/* * Copyright © 2019, VideoLAN and dav1d authors * Copyright © 2019, Two Orioles, LLC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "tests/checkasm/checkasm.h" #include #include "src/levels.h" #include "src/filmgrain.h" #define UNIT_TEST 1 #include "src/fg_apply_tmpl.c" #if BITDEPTH == 8 #define checkasm_check_entry(...) checkasm_check(int8_t, __VA_ARGS__) #else #define checkasm_check_entry(...) checkasm_check(int16_t, __VA_ARGS__) #endif static const char ss_name[][4] = { [DAV1D_PIXEL_LAYOUT_I420 - 1] = "420", [DAV1D_PIXEL_LAYOUT_I422 - 1] = "422", [DAV1D_PIXEL_LAYOUT_I444 - 1] = "444", }; static void check_gen_grny(const Dav1dFilmGrainDSPContext *const dsp) { ALIGN_STK_16(entry, grain_lut_c, GRAIN_HEIGHT,[GRAIN_WIDTH]); ALIGN_STK_16(entry, grain_lut_a, GRAIN_HEIGHT + 1,[GRAIN_WIDTH]); declare_func(void, entry grain_lut[][GRAIN_WIDTH], const Dav1dFilmGrainData *data HIGHBD_DECL_SUFFIX); for (int i = 0; i < 4; i++) { if (check_func(dsp->generate_grain_y, "gen_grain_y_ar%d_%dbpc", i, BITDEPTH)) { ALIGN_STK_16(Dav1dFilmGrainData, fg_data, 1,); fg_data[0].seed = rnd() & 0xFFFF; #if BITDEPTH == 16 const int bitdepth_max = rnd() & 1 ? 0x3ff : 0xfff; #endif fg_data[0].grain_scale_shift = rnd() & 3; fg_data[0].ar_coeff_shift = (rnd() & 3) + 6; fg_data[0].ar_coeff_lag = i; const int num_y_pos = 2 * fg_data[0].ar_coeff_lag * (fg_data[0].ar_coeff_lag + 1); for (int n = 0; n < num_y_pos; n++) fg_data[0].ar_coeffs_y[n] = (rnd() & 0xff) - 128; call_ref(grain_lut_c, fg_data HIGHBD_TAIL_SUFFIX); call_new(grain_lut_a, fg_data HIGHBD_TAIL_SUFFIX); checkasm_check_entry(grain_lut_c[0], sizeof(entry) * GRAIN_WIDTH, grain_lut_a[0], sizeof(entry) * GRAIN_WIDTH, GRAIN_WIDTH, GRAIN_HEIGHT, "grain_lut"); bench_new(grain_lut_a, fg_data HIGHBD_TAIL_SUFFIX); } } report("gen_grain_y"); } static void check_gen_grnuv(const Dav1dFilmGrainDSPContext *const dsp) { ALIGN_STK_16(entry, grain_lut_y, GRAIN_HEIGHT + 1,[GRAIN_WIDTH]); ALIGN_STK_16(entry, grain_lut_c, GRAIN_HEIGHT, [GRAIN_WIDTH]); ALIGN_STK_16(entry, grain_lut_a, GRAIN_HEIGHT + 1,[GRAIN_WIDTH]); declare_func(void, entry grain_lut[][GRAIN_WIDTH], const entry grain_lut_y[][GRAIN_WIDTH], const Dav1dFilmGrainData *data, intptr_t uv HIGHBD_DECL_SUFFIX); for (int layout_idx = 0; layout_idx < 3; layout_idx++) { const enum Dav1dPixelLayout layout = layout_idx + 1; const int ss_x = layout != DAV1D_PIXEL_LAYOUT_I444; const int ss_y = layout == DAV1D_PIXEL_LAYOUT_I420; for (int i = 0; i < 4; i++) { if (check_func(dsp->generate_grain_uv[layout_idx], "gen_grain_uv_ar%d_%dbpc_%s", i, BITDEPTH, ss_name[layout_idx])) { ALIGN_STK_16(Dav1dFilmGrainData, fg_data, 1,); fg_data[0].seed = rnd() & 0xFFFF; #if BITDEPTH == 16 const int bitdepth_max = rnd() & 1 ? 