
IRON File Systems

Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Computer Sciences Department, University of Wisconsin, Madison

{vijayan,laksh,nitina,haryadi,dusseau,remzi}@cs.wisc.edu

ABSTRACT
Commodity file systems trust disks to either work or fail com-
pletely, yet modern disks exhibit more complex failure modes. We
suggest a newfail-partial failure modelfor disks, which incorpo-
rates realistic localized faults such as latent sector errors and block
corruption. We then develop and apply a novelfailure-policy fin-
gerprinting framework, to investigate how commodity file systems
react to a range of more realistic disk failures. We classifytheir
failure policies in a new taxonomy that measures theirInternal RO-
bustNess (IRON), which includes both failure detection and recov-
ery techniques. We show that commodity file system failure poli-
cies are often inconsistent, sometimes buggy, and generally inade-
quate in their ability to recover from partial disk failures. Finally,
we design, implement, and evaluate a prototype IRON file system,
Linux ixt3, showing that techniques such as in-disk checksumming,
replication, and parity greatly enhance file system robustness while
incurring minimal time and space overheads.

Categories and Subject Descriptors:
D.4.3 [Operating Systems]: File Systems Management
D.4.5 [Operating Systems]: Reliability

General Terms: Design, Experimentation, Reliability
Keywords: IRON file systems, disks, storage, latent sector errors,
block corruption, fail-partial failure model, fault tolerance, reliabil-
ity, internal redundancy

1. INTRODUCTION
Disks fail – but not in the way most commodity file systems ex-

pect. For many years, file system and storage system designers have
assumed that disks operate in a “fail stop” manner [56]; within this
classic model, the disks either are working perfectly, or fail abso-
lutely and in an easily detectable manner.

The fault model presented by modern disk drives, however, is
much more complex. For example, modern drives can exhibitla-
tent sector faults[16, 34, 57], where a block or set of blocks are
inaccessible. Worse, blocks sometimes becomesilently corrupted
[9, 26, 73]. Finally, disks sometimes exhibittransientperformance
problems [7, 67].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’05,October 23–26, 2005, Brighton, United Kingdom.
Copyright 2005 ACM 1-59593-079-5/05/0010 ...$5.00.

There are many reasons for these complex failures in disks. For
example, a buggy disk controller could issue a “misdirected” write
[73], placing the correct data on disk but in the wrong location. In-
terestingly, while these failures exist today, simply waiting for disk
technology to improve will not remove these errors: indeed,these
errors mayworsenover time, due to increasing drive complexity
[5], immense cost pressures in the storage industry, and theesca-
lated use of less reliable ATA disks – not only in desktop PCs but
also in large-scale clusters [23] and storage systems [20, 28].

Developers of high-end systems have realized the nature of these
disk faults and built mechanisms into their systems to handle them.
For example, many redundant storage systems incorporate a back-
grounddisk scrubbingprocess [33, 57], to proactively detect and
subsequently correct latent sector errors by creating a newcopy of
inaccessible blocks; some recent storage arrays incorporate extra
levels of redundancy to lessen the potential damage of undiscov-
ered latent errors [16]. Similarly, highly-reliable systems (e.g., Tan-
dem NonStop) utilize end-to-end checksums to detect when block
corruption occurs [9].

Unfortunately, such technology has not filtered down to the realm
of commodity file systems, including Linux file systems such as
ext3 [71], ReiserFS [49], and IBM’s JFS [11], or Windows file sys-
tems such as NTFS [63]. Such file systems are not only pervasive
in the home environment, storing valuable (and often non-archived)
user data such as photos, home movies, and tax returns, but also in
many internet services such as Google [23].

In this paper, the first question we pose is:how do modern com-
modity file systems react to failures that are common in modern
disks?To answer this query, we aggregate knowledge from the re-
search literature, industry, and field experience to form a new model
for disk failure. We label our model thefail-partial failure model
to emphasize that portions of the disk can fail, either through block
errors or data corruption.

With the model in place, we develop and apply an automated
failure-policy fingerprintingframework, to inject more realistic disk
faults beneath a file system. The goal of fingerprinting is to unearth
the failure policy of each system: how it detects and recovers from
disk failures. Our approach leverages gray-box knowledge [6, 62]
of file system data structures to meticulously exercise file system
access paths to disk.

To better characterize failure policy, we develop anInternal RO-
bustNess (IRON)taxonomy, which catalogs a broad range of detec-
tion and recovery techniques. Hence, the output of our fingerprint-
ing tool is a broad categorization of which IRON techniques afile
system uses across its constituent data structures.

Our study focuses on three important and substantially different
open-source file systems, ext3, ReiserFS, and IBM’s JFS, andone
closed-source file system, Windows NTFS. Across all platforms,

1

we find a great deal ofillogical inconsistencyin failure policy, of-
ten due to the diffusion of failure handling code through theker-
nel; such inconsistency leads to substantially different detection
and recovery strategies under similar fault scenarios, resulting in
unpredictable and often undesirable fault-handling strategies. We
also discover that most systems implement portions of theirfail-
ure policy incorrectly; the presence of bugs in the implementa-
tions demonstrates the difficulty and complexity of correctly han-
dling certain classes of disk failure. We observe little tolerance of
transient failures; most file systems assume a single temporarily-
inaccessible block indicates a fatal whole-disk failure. Finally, we
show that none of the file systems can recover from partial disk
failures, due to a lack ofin-disk redundancy.

This behavior under realistic disk failures leads us to our second
question:how can we change file systems to better handle modern
disk failures?We advocate a single guiding principle for the design
of file systems:don’t trust the disk. The file system should not view
the disk as an utterly reliable component. For example, if blocks
can become corrupt, the file system should apply measures to both
detect and recover from such corruption, even when running on a
single disk. Our approach is an instance of the end-to-end argument
[53]: at the top of the storage stack, the file system is fundamentally
responsible for reliable management of its data and metadata.

In our initial efforts, we develop a family of prototype IRONfile
systems, all of which are robust variants of the Linux ext3 file sys-
tem. Within our IRON ext3 (ixt3), we investigate the costs ofusing
checksums to detect data corruption, replication to provide redun-
dancy for metadata structures, and parity protection for user data.
We show that these techniques incur modest space and time over-
heads while greatly increasing the robustness of the file system to
latent sector errors and data corruption. By implementing detec-
tion and recovery techniques from the IRON taxonomy, a system
can implement a well-defined failure policy and subsequently pro-
vide vigorous protection against the broader range of disk failures.

The contributions of this paper are as follows:

• We define a more realistic failure model for modern disks
(the fail-partial model) (§2).

• We formalize the techniques to detect and recover from disk
errors under the IRON taxonomy (§3).

• We develop a fingerprinting framework to determine the fail-
ure policy of a file system (§4).

• We analyze four popular commodity file systems to discover
how they handle disk errors (§5).

• We build a prototype version of an IRON file system (ixt3)
and analyze its robustness to disk failure and its performance
characteristics (§6).

To bring the paper to a close, we discuss related work (§7), and
finally conclude (§8).

2. DISK FAILURE
There are many reasons that the file system may see errors in

the storage system below. In this section, we first discuss common
causes of disk failure. We then present a new, more realisticfail-
partial modelfor disks and discuss various aspects of this model.

2.1 The Storage Subsystem
Figure 1 presents a typical layered storage subsystem belowthe

file system. An error can occur in any of these layers and propagate
itself to the file system above.

Generic Block I/O
Device Driver

Device Controller

Firmware

Media

Transport

H
os

t
D

is
k

Generic File System
Specific File System

S
to

ra
ge

 S
ub

sy
st

em

Electrical
Mechanical Cache

Figure 1:The Storage Stack.We present a schematic of the entire
storage stack. At the top is the file system; beneath are the many
layers of the storage subsystem. Gray shading implies software or
firmware, whereas white (unshaded) is hardware.

At the bottom of the “storage stack” is the disk itself; beyond the
magnetic storage media, there are mechanical (e.g., the motor and
arm assembly) and electrical components (e.g., busses). A particu-
larly important component is firmware – the code embedded within
the drive to control most of its higher-level functions, including
caching, disk scheduling, and error handling. This firmwarecode
is often substantial and complex (e.g., a modern Seagate drive con-
tains roughly 400,000 lines of code [19]).

