = (int)(t - f->task_thread.tile_tasks[p]); Dav1dTileState *const ts = &f->ts[tile_idx]; tc->ts = ts; tc->by = sby << f->sb_shift; const int uses_2pass = c->n_fc > 1; tc->frame_thread.pass = !uses_2pass ? 0 : 1 + (t->type == DAV1D_TASK_TYPE_TILE_RECONSTRUCTION); if (!error) error = dav1d_decode_tile_sbrow(tc); const int progress = error ? TILE_ERROR : 1 + sby; // signal progress atomic_fetch_or(&f->task_thread.error, error); if (((sby + 1) << f->sb_shift) < ts->tiling.row_end) { t->sby++; t->deps_skip = 0; if (!check_tile(t, f, uses_2pass)) { atomic_store(&ts->progress[p], progress); reset_task_cur_async(ttd, t->frame_idx, c->n_fc); if (!atomic_fetch_or(&ttd->cond_signaled, 1)) pthread_cond_signal(&ttd->cond); goto found_unlocked; } atomic_store(&ts->progress[p], progress); add_pending(f, t); pthread_mutex_lock(&ttd->lock); } else { pthread_mutex_lock(&ttd->lock); atomic_store(&ts->progress[p], progress); reset_task_cur(c, ttd, t->frame_idx); error = atomic_load(&f->task_thread.error); if (f->frame_hdr->refresh_context && tc->frame_thread.pass <= 1 && f->task_thread.update_set && f->frame_hdr->tiling.update == tile_idx) { if (!error) dav1d_cdf_thread_update(f->frame_hdr, f->out_cdf.data.cdf, &f->ts[f->frame_hdr->tiling.update].cdf); if (c->n_fc > 1) atomic_store(f->out_cdf.progress, error ? TILE_ERROR : 1); } if (atomic_fetch_sub(&f->task_thread.task_counter, 1) - 1 == 0 && atomic_load(&f->task_thread.done[0]) && (!uses_2pass || atomic_load(&f->task_thread.done[1]))) { dav1d_decode_frame_exit(f, error == 1 ? DAV1D_ERR(EINVAL) : error ? DAV1D_ERR(ENOMEM) : 0); f->n_tile_data = 0; pthread_cond_signal(&f->task_thread.cond); } assert(atomic_load(&f->task_thread.task_counter) >= 0); if (!atomic_fetch_or(&ttd->cond_signaled, 1)) pthread_cond_signal(&ttd->cond); } continue; } case DAV1D_TASK_TYPE_DEBLOCK_COLS: if (!atomic_load(&f->task_thread.error)) f->bd_fn.filter_sbrow_deblock_cols(f, sby); if (ensure_progress(ttd, f, t, DAV1D_TASK_TYPE_DEBLOCK_ROWS, &f->frame_thread.deblock_progress, &t->deblock_progress)) continue; // fall-through case DAV1D_TASK_TYPE_DEBLOCK_ROWS: if (!atomic_load(&f->task_thread.error)) f->bd_fn.filter_sbrow_deblock_rows(f, sby); // signal deblock progress if (f->frame_hdr->loopfilter.level_y[0] || f->frame_hdr->loopfilter.level_y[1]) { error = atomic_load(&f->task_thread.error); atomic_store(&f->frame_thread.deblock_progress, error ? TILE_ERROR : sby + 1); reset_task_cur_async(ttd, t->frame_idx, c->n_fc); if (!atomic_fetch_or(&ttd->cond_signaled, 1)) pthread_cond_signal(&ttd->cond); } else if (f->seq_hdr->cdef || f->lf.restore_planes) { atomic_fetch_or(&f->frame_thread.copy_lpf_progress[sby >> 5], 1U << (sby & 31)); // CDEF needs the top buffer to be saved by lr_copy_lpf of the // previous sbrow if (sby) { int prog = atomic_load(&f->frame_thread.copy_lpf_progress[(sby - 1) >> 5]); if (~prog & (1U << ((sby - 1) & 31))) { t->type = DAV1D_TASK_TYPE_CDEF; t->recon_progress = t->deblock_progress = 0; add_pending(f, t); pthread_mutex_lock(&ttd->lock); continue; } } } // fall-through case