
Better Mutual Exclusion
on the Filesystem using

Boost.AFIO
(asynchronous filesystem and file i/o)

Niall Douglas

Contents:
1. Quick overview of proposed Boost.AFIO, its motivation

and its current status: v1 and v2
2. Overview of API design of Abstract Base Class

afio::algorithm::shared_fs_mutex::shared_fs_mutex
3. High-level overview of our memory map lock algorithm
4. Detail of the memory map lock algorithm

implementation
5. Benchmarks comparing our memory map lock

algorithm implementation to lock files, byte ranges
and atomic append locks on various filing systems

2

History and status of
proposed Boost.AFIO

(2012-)

Motivation
1. Why is it still so hard in 2016 to atomically

update more than file at once?
○ Over usage of badly fitting SQLite

2. Why is it still so hard in 2016 to write
DMA-friendly zero-copy storage code?
○ Ever more important with NVMe 4M IOPS SSDs ...

3. Why is it still so hard in 2016 to write bug-free
filesystem code?
○ The infamous directory tree deletion anti-pattern on Windows

4

Proposed Boost.AFIO v2 (> Oct 2015)
● “Bare metal” design

○ Exposes all the quirks of the host OS to user unfiltered
○ No threads, no resource nor memory management, no exceptions

(we return lightweight mongrel-monadic Outcomes instead)
○ Performance never measurably worse than using host OS APIs

directly - overhead often just hundreds of assembler opcodes

● Tight mapping between C++ type system and filing
system object primitives

● Publicly exposes core file system template algorithms
library into afio::algorithm::* (the AFIO “FTL”)

● Exemplar of simple, light, clean C++ 14/17 design
5

Proposed Boost.AFIO v2 - changes
Since ACCU 2016 (April):
● No AFIO v2 feature work apart from today’s workshop
● BUT: Beginnings of a test suite based on CTest,

Boost.KernelTest and threadsafe CATCH
■ KernelTest lets you write unit test suites functionally instead of

imperatively
● Parameter permutation lists, preconditions, postconditions

■ Maximum use of CPU cores, bias towards CI driven soak testing
■ In Progress: Automatic CI ASan, MSan, TSan, UBSan, valgrind,

libfuzzer
■ Soon: Automatic edge coverage and code bloat calculation
■ Despite immaturity, lots of AFIO v2 bugs fixed already

6

Proposed Boost.AFIO v2 - changes
○ Huge improvements to Boost-lite

■ AFIO now has a cmake3 based build system yay!
● As does Outcome, KernelTest and Boost-lite itself

■ Via Boost-lite build all Boost-lite libraries have:
● Automatic CMake, CTest, CDash and (soon) CPack
● Automatic binary and source uploads to CDash
● Automatic Travis and Appveyor CI
● Automatic use of C++ Modularisation & precompiled headers
● Automatic submodularisation & dependency tracking

● Automatic flat hierarchy or “single download and drop in”
header-only installation

● Automatic ABI versioning and hard version binds

■ Boost-lite remains very immature though! 7

8

9

Top level AFIO v2
afio::algorithm::

shared_fs_mutex::*
API overview

Prereq: Boost.Outcome (mongel monads)

● Policy driven underlying implementation
basic_monad<T, EC, E> is aliased into convenience
typedefs:
○ outcome<T> = empty OR T OR std::error_code

OR std::exception_ptr
○ result<T> = empty OR T OR std::error_code
○ option<T> = empty OR T

● Has identical API to a std::future<T> or
std::optional<T> (e.g. get(), value(),
has_value() etc)

11

Prereq: AFIO v2 byte range lock API

class io_handle : public handle {

 using extent_type = unsigned long long;

 class extent_guard; // RAII guard

 virtual result<extent_guard> lock(extent_type offset,
extent_type bytes, bool exclusive = true, deadline d =
deadline()) noexcept;

};

Passes straight through to syscall, insane
semantics and all if your POSIX OS is mad

12

4. shared_fs_mutex::memory_map (today)

There are these implementations of
shared_fs_mutex in AFIO v2:
1. shared_fs_mutex::lock_files
2. shared_fs_mutex::byte_ranges
3. shared_fs_mutex::atomic_append (ACCU talk)

All implement the abstract base class
shared_fs_mutex::shared_fs_mutex

afio::algorithm::shared_fs_mutex

13

shared_fs_mutex abstract base class
class shared_fs_mutex {

 struct entity_type { value : 63; exclusive: 1; };

 using entities_type = gsl::span<entity_type>;

 class entities_guard; // RAII guard

 (virtual) result<entities_guard> lock(entities_type
entities, deadline d = deadline(), bool spin_not_sleep =
false) noexcept;

 (virtual) result<entities_guard> try_lock(entities_type
entities) noexcept { return lock(std::move(entities),
deadline(std::chrono::seconds(0))); }

};

14

Why does the shared FS
mutex API lock many

entities?