Connecting the drive to the host is the transport. In low-endsys-
tems, the transport medium is often a bus (e.g., SCSI), whereas
networks are common in higher-end systems (e.g., FibreChannel).

At the top of the stack is the host. Herein there is a hardware
controller that communicates with the device, and above it asoft-
ware device driver that controls the hardware. Block-levelsoftware
forms the next layer, providing a generic device interface and im-
plementing various optimizations (e.g., request reordering).

Above all other software is the file system. This layer is often
split into two pieces: a high-level component common to all file
systems, and a specific component that maps generic operations
onto the data structures of the particular file system. A standard
interface (e.g., Vnode/VFS [36]) is positioned between the two.

2.2 Why Do Disks Fail?
To motivate our failure model, we first describe how errors inthe

layers of the storage stack can cause failures.
Media: There are two primary errors that occur in the magnetic
media. First, the classic problem of “bit rot” occurs when the mag-
netism of a single bit or a few bits is flipped. This type of problem
can often (but not always) be detected and corrected with low-level
ECC embedded in the drive. Second, physical damage can occuron
the media. The quintessential “head crash” is one culprit, where the
drive head contacts the surface momentarily. A media scratch can
also occur when a particle is trapped between the drive head and the
media [57]. Such dangers are well-known to drive manufacturers,
and hence modern disks park the drive head when the drive is not
in use to reduce the number of head crashes; SCSI disks sometimes
include filters to remove particles [5]. Media errors most often lead
to permanent failure or corruption of individual disk blocks.
Mechanical: “Wear and tear” eventually leads to failure of moving
parts. A drive motor can spin irregularly or fail completely. Erratic
arm movements can cause head crashes and media flaws; inaccu-
rate arm movement can misposition the drive head during writes,
leaving blocks inaccessible or corrupted upon subsequent reads.

2

Electrical: A power spike or surge can damage in-drive circuits
and hence lead to drive failure [68]. Thus, electrical problems can
lead to entire disk failure.
Drive firmware: Interesting errors arise in the drive controller,
which consists of many thousands of lines of real-time, concurrent
firmware. For example, disks have been known to return correct
data but circularly shifted by a byte [37] or have memory leaks
that lead to intermittent failures [68]. Other firmware problems
can lead to poor drive performance [54]. Some firmware bugs are
well-enough known in the field that they have specific names; for
example, “misdirected” writes are writes that place the correct data
on the disk but in the wrong location, and “phantom” writes are
writes that the drive reports as completed but that never reach the
media [73]. Phantom writes can be caused by a buggy or even mis-
configured cache (i.e., write-back caching is enabled). In summary,
drive firmware errors often lead to sticky or transient blockcorrup-
tion but can also lead to performance problems.
Transport: The transport connecting the drive and host can also be
problematic. For example, a study of a large disk farm [67] reveals
that most of the systems tested had interconnect problems, such
as bus timeouts. Parity errors also occurred with some frequency,
either causing requests to succeed (slowly) or fail altogether. Thus,
the transport often causes transient errors for the entire drive.
Bus controller: The main bus controller can also be problematic.
For example, the EIDE controller on a particular series of moth-
erboards incorrectly indicates completion of a disk request before
the data has reached the main memory of the host, leading to data
corruption [72]. A similar problem causes some other controllers to
return status bits as data if the floppy drive is in use at the same time
as the hard drive [26]. Others have also observed IDE protocol ver-
sion problems that yield corrupt data [23]. In summary, controller
problems can lead to transient block failure and data corruption.
Low-level drivers: Recent research has shown that device driver
code is more likely to contain bugs than the rest of the operating
system [15, 22, 66]. While some of these bugs will likely crash the
operating system, others can issue disk requests with bad parame-
ters, data, or both, resulting in data corruption.

2.3 The Fail-Partial Failure Model
From our discussion of the many root causes for failure, we are

now ready to put forth a more realistic model of disk failure.In our
model, failures manifest themselves in three ways:

• Entire disk failure: The entire disk is no longer accessible. If
permanent, this is the classic “fail-stop” failure.
• Block failure: One or more blocks are not accessible; often re-
ferred to as “latent sector errors” [33, 34].
• Block corruption: The data within individual blocks is altered.
Corruption is particularly insidious because it is silent –the storage
subsystem simply returns “bad” data upon a read.

We term this model theFail-Partial Failure Model, to empha-
size that pieces of the storage subsystem can fail. We now discuss
some other key elements of the fail-partial model, including the
transience, locality, and frequency of failures, and then discuss how
technology and market trends will impact disk failures overtime.

2.3.1 Transience of Failures
In our model, failures can be “sticky” (permanent) or “transient”

(temporary). Which behavior manifests itself depends uponthe
root cause of the problem. For example, a low-level media problem
portends the failure of subsequent requests. In contrast, atransport
or higher-level software issue might at first cause block failure or
corruption; however, the operation could succeed if retried.

2.3.2 Locality of Failures
Because multiple blocks of a disk can fail, one must consider

whether such block failures are dependent. The root causes of
block failure suggest that some forms of block failure do indeed
exhibit spatial locality [34]. For example, a scratched surface can
render a number of contiguous blocks inaccessible. However, all
failures do not exhibit locality; for example, a corruptiondue to a
misdirected write may impact only a single block.

2.3.3 Frequency of Failures
Block failures and corruptions do occur – as one commercial

storage system developer succinctly stated, “Disks break alot – all
guarantees are fiction” [29]. However, one must also consider how
frequently such errors occur, particularly when modeling overall re-
liability and deciding which failures are most important tohandle.
Unfortunately, as Talagala and Patterson point out [67], disk drive
manufacturers are loathe to provide information on disk failures;
indeed, people within the industry refer to an implicit industry-wide
agreement to not publicize such details [4]. Not surprisingly, the
actual frequency of drive errors, especially errors that donot cause
the whole disk to fail, is not well-known in the literature. Previous
work on latent sector errors indicates that such errors occur more
commonly than absolute disk failure [34], and more recent research
estimates that such errors may occur five times more often than ab-
solute disk failures [57].

In terms of relative frequency, block failures are more likely to
occur on reads than writes, due to internal error handling common
in most disk drives. For example, failed writes to a given sector
are often remapped to another (distant) sector, allowing the drive
to transparently handle such problems [31]. However, remapping
does not imply that writes cannot fail. A failure in a component
above the media (e.g., a stuttering transport), can lead to an unsuc-
cessful write attempt; the move to network-attached storage [24]
serves to increase the frequency of this class of failures. Also, for
remapping to succeed, free blocks must be available; a largescratch
could render many blocks unwritable and quickly use up reserved
space. Reads are more problematic: if the media is unreadable, the
drive has no choice but to return an error.

2.3.4 Trends
In many other areas (e.g., processor performance), technology

and market trends combine to improve different aspects of com-
puter systems. In contrast, we believe that technology trends and
market forces may combine to make storage system failures occur
morefrequently over time, for the following three reasons.

First, reliability is a greater challenge when drives are made in-
creasingly more dense; as more bits are packed into smaller spaces,
drive logic (and hence complexity) increases [5].

Second, at the low-end of the drive market, cost-per-byte domi-
nates, and hence many corners are cut to save pennies in IDE/ATA
drives [5]. Low-cost “PC class” drives tend to be tested lessand
have less internal machinery to prevent failures from occurring [31].
The result, in the field, is that ATA drives are observably less reli-
able [67]; however, cost pressures serve to increase their usage,
even in server environments [23].

Finally, the amount of software is increasing in storage systems
and, as others have noted, software is often the root cause ofer-
rors [25]. In the storage system, hundreds of thousands of lines of
software are present in the lower-level drivers and firmware. This
low-level code is generally the type of code that is difficultto write
and debug [22, 66] – hence a likely source of increased errorsin
the storage stack.

3

3. THE IRON TAXONOMY
In this section, we outline strategies for developing an IRON file

system,i.e., a file system that detects and recovers from a range of
modern disk failures. Our main focus is to develop differentstrate-
gies, notacrossdisks as is common in storage arrays, butwithin a
single disk. Such Internal RObustNess (IRON) provides muchof
the needed protection within a file system.

To cope with the failures in modern disks, an IRON file sys-
tem includes machinery to bothdetect(Level D) partial faults and
recover(Level R) from them. Tables 1 and 2 present our IRON
detection and recovery taxonomies, respectively. Note that the tax-
onomy is by no means complete. Many other techniques are likely
to exist, just as many different RAID variations have been proposed
over the years [3, 74].