0x3ff : 0xfff; #endif fg_data[0].num_y_points = rnd() & 1; fg_data[0].grain_scale_shift = rnd() & 3; fg_data[0].ar_coeff_shift = (rnd() & 3) + 6; fg_data[0].ar_coeff_lag = i; const int num_y_pos = 2 * fg_data[0].ar_coeff_lag * (fg_data[0].ar_coeff_lag + 1); for (int n = 0; n < num_y_pos; n++) fg_data[0].ar_coeffs_y[n] = (rnd() & 0xff) - 128; dsp->generate_grain_y(grain_lut_y, fg_data HIGHBD_TAIL_SUFFIX); const int uv = rnd() & 1; const int num_uv_pos = num_y_pos + !!fg_data[0].num_y_points; for (int n = 0; n < num_uv_pos; n++) fg_data[0].ar_coeffs_uv[uv][n] = (rnd() & 0xff) - 128; if (!fg_data[0].num_y_points) fg_data[0].ar_coeffs_uv[uv][num_uv_pos] = 0; memset(grain_lut_c, 0xff, sizeof(grain_lut_c)); memset(grain_lut_a, 0xff, sizeof(grain_lut_a)); call_ref(grain_lut_c, grain_lut_y, fg_data, uv HIGHBD_TAIL_SUFFIX); call_new(grain_lut_a, grain_lut_y, fg_data, uv HIGHBD_TAIL_SUFFIX); int w = ss_x ? 44 : GRAIN_WIDTH; int h = ss_y ? 38 : GRAIN_HEIGHT; checkasm_check_entry(grain_lut_c[0], sizeof(entry) * GRAIN_WIDTH, grain_lut_a[0], sizeof(entry) * GRAIN_WIDTH, w, h, "grain_lut"); bench_new(grain_lut_a, grain_lut_y, fg_data, uv HIGHBD_TAIL_SUFFIX); } } } report("gen_grain_uv"); } static void check_fgy_sbrow(const Dav1dFilmGrainDSPContext *const dsp) { PIXEL_RECT(c_dst, 128, 32); PIXEL_RECT(a_dst, 128, 32); PIXEL_RECT(src, 128, 32); const ptrdiff_t stride = c_dst_stride; declare_func(void, pixel *dst_row, const pixel *src_row, ptrdiff_t stride, const Dav1dFilmGrainData *data, size_t pw, const uint8_t scaling[SCALING_SIZE], const entry grain_lut[][GRAIN_WIDTH], int bh, int row_num HIGHBD_DECL_SUFFIX); if (check_func(dsp->fgy_32x32xn, "fgy_32x32xn_%dbpc", BITDEPTH)) { ALIGN_STK_16(Dav1dFilmGrainData, fg_data, 16,); ALIGN_STK_16(entry, grain_lut, GRAIN_HEIGHT + 1,[GRAIN_WIDTH]); ALIGN_STK_64(uint8_t, scaling, SCALING_SIZE,); fg_data[0].seed = rnd() & 0xFFFF; #if BITDEPTH == 16 const int bitdepth_max = rnd() & 1 ? 0x3ff : 0xfff; #else const int bitdepth_max = 0xff; #endif fg_data[0].grain_scale_shift = rnd() & 3; fg_data[0].ar_coeff_shift = (rnd() & 3) + 6; fg_data[0].ar_coeff_lag = rnd() & 3; const int num_y_pos = 2 * fg_data[0].ar_coeff_lag * (fg_data[0].ar_coeff_lag + 1); for (int n = 0; n < num_y_pos; n++) fg_data[0].ar_coeffs_y[n] = (rnd() & 0xff) - 128; dsp->generate_grain_y(grain_lut, fg_data HIGHBD_TAIL_SUFFIX); fg_data[0].num_y_points = 2 + (rnd() % 13); const int pad = 0xff / fg_data[0].num_y_points; for (int n = 0; n < fg_data[0].num_y_points; n++) { fg_data[0].y_points[n][0] = 0xff * n / fg_data[0].num_y_points; fg_data[0].y_points[n][0] += rnd() % pad; fg_data[0].y_points[n][1] = rnd() & 0xff; } generate_scaling(bitdepth_from_max(bitdepth_max), fg_data[0].y_points, fg_data[0].num_y_points, scaling); fg_data[0].clip_to_restricted_range = rnd() & 1; fg_data[0].scaling_shift = (rnd() & 3) + 8; for (fg_data[0].overlap_flag = 0; fg_data[0].overlap_flag <= 1; fg_data[0].overlap_flag++) { for (int i = 0; i <= 2 * fg_data[0].overlap_flag; i++) { int w, h, row_num; if (fg_data[0].overlap_flag) { w = 35 + (rnd() % 93); if (i == 0) { row_num = 0; h = 1 + (rnd() % 31); } else { row_num = 1 + (rnd() & 0x7ff); if (i == 1) { h = 3 + (rnd() % 30); } else { h = 1 + (rnd() & 1); } } } else { w = 1 + (rnd() & 