16

17

afio::algorithm::shared_fs_mutex
● How entities are mapped onto the file

system depends on the implementation, so:
○ shared_fs_mutex::lock_file maps entities into 16

character hexadecimal files opened with O_EXCL
○ shared_fs_mutex::byte_ranges maps entities into

single byte offsets into the shared lock file
■ Contention is handled by backing off all preceding

locks and randomising the list before trying again,
starting with the entity which was contended last try.
This allows sleeping until contended lock becomes free 18

afio::algorithm::shared_fs_mutex
● shared_fs_mutex::atomic_append (see my

ACCU 2016 talk) solves the problem of
inverse log scaling to entity count in
lock_files and byte_ranges
○ atomic_append pretty much always wins once you

are locking >= 15 entities uncontended
○ Has easily best worst case performance in most heavy

concurrency use cases, avoiding the “scalability hole”
which most kernel filesystem lock implementations fall
into after a certain load of entities and concurrency 19

20

afio::algorithm::shared_fs_mutex
Last remaining class of shared FS mutex is a
very high performance one based entirely in
userspace using shared memory atomics
● Comes with lots of caveats … more on that shortly ...
● But it is probably likely most folk will default to it due

to its sheer raw performance which is 10x-20x more
than any other shared FS mutex in AFIO
(I have noticed people tend to default to best average
performance rather than best worst case performance)

21

Further reading:

AFIO v2 API reference:
https://ned14.github.io/boost.afio
Abstract base class
algorithm::shared_fs_mutex API reference:
http://goo.gl/s23ecD
ACCU 2016 atomic append talk video:
https://www.youtube.com/watch?v=elegewDwm64

22

https://ned14.github.io/boost.afio/index.html
https://ned14.github.io/boost.afio/index.html
http://goo.gl/s23ecD
http://goo.gl/s23ecD
https://www.youtube.com/watch?v=elegewDwm64
https://www.youtube.com/watch?v=elegewDwm64

The memory map lock
algorithm - Overview

Questions before we begin this section?

The shared memory map algorithm
● Only viable if there are no networked drive

users
○ Therefore will also need a fallback lock which IS

compatible with networked drive users
○ And the ability for all users of the lock to jointly

degrade to that fallback lock in safe fashion if a
networked drive user turns up
■ Which in turns means we need some way of portably

detecting the arrival of a networked drive user
24

The memory_map algorithm

To construct the shared mutex instance:
1. If the lockfile doesn’t exist, race free create a mapfile in

/tmp and write its path into the lockfile. Otherwise open
the lockfile and read the path of the mapfile somewhere in
/tmp. Try opening that, if we can’t then degrade the lock

2. Map the lockfile into memory read-only and the /tmp
mapfile into memory read-write

(Big assumption here is that whatever is said to be /tmp by
the OS is visible to all local processes, but not to any

networked drive users)
25

The memory_map algorithm

To lock:
1. Has the shared memory map been degraded by a

networked drive user? If so, pass through lock request to
fallback lock

2. Hash each entity and modulus by total map entries
3. Try locking the spin lock at each entity’s hash index. If

fail to lock, unlock everything, randomise and retry

To unlock:
1. Unlock all the spin locks locked earlier (or fallback lock)

26

The memory_map algorithm
Characteristics:
● Does at least one atomic operation per entity

○ But cascades atomic ops if any contended, and SMP and especially
NUMA have a very finite total system atomic operation bandwidth

● No ability to sleep the CPU
○ Spin locks do have a counter and do call sleep(1ms) eventually

● Quality of hash function very important
○ Collision probing left and right substantially increases cache line

bouncing, whole system performance damage is very severe

● This algorithm is fundamentally anti-social to all other
code on a machine … but it’s fast, very fast

27

The memory map lock
algorithm - Detail

Questions before we begin this section?