The detection and recovery mechanisms employed by a file sys-
tem define itsfailure policy. Currently, it is difficult to discuss the
failure policy of a system. With the IRON taxonomy, one can de-
scribe the failure policy of a file system, much as one can already
describe a cache replacement or a file-layout policy.

3.1 Levels of Detection
Level D techniques are used by a file system to detect that a

problem has occurred,i.e., that a block cannot currently be ac-
cessed or has been corrupted.
• Zero: The simplest detection strategy is none at all; the file
system assumes the disk works and does not check return codes. As
we will see in§5, this approach is surprisingly common (although
often it is applied unintentionally).
• ErrorCode: A more pragmatic detection strategy that a file sys-
tem can implement is to check return codes provided by the lower
levels of the storage system.
• Sanity: With sanity checks, the file system verifies that its data
structures are consistent. This check can be performed either within
a single block or across blocks.

When checking a single block, the file system can either verify
individual fields (e.g., that pointers are within valid ranges) or ver-
ify the typeof the block. For example, most file system superblocks
include a “magic number” and some older file systems such as Pi-
lot even include a header per data block [48]. By checking whether
a block has the correct type information, a file system can guard
against some forms of block corruption.

Checking across blocks can involve verifying only a few blocks
(e.g., that a bitmap corresponds to allocated blocks) or can involve
periodically scanning all structures to determine if they are intact
and consistent (e.g., similar tofsck [41]). Even journaling file
systems can benefit from periodic full-scan integrity checks. For
example, a buggy journaling file system could unknowingly cor-
rupt its on-disk structures; runningfsck in the background could
detect and recover from such problems.
• Redundancy: The final level of the detection taxonomy is re-
dundancy. Many forms of redundancy can be used to detect block
corruption. For example,checksumminghas been used in reliable
systems for years to detect corruption [9] and has recently been ap-
plied to improve security as well [43, 64]. Checksums are useful for
a number of reasons. First, they assist in detecting classic“bit rot”,
where the bits of the media have been flipped. However, in-media
ECC often catches and corrects such errors. Checksums are there-
fore particularly well-suited for detecting corruption inhigher lev-
els of the storage system stack (e.g., a buggy controller that “misdi-
rects” disk updates to the wrong location or does not write a given
block to disk at all). However, checksums must be carefully imple-
mented to detect these problems [9, 73]; specifically, a checksum

Level Technique Comment
DZero No detection Assumes disk works
DErrorCode Check return codes Assumes lower level

from lower levels can detect errors
DSanity Check data structures May require extra

for consistency space per block
DRedundancy Redundancy over Detect corruption

one or more blocks in end-to-end way

Table 1:The Levels of the IRON Detection Taxonomy.

Level Technique Comment
RZero No recovery Assumes disk works
RPropagate Propagate error Informs user
RStop Stop activity Limit amount

(crash, prevent writes) of damage
RGuess Return “guess” at Could be wrong;

block contents failure hidden
RRetry Retry read or write Handles failures

that are transient
RRepair Repair data structs Could lose data
RRemap Remaps block or file Assumes disk informs

to different locale FS of failures
RRedundancy Block replication Enables recovery

or other forms from loss/corruption

Table 2:The Levels of the IRON Recovery Taxonomy.

that is stored along with the data it checksums will not detect such
misdirected or phantom writes.

Higher levels of redundancy, such as block mirroring [12], par-
ity [42, 45] and other error-correction codes [38], can alsodetect
corruption. For example, a file system could keep three copies of
each block, reading and comparing all three to determine if one has
been corrupted. However, such techniques are truly designed for
correction (as discussed below); they often assume the presence of
a lower-overhead detection mechanism [45].

3.2 Detection Frequency
All detection techniques discussed above can be appliedlazily,

upon block access, oreagerly, perhaps scanning the disk during
idle time. We believe IRON file systems should contain some form
of lazy detection and should additionally consider eager methods.

For example,disk scrubbingis a classic eager technique used
by RAID systems to scan a disk and thereby discover latent sector
errors [34]. Disk scrubbing is particularly valuable if a means for
recovery is available, that is, if a replica exists to repairthe now-
unavailable block. To detect whether an error occurred, scrubbing
typically leverages the return codes explicitly provided by the disk
and hence discovers block failure but not corruption. If combined
with other detection techniques (such as checksums), scrubbing can
discover block corruption as well.

3.3 Levels of Recovery
Level R of the IRON taxonomy facilitates recovery from block

failure within a single disk drive. These techniques handleboth
latent sector errors and block corruptions.
• Zero: Again, the simplest approach is to implement no recovery
strategy at all, not even notifying clients that a failure has occurred.
• Propagate: A straightforward recovery strategy is to propagate

4

errors up through the file system; the file system informs the ap-
plication that an error occurred and assumes the client program or
user will respond appropriately to the problem.
• Stop: One way to recover from a disk failure is to stop the cur-
rent file system activity. This action can be taken at many different
levels of granularity. At the coarsest level, one can crash the en-
tire machine. One positive feature is that this recovery mechanism
turns alldetecteddisk failures into fail-stop failures and likely pre-
serves file system integrity. However, crashing assumes theprob-
lem is transient; if the faulty block contains repeatedly-accessed
data (e.g., a script run during initialization), the system may repeat-
edly reboot, attempt to access the unavailable data, and crash again.
At an intermediate level, one can kill only the process that triggered
the disk fault and subsequently mount the file system in a read-only
mode. This approach is advantageous in that it does not take down
the entire system and thus allows other processes to continue. At
the finest level, a journaling file system can abort only the current
transaction. This approach is likely to lead to the most available
system, but may be more complex to implement.
• Guess: As recently suggested by Rinardet al. [51], another
possible reaction to a failed block read would be to manufacture
a response, perhaps allowing the system to keep running in spite
of a failure. The negative is that an artificial response may be less
desirable than failing.
• Retry: A simple response to failure is to retry the failed oper-
ation. Retry can appropriately handle transient errors, but wastes
time retrying if the failure is indeed permanent.
• Repair: If an IRON file system can detect an inconsistency in
its internal data structures, it can likely repair them, just asfsck
would. For example, a block that is not pointed to, but is marked
as allocated in a bitmap, could be freed. As discussed above,such
techniques are useful even in the context of journaling file systems,
as bugs may lead to corruption of file system integrity.
• Remap: IRON file systems can perform block remapping. This
technique can be used to fix errors that occur when writing a block,
but cannot recover failed reads. Specifically, when a write to a
given block fails, the file system could choose to simply write the
block to another location. More sophisticated strategies could remap
an entire “semantic unit” at a time (e.g., a user file), thus preserving
logical contiguity.
• Redundancy: Finally, redundancy (in its many forms) can be
used to recover from block loss. The simplest form isreplication,
in which a given block has two (or more) copies in different loca-
tions within a disk. Another redundancy approach employs parity
to facilitate error correction. Similar to RAID 4/5 [45], byadding
a parity block per block group, a file system can tolerate the un-
availability or corruption of one block in each such group. More
complex encodings (e.g., Tornado codes [38]) could also be used, a
subject worthy of future exploration.

However, redundancy within a disk can have negative conse-
quences. First, replicas must account for the spatial locality of
failure (e.g., a surface scratch that corrupts a sequence of neighbor-
ing blocks); hence, copies should be allocated across remote parts
of the disk, which can lower performance. Second, in-disk redun-
dancy techniques can incur a high space cost; however, in many
desktop settings, drives have sufficient available free space [18].

3.4 Why IRON in the File System?
One natural question to ask is: why should the file system imple-

ment detection and recovery instead of the disk? Perhaps modern
disks, with their internal mechanisms for detecting and recovering
from errors, are sufficient.

In our view, the primary reason for detection and recovery within
the file system is found in the end-to-end argument [53]; evenif the
lower-levels of the system implement some forms of fault toler-
ance, the file system must implement them as well to guard against
all forms of failure. For example, the file system is theonly place
that can detect corruption of data in higher levels of the storage
stack (e.g., within the device driver or drive controller).