DAV1D_TASK_TYPE_CDEF: if (f->seq_hdr->cdef) { if (!atomic_load(&f->task_thread.error)) f->bd_fn.filter_sbrow_cdef(tc, sby); reset_task_cur_async(ttd, t->frame_idx, c->n_fc); if (!atomic_fetch_or(&ttd->cond_signaled, 1)) pthread_cond_signal(&ttd->cond); } // fall-through case DAV1D_TASK_TYPE_SUPER_RESOLUTION: if (f->frame_hdr->width[0] != f->frame_hdr->width[1]) if (!atomic_load(&f->task_thread.error)) f->bd_fn.filter_sbrow_resize(f, sby); // fall-through case DAV1D_TASK_TYPE_LOOP_RESTORATION: if (!atomic_load(&f->task_thread.error) && f->lf.restore_planes) f->bd_fn.filter_sbrow_lr(f, sby); // fall-through case DAV1D_TASK_TYPE_RECONSTRUCTION_PROGRESS: // dummy to cover for no post-filters case DAV1D_TASK_TYPE_ENTROPY_PROGRESS: // dummy to convert tile progress to frame break; default: abort(); } // if task completed [typically LR], signal picture progress as per below const int uses_2pass = c->n_fc > 1; const int sbh = f->sbh; const int sbsz = f->sb_step * 4; if (t->type == DAV1D_TASK_TYPE_ENTROPY_PROGRESS) { error = atomic_load(&f->task_thread.error); const unsigned y = sby + 1 == sbh ? UINT_MAX : (unsigned)(sby + 1) * sbsz; assert(c->n_fc > 1); if (f->sr_cur.p.data[0] /* upon flush, this can be free'ed already */) atomic_store(&f->sr_cur.progress[0], error ? FRAME_ERROR : y); atomic_store(&f->frame_thread.entropy_progress, error ? TILE_ERROR : sby + 1); if (sby + 1 == sbh) atomic_store(&f->task_thread.done[1], 1); pthread_mutex_lock(&ttd->lock); const int num_tasks = atomic_fetch_sub(&f->task_thread.task_counter, 1) - 1; if (sby + 1 < sbh && num_tasks) { reset_task_cur(c, ttd, t->frame_idx); continue; } if (!num_tasks && atomic_load(&f->task_thread.done[0]) && atomic_load(&f->task_thread.done[1])) { dav1d_decode_frame_exit(f, error == 1 ? DAV1D_ERR(EINVAL) : error ? DAV1D_ERR(ENOMEM) : 0); f->n_tile_data = 0; pthread_cond_signal(&f->task_thread.cond); } reset_task_cur(c, ttd, t->frame_idx); continue; } // t->type != DAV1D_TASK_TYPE_ENTROPY_PROGRESS atomic_fetch_or(&f->frame_thread.frame_progress[sby >> 5], 1U << (sby & 31)); pthread_mutex_lock(&f->task_thread.lock); sby = get_frame_progress(c, f); error = atomic_load(&f->task_thread.error); const unsigned y = sby + 1 == sbh ? UINT_MAX : (unsigned)(sby + 1) * sbsz; if (c->n_fc > 1 && f->sr_cur.p.data[0] /* upon flush, this can be free'ed already */) atomic_store(&f->sr_cur.progress[1], error ? FRAME_ERROR : y); pthread_mutex_unlock(&f->task_thread.lock); if (sby + 1 == sbh) atomic_store(&f->task_thread.done[0], 1); pthread_mutex_lock(&ttd->lock); const int num_tasks = atomic_fetch_sub(&f->task_thread.task_counter, 1) - 1; if (sby + 1 < sbh && num_tasks) { reset_task_cur(c, ttd, t->frame_idx); continue; } if (!num_tasks && atomic_load(&f->task_thread.done[0]) && (!uses_2pass || atomic_load(&f->task_thread.done[1]))) { dav1d_decode_frame_exit(f, error == 1 ? DAV1D_ERR(EINVAL) : error ? DAV1D_ERR(ENOMEM) : 0); f->n_tile_data = 0; pthread_cond_signal(&f->task_thread.cond); } reset_task_cur(c, ttd, t->frame_idx); } pthread_mutex_unlock(&ttd->lock); return NULL; }