memory_map<...>
template <
 template <class> class Hasher = fnv1a_hash,
 size_t HashIndexSize = 4096,
 class SpinlockType = shared_spinlock<>
> class memory_map : public shared_fs_mutex

● fnv1a_hash and shared_spinlock<Policy> come
from Boost-lite https://github.com/ned14/boost-lite

● 1Mb + 0 = lock in use, 1Mb + 1 = map in use
29

https://github.com/ned14/boost-lite

memory_map<>::lock()
1. Is lock degraded (lockfile[0] is zero)? If so:

a. Have we only just degraded? If so:
i. Release shared lock map-in-use byte 1Mb + 1
ii. Exclusive lock map-in-use byte 1Mb + 1 and

immediately release
b. Redirect to fallback lock

2. Hash and modulus to mapfile entries every entity
in the lock list in an auto-vectorising SIMD
friendly fashion, eliding index collisions (with
exclusive bit upgrade) 30

memory_map<>::lock()

3. For every entity index:
a. If exclusively locking, try to exclusive lock the

spinlock at that index, else try to shared lock it
b. If lock fails:

i. Unlock everything locked so far
ii. Check if deadline has passed, if so return

ETIMEDOUT
iii. Swap contended index with first index
iv. std::random_shuffle() rest of index list
v. Yield thread context and retry sequence 31

Questions?

memory_map<>::unlock()
1. If lock degraded, pass to fallback lock
2. Hash and modulus to mapfile entries every entity in

the lock list in an auto-vectorising SIMD friendly
fashion, eliding index collisions (with exclusive bit
upgrade)

3. For every entity index:
a. If exclusively unlocking, try to exclusive unlock the

spinlock at that index, else try to shared unlock it
4. Is lock newly degraded (lockfile[0] is zero)? If so,

release shared lock map-in-use byte 1Mb +1
33

Questions?

memory_map<>::fs_mutex_map()
Remember:
● 1Mb + 0 = “lock in use” byte range lock offset

○ Used to detect other users of the lock
● 1Mb + 1 = “map in use” byte range lock offset

○ Used to detect other users of the map

1. Open the lockfile, creating if needed, caching
only reads (not writes)

2. Try to exclusive lock in-use byte at 1Mb + 0
35

memory_map<>::fs_mutex_map()
3. If success (i.e. lock is NOT in use):

a. Truncate lockfile to zero
b. Create a randomly named mapfile in /tmp
c. Truncate it to HashIndexSize
d. Write path of /tmp mapfile into lockfile
e. Shared lock map-in-use byte at 1Mb + 1
f. Convert exclusive lock in-use byte at 1Mb + 0 into

a shared lock
g. Map mapfile (rw) and lockfile (ro) into memory

36

memory_map<>::fs_mutex_map()
3. If failure (i.e. lock IS in use):

a. Shared lock in-use byte at 1Mb + 0 (blocks)
b. Read path from lockfile and try to open
c. If not found, write zeroes all over lockfile if

needed and return EBUSY
d. If found, shared lock map-in-use byte at 1Mb

+ 1
e. Map mapfile (rw) and lockfile (ro) into

memory
37

Questions?

memory_map<>::~memory_map()
1. Unlock in-use byte at 1Mb + 0 and

map-in-use byte at 1Mb + 1
2. Exclusive lock in-use byte at 1Mb + 0. If

success:
a. Write 4Kb of zeroes to lockfile
b. Truncate lockfile to zero
c. Unlink /tmp mapfile
d. Release all locks, lock is reset

39

Questions?

Benchmarks!
The following benchmarks are for:

2 core 4 thread 4.125Gb/sec main memory bandwidth
GenuineIntel Intel(R) Core(TM) i5 CPU M 540 @

2.53GHz (2008 era laptop)
Microsoft Windows 10.0.14393.103

Known deficiencies in this
memory_map implementation:
1. Uses std::random_shuffle (deprecated)
2. Lock degrade currently racy under multiple

thread users of same object instance
3. Networked user lock degrade blocks all lock

user until all users realise degrade is
happening

4. Multiple object instances racy on POSIX
systems with insane byte locks 42

43

44

Concurrency scaling
Questions before we begin this section?

46

47

48

Excel spreadsheet is in /graphs in AFIO git repo

Thank you
And let the questions begin!

Github: https://github.com/ned14/boost.afio

Ref docs: https://ned14.github.io/boost.afio/

https://github.com/ned14/boost.afio
https://ned14.github.io/boost.afio/