A second reason for implementing detection and recovery in
the file system is that the file system has exact knowledge of how
blocks are currently being used. Thus, the file system can apply de-
tection and recovery intelligently across different blocktypes. For
example, the file system can provide a higher level of replication for
its own metadata, perhaps leaving failure detection and correction
of user data to applications (indeed, this is one specific solution that
we explore in§6). Similarly, the file system can provide machinery
to enable application-controlled replication of important data, thus
enabling an explicit performance/reliability trade-off.

A third reason is performance: file systems and storage systems
have an “unwritten contract” [55] that allows the file systemto lay
out blocks to achieve high bandwidth. For example, the unwritten
contract stipulates that adjacent blocks in the logical disk address
space are physically proximate. Disk-level recovery mechanisms,
such as remapping, break this unwritten contract and cause perfor-
mance problems. If the file system instead assumes this responsi-
bility, it can itself remap logically-related blocks (e.g., a file) and
hence avoid such problems.

However, there are some complexities to placing IRON function-
ality in the file system. First, some of these techniques require new
persistent data structures (e.g., to track where redundant copies or
parity blocks are located). Second, some mechanisms require con-
trol of the underlying drive mechanisms. For example, to recover
on-disk data, modern drives will attempt different positioning and
reading strategies [5]; no interface exists to control these different
low-level strategies in current systems.

3.5 Doesn’t RAID Make Storage Reliable?
Another question that must be answered is: can’t we simply use

RAID techniques [45] to provide reliable and robust storage? We
believe that while RAID can indeed improve storage reliability, it
is not a complete solution, for the following three reasons.

First, not all systems incorporate more than one disk, thesine
qua nonof redundant storage systems. For example, desktop PCs
currently ship with a single disk included; because cost is adriving
force in the marketplace, adding a $100 disk to a $300 PC solely
for the sake of redundancy is not a palatable solution.

Second, RAID alone does not protect against failures higherin
the storage stack, as shown in Figure 1. Because many layers exist
between the storage subsystem and the file system, and errorscan
occur in these layers as well, the file system must ultimatelybe
responsible for detecting and perhaps recovering from sucherrors.
Ironically, a complex RAID controller can consist of millions of
lines of code [74], and hence be a source of faults itself.

Third, depending on the particular RAID system employed, not
all types of disk faults may be handled. For example, lower-end
RAID controller cards do not use checksums to detect data corrup-
tion, and only recently have some companies included machinery
to cope with latent sector errors [16].

Hence, we believe that IRON techniques within a file system are
useful for all single-disk systems, and even when multiple drives
are used in a RAID-like manner. Although we focus on single-disk
systems in this paper, we believe there is a rich space left for explo-
ration between IRON file systems and redundant storage arrays.

5

4. FAILURE POLICY FINGERPRINTING
We now describe our methodology to uncover thefailure policy

of file systems. Our main objective withfailure-policy fingerprint-
ing is to determine which detection and recovery techniques each
file system uses and the assumptions each makes about how the un-
derlying storage system can fail. By comparing the failure policies
across file systems, we can learn not only which file systems are
the most robust to disk failures, but also suggest improvements for
each. Our analysis will also be helpful for inferring which IRON
techniques can be implemented the most effectively.

Our approach is to inject faults just beneath the file system and
observe how the file system reacts. If the fault policy is entirely
consistent within a file system, this could be done quite simply; we
could run any workload, fail one of the blocks that is accessed, and
conclude that the reaction to this block failure fully demonstrates
the failure policy of the system. However, file systems are inprac-
tice more complex: they employ different techniques depending
upon the operation performed and the type of the faulty block.

Therefore, to extract the failure policy of a system, we musttrig-
ger all interesting cases. Our challenge is to coerce the filesystem
down its different code paths to observe how each path handles
failure. This requires that we run workloads exercising allrelevant
code paths in combination with induced faults on all file system
data structures. We now describe how we create workloads, inject
faults, and deduce failure policy.

4.1 Applied Workload
Our goal when applying workloads is to exercise the file system

as thoroughly as possible. Although we do not claim to stressevery
code path (leaving this as an avenue for future work), we do strive
to execute as many of the interesting internal cases as possible.

Our workload suite contains two sets of programs that run on
UNIX -based file systems (fingerprinting NTFS requires a different
set of similar programs). The first set of programs, calledsinglets,
each focus upon a single call in the file system API (e.g., mkdir).
The second set,generics, stresses functionality common across the
API (e.g., path traversal). Table 3 summarizes the test suite.

Each file system under test also introduces special cases that
must be stressed. For example, the ext3 inode uses an imbalanced
tree with indirect, doubly-indirect, and triply-indirectpointers, to
support large files; hence, our workloads ensure that sufficiently
large files are created to access these structures. Other filesystems
have similar peculiarities that we make sure to exercise (e.g., the
B+-tree balancing code of ReiserFS).

4.2 Type-Aware Fault Injection
Our second step is to inject faults that emulate a disk adhering

to the fail-partial failure model. Many standard fault injectors [13,
59] fail disk blocks in atype obliviousmanner; that is, a block is
failed regardless of how it is being used by the file system. How-
ever, repeatedly injecting faults into random blocks and waiting to
uncover new aspects of the failure policy would be a laborious and
time-consuming process, likely yielding little insight.

The key idea that allows us to test a file system in a relatively
efficient and thorough manner istype-aware fault injection, which
builds on our previous work with “semantically-smart” disksys-
tems [8, 60, 61, 62]. With type-aware fault injection, instead of
failing blocks obliviously, we fail blocks of a specific type(e.g.,
an inode). Type information is crucial in reverse-engineering fail-
ure policy, allowing us to discern the different strategiesthat a file
system applies for its different data structures. The disadvantage
of our type-aware approach is that the fault injector must betai-
lored to each file system tested and requires a solid understanding

Workload Purpose
Singlets:
access, chdir, chroot,
stat, statfs, lstat, open,
utimes, read, readlink, Exercise the
getdirentries, creat, Posix API
link, mkdir, rename, chown,
symlink, write, truncate,
rmdir, unlink, mount,
chmod, fsync, sync, umount

Generics:
Path traversal Traverse hierarchy
Recovery Invoke recovery
Log writes Update journal

Table 3:Workloads. The table presents the workloads applied to
the file systems under test. The first set of workloads each stresses
a single system call, whereas the second group invokes general op-
erations that span many of the calls (e.g., path traversal).

of on-disk structures. However, we believe that the benefitsof type-
awareness clearly outweigh these complexities. The block types of
the file systems we test are listed in Table 4.

Our mechanism for injecting faults is to use a software layerdi-
rectly beneath the file system (i.e., a pseudo-device driver). This
layer injects both block failures (on reads or writes) and block cor-
ruption (on reads). To emulate a block failure, we simply return the
appropriate error code and do not issue the operation to the under-
lying disk. To emulate corruption, we change bits within theblock
before returning the data; in some cases we inject random noise,
whereas in other cases we use a block similar to the expected one
but with one or more corrupted fields. The software layer alsomod-
els both transient and sticky faults.

By injecting failures just below the file system, we emulate faults
that could be caused by any of the layers in the storage subsystem.
Therefore, unlike approaches that emulate faulty disks using ad-
ditional hardware [13], we can imitate faults introduced bybuggy
device drivers and controllers. A drawback of our approach is that
it does not discern how lower layers handle disk faults; for example,
some SCSI drivers retry commands after a failure [50]. However,
given that we are characterizing how file systems react to faults, we
believe this is the correct layer for fault injection.

4.3 Failure Policy Inference
After running a workload and injecting a fault, the final stepis to

determine how the file system behaved. To determine how a fault
affected the file system, we compare the results of running with and
without the fault. We perform this comparison across all observable
outputs from the system: the errors codes and data returned by the
file system API, the contents of the system log, and the low-level
I/O traces recorded by the fault-injection layer. Currently, this is
the most human-intensive part of the process, as it requiresmanual
inspection of the visible outputs.

4.4 Summary
We have developed a three-step fingerprinting methodology to

determine file system failure policy. We believe our approach strikes
a good balance: it is straightforward to run and yet exercises the file
system under test quite thoroughly. Our workload suite contains
roughly 30 programs, each file system has on the order of 10 to 20
different block types, and each block can be failed on a read or a
write or have its data corrupted. For each file system, this amounts
to roughly 400 relevant tests.