127); h = 1 + (rnd() & 31); row_num = rnd() & 0x7ff; } for (int y = 0; y < 32; y++) { // Src pixels past the right edge can be uninitialized for (int x = 0; x < 128; x++) src[y * PXSTRIDE(stride) + x] = rnd(); for (int x = 0; x < w; x++) src[y * PXSTRIDE(stride) + x] &= bitdepth_max; } CLEAR_PIXEL_RECT(c_dst); CLEAR_PIXEL_RECT(a_dst); call_ref(c_dst, src, stride, fg_data, w, scaling, grain_lut, h, row_num HIGHBD_TAIL_SUFFIX); call_new(a_dst, src, stride, fg_data, w, scaling, grain_lut, h, row_num HIGHBD_TAIL_SUFFIX); checkasm_check_pixel_padded_align(c_dst, stride, a_dst, stride, w, h, "dst", 32, 2); } } fg_data[0].overlap_flag = 1; for (int y = 0; y < 32; y++) { // Make sure all pixels are in range for (int x = 0; x < 128; x++) src[y * PXSTRIDE(stride) + x] &= bitdepth_max; } bench_new(a_dst, src, stride, fg_data, 64, scaling, grain_lut, 32, 1 HIGHBD_TAIL_SUFFIX); } report("fgy_32x32xn"); } static void check_fguv_sbrow(const Dav1dFilmGrainDSPContext *const dsp) { PIXEL_RECT(c_dst, 128, 32); PIXEL_RECT(a_dst, 128, 32); PIXEL_RECT(src, 128, 32); PIXEL_RECT(luma_src, 128, 32); const ptrdiff_t lstride = luma_src_stride; declare_func(void, pixel *dst_row, const pixel *src_row, ptrdiff_t stride, const Dav1dFilmGrainData *data, size_t pw, const uint8_t scaling[SCALING_SIZE], const entry grain_lut[][GRAIN_WIDTH], int bh, int row_num, const pixel *luma_row, ptrdiff_t luma_stride, int uv_pl, int is_identity HIGHBD_DECL_SUFFIX); for (int layout_idx = 0; layout_idx < 3; layout_idx++) { const enum Dav1dPixelLayout layout = layout_idx + 1; const int ss_x = layout != DAV1D_PIXEL_LAYOUT_I444; const int ss_y = layout == DAV1D_PIXEL_LAYOUT_I420; const ptrdiff_t stride = c_dst_stride; for (int csfl = 0; csfl <= 1; csfl++) { if (check_func(dsp->fguv_32x32xn[layout_idx], "fguv_32x32xn_%dbpc_%s_csfl%d", BITDEPTH, ss_name[layout_idx], csfl)) { ALIGN_STK_16(Dav1dFilmGrainData, fg_data, 1,); ALIGN_STK_16(entry, grain_lut, 2,[GRAIN_HEIGHT + 1][GRAIN_WIDTH]); ALIGN_STK_64(uint8_t, scaling, SCALING_SIZE,); fg_data[0].seed = rnd() & 0xFFFF; #if BITDEPTH == 16 const int bitdepth_max = rnd() & 1 ? 0x3ff : 0xfff; #else const int bitdepth_max = 0xff; #endif const int uv_pl = rnd() & 1; const int is_identity = rnd() & 1; fg_data[0].grain_scale_shift = rnd() & 3; fg_data[0].ar_coeff_shift = (rnd() & 3) + 6; fg_data[0].ar_coeff_lag = rnd() & 3; fg_data[0].num_y_points = csfl ? 2 + (rnd() % 13) : 0; const int num_y_pos = 2 * fg_data[0].ar_coeff_lag * (fg_data[0].ar_coeff_lag + 1); for (int n = 0; n < num_y_pos; n++) fg_data[0].ar_coeffs_y[n] = (rnd() & 0xff) - 128; const int num_uv_pos = num_y_pos + 1; for (int n = 0; n < num_uv_pos; n++) fg_data[0].ar_coeffs_uv[uv_pl][n] = (rnd() & 0xff) - 128; dsp->generate_grain_y(grain_lut[0], fg_data HIGHBD_TAIL_SUFFIX); dsp->generate_grain_uv[layout_idx](grain_lut[1], grain_lut[0], fg_data, uv_pl HIGHBD_TAIL_SUFFIX); if (csfl) { const int pad = 0xff / fg_data[0].num_y_points; for (int n = 0; n < fg_data[0].num_y_points; n++) { fg_data[0].y_points[n][0] = 0xff * n / fg_data[0].num_y_points; fg_data[0].y_points[n][0] += rnd() % pad; fg_data[0].y_points[n][1] = rnd() & 0xff; } generate_scaling(bitdepth_from_max(bitdepth_max), fg_data[0].y_points, fg_data[0].num_y_points, scaling); } else { fg_data[0].num_uv_points[uv_pl] = 2 + (rnd() % 9); const int pad = 0xff / fg_data[0].num_uv_points[uv_pl]; for (int n = 0; n < fg_data[0].num_uv_points[uv_pl]; n++) { fg_data[0].uv_points[uv_pl][n][0] = 0xff * n / fg_data[0].num_uv_points[uv_pl]; fg_data[0].uv_points[uv_pl][n][0] += rnd() % pad; fg_data[0].uv_points[uv_pl][n][1] = rnd() & 0xff; } generate_scaling(bitdepth_from_max(bitdepth_max), fg_data[0].uv_points[uv_pl], fg_data[0].num_uv_points[uv_pl], scaling); fg_data[0].uv_mult[uv_pl] = (rnd() & 0xff) - 128; fg_data[0].uv_luma_mult[uv_pl] = (rnd() & 0xff) - 128; fg_data[0].uv_offset[uv_pl] = (rnd() & 0x1ff) - 256; } fg_data[0].clip_to_restricted_range = rnd() & 1; fg_data[0].scaling_shift = (rnd() & 3) + 8; fg_data[0].chroma_scaling_from_luma = csfl; for (fg_data[0].overlap_flag = 0; fg_data[0].overlap_flag <= 1; fg_data[0].overlap_flag++) { for (int i = 0; i <= 2 * fg_data[0].overlap_flag; i++) { int w, h, row_num; if (fg_data[0].overlap_flag) { w = (36 >> ss_x) + (rnd() % (92 >> ss_x)); if (i == 0) { row_num = 0; h = 1 + (rnd() & (31 >> ss_y)); } else { row_num = 1 + (rnd() & 0x7ff); if (i == 1) { h = (ss_y ? 2 : 3) + (rnd() % (ss_y ? 15 : 30)); } else { h = ss_y ? 1 : 1 + (rnd() & 1); } } } else { w = 1 + (rnd() & (127 >> ss_x)); h = 1 + (rnd() & (31 >> ss_y)); row_num = rnd() & 0x7ff; } for (int y = 0; y < 32; y++) { // Src pixels past the right edge can be uninitialized for (int x = 0; x < 128; x++) { src[y * PXSTRIDE(stride) + x] = rnd(); luma_src[y * PXSTRIDE(lstride) + x] = rnd(); } for (int x = 0; x < w; x++) src[y * PXSTRIDE(stride) + x] &= bitdepth_max; for (int x = 0; x < (w << ss_x); x++) luma_src[y * PXSTRIDE(lstride) + x] &= bitdepth_max; } CLEAR_PIXEL_RECT(c_dst); CLEAR_PIXEL_RECT(a_dst); call_ref(c_dst, src, stride, fg_data, w, scaling, grain_lut[1], h, row_num, luma_src, lstride, uv_pl, is_identity HIGHBD_TAIL_SUFFIX); call_new(a_dst, src, stride, fg_data, w, scaling, grain_lut[1], h, row_num, luma_src, lstride, uv_pl, is_identity HIGHBD_TAIL_SUFFIX); checkasm_check_pixel_padded_align(c_dst, stride, a_dst, stride, w, h, "dst", 32 >> ss_x, 4); } } fg_data[0].overlap_flag = 1; for (int y = 0; y < 32; y++) { // Make sure all pixels are in range for (int x = 0; x < 128; x++) { src[y * PXSTRIDE(stride) + x] &= bitdepth_max; luma_src[y * PXSTRIDE(lstride) + x] &= bitdepth_max; } } bench_new(a_dst, src, stride, fg_data, 64 >> ss_x, scaling, grain_lut[1], 32 >> ss_y, 1, luma_src, lstride, uv_pl, is_identity HIGHBD_TAIL_SUFFIX); } } } report("fguv_32x32xn"); } void bitfn(checkasm_check_filmgrain)(void) { Dav1dFilmGrainDSPContext c; bitfn(dav1d_film_grain_dsp_init)(&c); check_gen_grny(&c); check_gen_grnuv(&c); check_fgy_sbrow(&c); check_fguv_sbrow(&c); }