6

Ext3 Structures Purpose
inode Info about files and directories
directory List of files in directory
data bitmap Tracks data blocks per group
inode bitmap Tracks inodes per group
indirect Allows for large files to exist
data Holds user data
super Contains info about file system
group descriptor Holds info about each block group
journal super Describes journal
journal revoke Tracks blocks that will not be replayed
journal descriptor Describes contents of transaction
journal commit Marks the end of a transaction
journal data Contains blocks that are journaled

ReiserFS Structures Purpose
leaf node Contains items of various kinds
stat item Info about files and directories
directory item List of files in directory
direct item Holds small files or tail of file
indirect item Allows for large files to exist

data bitmap Tracks data blocks
data Holds user data
super Contains info about tree and file system
journal header Describes journal
journal descriptor Describes contents of transaction
journal commit Marks end of transaction
journal data Contains blocks that are journaled
root/internal node Used for tree traversal

JFS Structures Purpose
inode Info about files and directories
directory List of files in directory
block alloc map Tracks data blocks per group
inode alloc map Tracks inodes per group
internal Allows for large files to exist
data Holds user data
super Contains info about file system
journal super Describes journal
journal data Contains records of transactions
aggregate inode Contains info about disk partition
bmap descriptor Describes block allocation map
imap control Summary info about imaps

NTFS Structures Purpose
MFT record Info about files/directories
directory List of files in directory
volume bitmap Tracks free logical clusters
MFT bitmap Tracks unused MFT records
logfile The transaction log file
data Holds user data
boot file Contains info about NTFS volume

Table 4:File System Data Structures.The table presents the data
structures of interest across the four file systems under test: ext3,
ReiserFS, JFS, and NTFS. In each table, we list the names of the
major structures and their purpose. Note that our knowledgeof
NTFS data structures is incomplete, as it is a closed-sourcesystem.

5. FAILURE POLICY: RESULTS
We now present the results of our failure policy analysis forfour

commodity file systems: ext3, ReiserFS (version 3), and IBM’s JFS
on Linux and NTFS on Windows. For each file system, we first
present basic background information and then discuss the general
failure policy we uncovered along with bugs and illogical incon-
sistencies; where appropriate and available, we also look at source
code to better explain the problems we discover.

Due to the sheer volume of experimental data, it is difficult to
present all results for the reader’s inspection. For each file system
that we studied in depth, we present a graphical depiction ofour
results, showing for each workload/blocktype pair how a given de-
tection or recovery technique is used. Figure 2 presents a (complex)
graphical depiction of our results – see the caption for interpreta-
tion details. We now provide a qualitative summary of the results
that are presented within the figure.

5.1 Linux ext3
Linux ext3 is the most similar to many classic UNIX file systems

such as the Berkeley Fast File system [40]. Ext3 divides the disk
into a set of block groups; within each are statically-reserved spaces
for bitmaps, inodes, and data blocks. The major addition in ext3
over ext2 is journaling [71]; hence, ext3 includes a new set of on-
disk structures to manage its write-ahead log.
Detection: To detect read failures, ext3 primarily uses error codes
(DErrorCode). However, when a write fails, ext3 does not record
the error code (DZero); hence, write errors are often ignored, po-
tentially leading to serious file system problems (e.g., when check-
pointing a transaction to its final location). Ext3 also performs a fair
amount of sanity checking (DSanity). For example, ext3 explicitly
performs type checks for certain blocks such as the superblock and
many of its journal blocks. However, little type checking isdone
for many important blocks, such as directories, bitmap blocks, and
indirect blocks. Ext3 also performs numerous other sanity checks
(e.g., when the file-size field of an inode contains an overly-large
value,open detects this and reports an error).
Recovery: For most detected errors, ext3 propagates the error
to the user (RPropagate). For read failures, ext3 also often aborts
the journal (RStop); aborting the journal usually leads to a read-
only remount of the file system, preventing future updates without
explicit administrator interaction. Ext3 also uses retry (RRetry),
although sparingly; when a prefetch read fails, ext3 retries only the
originally requested block.
Bugs and Inconsistencies: We found a number of bugs and in-
consistencies in the ext3 failure policy. First, errors arenot always
propagated to the user (e.g., truncate andrmdir fail silently).
Second, there are important cases when ext3 does not immediately
abort the journal on failure (i.e., does not implementRStop). For
example, when a journal write fails, ext3 still writes the rest of
the transaction, including the commit block, to the journal; thus,
if the journal is later used for recovery, the file system can eas-
ily become corrupted. Third, ext3 does not always perform sanity
checking; for example,unlink does not check thelinkscount
field before modifying it and therefore a corrupted value canlead
to a system crash. Finally, although ext3 has redundant copies of
the superblock (RRedundancy), these copies are never updated after
file system creation and hence are not useful.

5.2 ReiserFS
ReiserFS [49] is comprised of vastly different data structures

than ext3. Virtually all metadata and data are placed in a balanced
tree, similar to a database index. A key advantage of tree structur-
ing is scalability [65], allowing many files to coexist in a directory.

7

 Read Failure Write Failure Corruption

a b c d e f g h i j k l mn o p q r s t a b c d e f g h i j k l mn o p q r s t a b c d e f g h i j k l mn o p q r s t

E
xt

3
D

et
ec

tio
n

j-data
j-commit
j-desc
j-revoke
j-super
g-desc
super
data
indirect
i-bitmap
bitmap
dir
inode

E

xt
3

R
ec

ov
er

y

j-data
j-commit
j-desc
j-revoke
j-super
g-desc
super
data
indirect
i-bitmap
bitmap
dir
inode

a b c d e f g h i j k l mn o p q r s t a b c d e f g h i j k l mn o p q r s t a b c d e f g h i j k l mn o p q r s t

 R
ei

se
rF

S
 D

et
ec

tio
n

internal
root
j-data
j-commit
j-desc
j-header
super
data
indirect
bitmap
dir item
stat item

 R
ei

se
rF

S
 R

ec
ov

er
y

internal
root
j-data
j-commit
j-desc
j-header
super
data
indirect
bitmap
dir item
stat item

a b c d e f g h i j k l mn o p q r s t a b c d e f g h i j k l mn o p q r s t a b c d e f g h i j k l mn o p q r s t

JF

S
 D

et
ec

tio
n

imap-cntl
bmap-desc
aggr-inode
j-data
j-super
super
data
internal
imap
bmap
dir
inode

JF

S
 R

ec
ov

er
y

imap-cntl
bmap-desc
aggr-inode
j-data
j-super
super
data
internal
imap
bmap
dir
inode

Figure 2:File System Failure Policies.The tables indicate both detection and recov-
ery policies of ext3, ReiserFS, and JFS for read, write, and corruption faults injected
for each block type across a range of workloads. The workloads area: path traversal
b: access,chdir,chroot,stat,statfs,lstat,openc: chmod,chown,utimesd: read e: read-
link f: getdirentriesg: creath: link i: mkdir j: renamek: symlinkl: write m: truncate
n: rmdir o: unlink p: mountq: fysnc,syncr: umounts: FS recoveryt: log write oper-
ations. A gray box indicates that the workload is not applicable for the block type. If
multiple mechanisms are observed, the symbols are superimposed.

Key for Detection Key for Recovery
© DZero © RZero

− DErrorCode / RRetry

| DSanity − RPropagate

\ RRedundancy

| RStop

8

Detection: Our analysis reveals that ReiserFS pays close attention
to error codes across reads and writes (DErrorCode). ReiserFS
also performs a great deal of internal sanity checking (DSanity).
For example, all internal and leaf nodes in the balanced treehave
a block header containing information about the level of theblock
in the tree, the number of items, and the available free space; the
super block and journal metadata blocks have “magic numbers”
which identify them as valid; the journal descriptor and commit
blocks also have additional information; finally, inodes and direc-
tory blocks have known formats. ReiserFS checks whether each
of these blocks has the expected values in the appropriate fields.
However, not all blocks are checked this carefully. For example,
bitmaps and data blocks do not have associated type information
and hence are never type-checked.
Recovery: The most prominent aspect of the recovery policy of
ReiserFS is its tendency topanic the system upon detection of
virtually any write failure (RStop). When ReiserFS callspanic,
the file system crashes, usually leading to a reboot and recovery
sequence. By doing so, ReiserFS attempts to ensure that its on-
disk structures are not corrupted. ReiserFS recovers from read and
write failures differently. For most read failures, ReiserFS propa-
gates the error to the user (RPropagate) and sometimes performs a
single retry (RRetry) (e.g., when a data block read fails, or when an
indirect block read fails duringunlink, truncate, andwrite
operations). However, ReiserFS never retries upon a write failure.
Bugs and Inconsistencies:ReiserFS also exhibits inconsistencies
and bugs. For example, when an ordered data block write fails,
ReiserFS journals and commits the transaction without handling
the error (RZero instead of the expectedRStop), which can lead
to corrupted data blocks since the metadata blocks now pointto
invalid data contents. Second, while dealing with indirectblocks,
ReiserFS detects but ignores a read failure; hence, on atruncate
or unlink, it updates the bitmaps and super block incorrectly,
leaking space. Third, ReiserFS sometimes callspanic on fail-
ing a sanity check, instead of simply returning an error code. Fi-
nally, there is no sanity or type checking to detect corrupt journal
data; therefore, replaying a corrupted journal block can make the
file system unusable (e.g., the block is written as the super block).

5.3 IBM JFS
JFS [11] uses modern techniques to manage data, block alloca-

tion and journaling, with scalable tree structures to manage files,
directories, and block allocation. Unlike ext3 and ReiserFS, JFS
uses record-level journaling to reduce journal traffic.
Detection: Error codes (DErrorCode) are used to detect read fail-
ures, but, like ext3, most write errors are ignored (DZero), with
the exception of journal superblock writes. JFS employs only min-
imal type checking; the superblock and journal superblock have
magic and version numbers that are checked. Other sanity checks
(DSanity) are used for different block types. For example, internal
tree blocks, directory blocks, and inode blocks contain thenum-
ber of entries (pointers) in the block; JFS checks to make sure this
number is less than the maximum possible for each block type.
As another example, an equality check on a field is performed for
block allocation maps to verify that the block is not corrupted.
Recovery: The recovery strategies of JFS vary dramatically de-
pending on the block type. For example, when an error occurs dur-
ing a journal superblock write, JFS crashes the system (RStop);
however, other write errors are ignored entirely (RZero). On a
block read failure to the primary superblock, JFS accesses the alter-
nate copy (RRedundancy) to complete the mount operation; how-
ever, a corrupt primary results in a mount failure (RStop). Explicit
crashes (RStop) are used when a block allocation map or inode al-

location map read fails. Error codes for all metadata reads are han-
dled by generic file system code called by JFS; this generic code
attempts to recover from read errors by retrying the read a single
time (RRetry). Finally, the reaction for a failed sanity check is
to propagate the error (RPropagate) and remount the file system
as read-only (RStop); during journal replay, a sanity-check failure
causes the replay to abort (RStop).
Bugs and Inconsistencies:We also found problems with the JFS
failure policy. First, while JFS has some built-in redundancy, it
does not always use it as one would expect; for example, JFS does
not use its secondary copies of aggregate inode tables (special in-
odes used to describe the file system) when an error code is returned
for an aggregate inode read. Second, a blank page is sometimes
returned to the user (RGuess), although we believe this is not by
design (i.e., it is a bug); for example, this occurs when a read to
an internal tree block does not pass its sanity check. Third,some
bugs limit the utility of JFS recovery; for example, although generic
code detects read errors and retries, a bug in the JFS implementa-
tion leads to ignoring the error and corrupting the file system.

5.4 Windows NTFS
NTFS [2, 63] is the only non-UNIX file system in our study. Be-

cause our analysis requires detailed knowledge of on-disk struc-
tures, we do not yet have a complete analysis as in Figure 2.

We find that NTFS uses error codes (DErrorCode) to detect both
block read and write failures. Similar to ext3 and JFS, when adata
write fails, NTFS records the error code but does not use it (DZero),
which can corrupt the file system.

NTFS performs strong sanity checking (DSanity) on metadata
blocks; the file system becomes unmountable if any of its metadata
blocks (except the journal) are corrupted. NTFS surprisingly does
not always perform sanity checking; for example, a corrupted block
pointer can point to important system structures and hence corrupt
them when the block pointed to is updated.

In most cases, NTFS propagates errors (RPropagate). NTFS
aggressively uses retry (RRetry) when operations fail (e.g., up to
seven times under read failures). With writes, the number ofretries
varies (e.g., three times for data blocks, two times for MFT blocks).

5.5 File System Summary
We now present a qualitative summary of each of the file systems

we tested. Table 5 presents a summary of the techniques that each
file system employs (excluding NTFS).
• Ext3: Overall simplicity. Ext3 implements a simple and mostly
reliable failure policy, matching the design philosophy found in the
ext family of file systems. It checks error codes, uses a modest level
of sanity checking, and recovers by propagating errors and aborting
operations. The main problem with ext3 is its failure handling for
write errors, which are ignored and cause serious problems includ-
ing possible file system corruption.
• ReiserFS: First, do no harm. ReiserFS is the most concerned
about disk failure. This concern is particularly evident upon write
failures, which often induce apanic; ReiserFS takes this action
to ensure that the file system is not corrupted. ReiserFS alsouses
a great deal of sanity and type checking. These behaviors combine
to form a Hippocratic failure policy: first, do no harm.
• JFS: The kitchen sink. JFS is the least consistent and most di-
verse in its failure detection and recovery techniques. Fordetec-
tion, JFS sometimes uses sanity, sometimes checks error codes, and
sometimes does nothing at all. For recovery, JFS sometimes uses
available redundancy, sometimes crashes the system, and some-
times retries operations, depending on the block type that fails, the
error detection and the API that was called.

9

Level ext3 Reiser JFS
DZero

√√ √ √√√
DErrorCode

√√√√ √√√√ √√
DSanity

√√√ √√√√ √√√
DRedundancy

RZero

√√ √ √√
RPropagate

√√√ √√ √√
RStop

√√ √√√ √√
RGuess

√
RRetry

√ √√
RRepair

RRemap

RRedundancy

√

Table 5: IRON Techniques Summary. The table depicts a sum-
mary of the IRON techniques used by the file systems under test.
More check marks (

√
) indicate a higher relative frequency of us-

age of the given technique.

• NTFS: Persistence is a virtue. Compared to the Linux file
systems, NTFS is the most persistent, retrying failed requests many
times before giving up. It also seems to propagate errors to the user
quite reliably. However, more thorough testing of NTFS is needed
in order to broaden these conclusions (a part of our ongoing work).

5.6 Technique Summary
Finally, we present a broad analysis of the techniques applied by

all of the file systems to detect and recover from disk failures. We
concentrate upon techniques that are underused, overused,or used
in an inappropriate manner.
• Detection and Recovery: Illogical inconsistency is common.
We found a high degree ofillogical inconsistencyin failure pol-
icy across all file systems (observable in the patterns in Figure 2).
For example, ReiserFS performs a great deal of sanity checking;
however, in one important case it does not (journal replay),and the
result is that a single corrupted block in the journal can corrupt the
entire file system. JFS is the most illogically inconsistent, employ-
ing different techniques in scenarios that are quite similar.

We note that inconsistency in and of itself is not problematic
[21]; for example, it would belogically inconsistent (and a good
idea, perhaps) for a file system to provide a higher level of redun-
dancy to data structures it deems more important, such as theroot
directory [61]. What we are criticizing are inconsistencies that are
undesirable (and likely unintentional); for example, JFS will at-
tempt to read the alternate superblock if a read failure occurs when
reading the primary superblock, but it does not attempt to read the
alternate if it deems the primary corrupted.

In our estimation, the root cause of illogical inconsistency is fail-
ure policy diffusion; the code that implements the failure policy is
spread throughout the kernel. Indeed, the diffusion is encouraged
by some architectural features of modern file systems, such as the
split between generic and specific file systems. Further, we have
observed some cases where different developers implement differ-
ent portions of the code and hence implement different failure poli-
cies (e.g., one of the few cases in which ReiserFS doesnot panic
on write failure arises due to this); perhaps this inconsistency is
indicative of the lack of attention paid to failure policy.
• Detection and Recovery: Bugs are common.We also found
numerous bugs across the file systems we tested, some of which
are serious, and many of which are not found by other sophisti-
cated techniques [75]. We believe this is generally indicative of the
difficulty of implementing a correct failure policy; it certainly hints
that more effort needs to be put into testing and debugging ofsuch

code. One suggestion in the literature that could be helpfulwould
be to periodically inject faults in normal operation as partof a “fire
drill” [44]. Our method reveals that testing needs to be broad and
cover as many code paths as possible; for example, only by test-
ing the indirect-block handling of ReiserFS did we observe certain
classes of fault mishandling.

• Detection: Error codes are sometimes ignored. Amazingly
(to us), error codes were sometimes clearly ignored by the file sys-
tem. This was most common in JFS, but found occasionally in the
other file systems. Perhaps a testing framework such as ours should
be a part of the file system developer’s toolkit; with such tools, this
class of error is easily discovered.

• Detection: Sanity checking is of limited utility. Many of the
file systems use sanity checking to ensure that the metadata they are
about to use meets the expectations of the code. However, modern
disk failure modes such as misdirected and phantom writes lead
to cases where the file system could receive a properly formatted
(but incorrect) block; the bad block thus passes sanity checks, is
used, and can corrupt the file system. Indeed, all file systemswe
tested exhibit this behavior. Hence, we believe stronger tests (such
as checksums) should be used.

• Recovery: Stop is useful – if used correctly.Most file systems
employed some form ofRStop in order to limit damage to the file
system when some types of errors arose; ReiserFS is the best exam-
ple of this, as it callspanic on virtually any write error to prevent
corruption of its structures. However, one has to be carefulwith
such techniques. For example, upon a write failure, ext3 tries to
abort the transaction, but does not correctly squelch all writes to
the file system, leading to corruption. Perhaps this indicates that
fine-grained rebooting is difficult to apply in practice [14].
• Recovery: Stop should not be overused.One downside to halt-
ing file system activity in reaction to failure is the inconvenience it
causes: recovery takes time and often requires administrative in-
volvement to fix. However, all of the file systems used some form
of RStop when something as innocuous as a read failure occurred;
instead of simply returning an error to the requesting process, the
entire system stops. Such draconian reactions to possibly tempo-
rary failures should be avoided.
• Recovery: Retry is underutilized. Most of the file systems as-
sume that failures are not transient, or that lower layers ofthe sys-
tem handle such failures, and hence do not retry requests at alater
time. The systems that employ retry generally assume read retry
is useful, but write retry is not; however, transient faultsdue to de-
vice drivers or transport issues are equally likely to occuron reads
and writes. Hence, retry should be applied more uniformly. NTFS
is the lone file system that embraces retry; it is willing to issue a
much higher number of requests when a block failure is observed.
• Recovery: Automatic repair is rare. Automatic repair is used
rarely by the file systems; instead, after using anRStop technique,
most of the file systems require manual intervention to attempt to
fix the observed problem (i.e., running fsck).
• Detection and Recovery: Redundancy is not used.Finally,
and perhaps most importantly, while virtually all file systems in-
clude some machinery to detect disk failures, none of them apply
redundancyto enable recovery from such failures. The lone ex-
ception is the minimal amount of superblock redundancy found in
JFS; even this redundancy is used inconsistently. Also, JFSplaces
the copies in close proximity, making them vulnerable to spatially-
local errors. As it is the least explored and potentially most useful
in handling the failures common in drives today, we next investi-
gate the inclusion of various forms of redundancy into the failure
policy of a file system.

10

 Read Failure Write Failure Corruption

a b c d e f g h i j k l mn o p q r s t a b c d e f g h i j k l mn o p q r s t a b c d e f g h i j k l mn o p q r s t

Ix
t3

 D
et

ec
tio

n

j-data
j-commit
j-desc
j-revoke
j-super
g-desc
super
data
indirect
i-bitmap
bitmap
dir
inode

Ix

t3
 R

ec
ov

er
y

j-data
j-commit
j-desc
j-revoke
j-super
g-desc
super
data
indirect
i-bitmap
bitmap
dir
inode

Figure 3:Ixt3 Failure Policy. The tables plot both detection and recovery policies of
ixt3 for read, write, and corruption faults injected for each block type across a range
of workloads. The workloads are varied across the columns ofthe figure, and the
different block types of the ixt3 file system are varied across the rows. The workloads
are grouped in the same manner as in Figure 2.

Key for Detection Key for Recovery
© DZero © RZero

− DErrorCode / RRetry

| DSanity − RPropagate

\ DRedundancy \ RRedundancy

| RStop

6. AN IRON FILE SYSTEM
We now describe our implementation and evaluation ofIRON

ext3 (ixt3). Within ixt3, we implement a family of recovery tech-
niques that most commodity file systems do not currently provide.
To increase its robustness, ixt3 applies checksums to both metadata
and data blocks, uses pure replication for metadata, and employs
parity-based redundancy to protect user data.

In this section, we first describe our implementation, and then
demonstrate that it is robust to a broad class of partial diskfailures.
Then, we investigate the time and space costs of ixt3, showing that
the time costs are often quite small and otherwise modest, and the
space costs are also quite reasonable. In our performance mea-
surements, we activate and deactivate each of the IRON features
independently, so as to better understand the cost of each approach.

6.1 Implementation
We now briefly describe the ixt3 implementation. We explain

how we add checksumming, metadata replication, user parity, and a
new performance enhancement known as transactional checksums
into the existing ext3 file system framework.
Checksumming: To implement checksumming within ixt3, we
borrow techniques from other recent research in checksumming in
file systems [64, 43]. Specifically, we place checksums first into the
journal, and then checkpoint these checksums to their final location,
distant from the blocks they checksum. Checksums are very small
and can be cached for read verification. In our current implemen-
tation, we use SHA-1 to compute the checksums. By incorporating
checksumming into existing transactional machinery, ixt3cleanly
integrates into the ext3 framework.
Metadata Replication: We apply a similar approach in adding
metadata replication to ixt3. All metadata blocks are written to
a separatereplica log; they are later checkpointed to a fixed loca-
tion in a block group distant from the original metadata. We again
use transactions to ensure that either both copies reach disk consis-
tently, or that neither do.

Parity: We implement a simple parity-based redundancy scheme
for data blocks. One parity block is allocated for each file. This
simple design enables one to recover from at most one data-block
failure in each file. We modify the inode structure of ext3 to as-
sociate a file’s parity block with its data blocks. Parity blocks are
allocated when files are created. When a file is modified, its parity
block is read and updated with respect to the new contents. Toim-
prove the performance of file creates, we preallocate parityblocks
and assign them to files when they are created.

Transactional Checksums:We also explore a new idea for lever-
aging checksums in a journaling file system; specifically, check-
sums can be used to relax ordering constraints and thus to improve
performance. In particular, when updating its journal, standard ext3
ensures that all previous journal data reaches disk before the com-
mit block; to enforce this ordering, standard ext3 induces an extra
wait before writing the commit block, and thus incurs extra rota-
tional delay. To avoid this wait, ixt3 implements what we call a
transactional checksum, which is a checksum over the contents of a
transaction. By placing this checksum in the journal commitblock,
ixt3 can safely issue all blocks of the transaction concurrently. If
a crash occurs during the commit, the recovery procedure canre-
liably detect the crash and not replay the transaction, because the
checksum over the journal data will not match the checksum in
the commit block. Note that a transactional checksum provides the
same crash semantics as in the original ext3 and thus can be used
without other IRON extensions.

Cleaning Overheads: Note that “cleaning overhead”, which can
be a large problem in pure log-structured file systems [52, 58], is
not a major performance issue for journaling file systems, even with
ixt3-style checksumming and replication. Journaling file systems
already incorporate cleaning into their on-line maintenance costs;
for example, ext3 first writes all metadata to the journal andthen
cleans the journal by checkpointing the data to a final fixed location.
Hence, the additional cleaning performed by ixt3 increasestotal
traffic only by a small amount.

11

6.2 Evaluation
We now evaluate our prototype implementation of ixt3. We focus

on three major axes of assessment: robustness of ixt3 to modern
disk failures, and both the time and space overhead of the additional
redundancy mechanisms employed by ixt3.

Robustness:To test the robustness of ixt3, we harness our fault
injection framework, running the same partial-failure experiments
on ixt3. The results are shown in Figure 3.

Ixt3 detects read failures in the same way as ext3, by using the
error codes from the lower level (DErrorCode). When a meta-
data block read fails, ixt3 reads the corresponding replicacopy
(RRedundancy). If the replica read also fails, it behaves like ext3
by propagating the error (RPropagate) and stopping the file system
activity (RStop). When a data block read fails, the parity block and
the other data blocks of the file are read to compute the faileddata
block’s contents (RRedundancy).

Ixt3 detects write failures using error codes as well (DErrorCode).
It then aborts the journal and mounts the file system as read-only to
stop any writes from going to the disk (RStop).

When a data or metadata block is read, the checksum of its con-
tents is computed and is compared with the corresponding check-
sum of the block (DRedundancy). If the checksums do not match, a
read error is generated (RPropagate). On read errors, the contents
of the failed block are read either from the replica or computed
using the parity block (RRedundancy).

In the process of building ixt3, we also fixed numerous bugs
within ext3. By doing so, we avoided some cases where ext3 would
commit failed transactions to disk and potentially corruptthe file
system [47].

Overall, by employing checksumming to detect corruption, and
replication and parity to recover lost blocks, ixt3 provides robust
file service in spite of partial disk failures. More quantitatively, ixt3
detects and recovers from over 200 possible different partial-error
scenarios that we induced. The result is a logical and well-defined
failure policy.

Time Overhead: We now assess the performance overhead of ixt3.
We isolate the overhead of each IRON mechanism by enabling
checksumming for metadata (Mc) and data (Dc), metadata repli-
cation (Mr), parity for user data (Dp), and transactional check-
summing (Tc) separately and in all combinations.

We use four standard file system benchmarks: SSH-Build, which
unpacks and compiles the SSH source distribution; a web server
benchmark, which responds to a set of static HTTP GET requests;
PostMark [35], which emulates file system traffic of an email server;
and TPC-B [69], which runs a series of debit-credit transactions
against a simple database. We run each experiment five or more
times and present the average results.

These benchmarks exhibit a broad set of behaviors. Specifically,
SSH-Build is a good (albeit simple) model of the typical action
of a developer or administrator; the web server is read intensive
with concurrency; PostMark is metadata intensive, with many file
creations and deletions; TPC-B induces a great deal of synchronous
update traffic to the file system.

Table 6 reports the relative performance of the variants of ixt3 for
the four workloads, as compared to stock Linux ext3. From these
numbers, we draw three main conclusions.

First, for both SSH-Build and the web server workload, there
is little time overhead, even with all IRON techniques enabled.
Hence, if SSH-Build is indicative of typical activity, using check-
summing, replication, and even parity incurs little cost. Similarly,
from the web server benchmark, we can conclude that read-intensive
workloads do not suffer from the addition of IRON techniques.

Mc Mr Dc Dp Tc SSH Web Post TPCB
0 (Baseline: ext3) 1.00 1.00 1.00 1.00
1 Mc 1.00 1.00 1.01 1.00
2 Mr 1.00 1.00 1.18 1.19
3 Dc 1.00 1.00 1.13 1.00
4 Dp 1.02 1.00 1.07 1.03
5 Tc 1.00 1.00 1.01 [0.80]
6 Mc Mr 1.01 1.00 1.19 1.20
7 Mc Dc 1.02 1.00 1.11 1.00
8 Mc Dp 1.01 1.00 1.10 1.03
9 Mc Tc 1.00 1.00 1.05 [0.81]

10 Mr Dc 1.02 1.00 1.26 1.20
11 Mr Dp 1.02 1.00 1.20 1.39
12 Mr Tc 1.00 1.00 1.15 1.00
13 Dc Dp 1.03 1.00 1.13 1.04
14 Dc Tc 1.01 1.01 1.15 [0.81]
15 Dp Tc 1.01 1.00 1.06 [0.84]
16 Mc Mr Dc 1.02 1.00 1.28 1.19
17 Mc Mr Dp 1.02 1.01 1.30 1.42
18 Mc Mr Tc 1.01 1.00 1.19 1.01
19 Mc Dc Dp 1.03 1.00 1.20 1.03
20 Mc Dc Tc 1.02 1.00 1.06 [0.81]
21 Mc Dp Tc 1.01 1.00 1.03 [0.85]
22 Mr Dc Dp 1.03 1.00 1.35 1.42
23 Mr Dc Tc 1.02 1.00 1.26 1.01
24 Mr Dp Tc 1.02 1.00 1.21 1.19
25 Dc Dp Tc 1.02 1.01 1.18 [0.85]
26 Mc Mr Dc Dp 1.03 1.00 1.37 1.42
27 Mc Mr Dc Tc 1.04 1.00 1.24 1.01
28 Mc Mr Dp Tc 1.02 1.00 1.25 1.19
29 Mc Dc Dp Tc 1.03 1.00 1.18 [0.87]
30 Mr Dc Dp Tc 1.05 1.00 1.30 1.20
31 Mc Mr Dc Dp Tc 1.06 1.00 1.32 1.21

Table 6: Overheads of ixt3 File System Variants.Results from
running different variants of ixt3 under the SSH-Build (SSH), Web
Server (Web), PostMark (Post), and TPC-B (TPCB) benchmarks
are presented. The SSH-Build time measures the time to unpack,
configure, and build the SSH source tree (the tar’d source is 11 MB
in size); the Web server benchmark transfers 25 MB of data us-
ing http requests; with PostMark, we run 1500 transactions with
file sizes ranging from 4 KB to 1 MB, with 10 subdirectories and
1500 files; with TPC-B, we run 1000 randomly generated debit-
credit transactions. Along the rows, we vary which redundancy
technique is implemented, in all possible combinations:Mc im-
plies that metadata checksumming is enabled;Dc that data check-
summing is enabled;Mr that replication of metadata is turned on;
Dp that parity for data blocks is enabled;Tc that transactional
checksums are in use. All results are normalized to the perfor-
mance of standard Linux ext3; for the interested reader, running
times for standard ext3 on SSH-Build, Web, PostMark, and TPC-B
are 117.78, 53.05, 150.80, and 58.13 seconds, respectively. Slow-
downs greater than 10% are marked inbold, whereas speedups
relative to base ext3 are marked in [brackets]. All testing is done
on the Linux 2.6.9 kernel on a 2.4 GHz Intel P4 with 1 GB of mem-
ory and a Western Digital WDC WD1200BB-00DAA0 disk.

Second, for metadata intensive workloads such as PostMark and
TPC-B, the overhead is more noticeable – up to 37% for PostMark
and 42% for TPC-B (row 26). Since these workloads are quite
metadata intensive, these results represent the worst-case perfor-
mance that we expect. We also can observe that our implementa-
tion of metadata replication (row 2) incurs a substantial cost on its

12

own, as does data checksumming (row 3). User parity and metadata
checksums, in contrast, incur very little cost (rows 1 and 4). Given
our relatively untuned implementation of ixt3, we believe that all
of these results demonstrate that even in the worst case, thecosts of
robustness are not prohibitive.

Finally, the performance of the synchronous TPC-B workload
demonstrates the possible benefits of the transactional checksum.
In the base case, this technique improves standard ext3 perfor-
mance by 20% (row 5), and in combination with parity, check-
summing, replication, and parity, reduces overall overhead from
roughly 42% (row 26) to 21% (row 31). Hence, even when not used
for additional robustness, checksums can be applied to improve the
performanceof journaling file systems.
Space Overhead: To evaluate space overhead, we measured a
number of local file systems and computed the increase in space
required if all metadata was replicated, room for checksumswas
included, and an extra block for parity was allocated. Overall,
we found that the space overhead of checksumming and metadata
replication is small, in the 3% to 10% range. We found that parity-
block overhead for all user files is a bit more substantial, inthe
range of 3% to 17% depending on the volume analyzed.

6.3 Summary
We have investigated a family of redundancy techniques, and

found that ixt3 greatly increases the robustness of the file system
under partial failures while incurring modest time and space over-
heads. However, much work is left; new designs and implementa-
tion techniques should be explored to better understand thebenefits
and costs of the IRON approach.

7. RELATED WORK
Our effort builds upon related work from two bodies of literature.

Our file system analysis (§4) is related to efforts that inject faults or
otherwise test the robustness of systems to failure. Our prototype
IRON file system (§6) draws on recent efforts in building software
that is more robust to hardware failure. We discuss each in turn.
Fault Injection and Robustness Testing:The fault-tolerance com-
munity has worked for many years on techniques for injectingfaults
into a system to determine its robustness [10, 17, 27, 39, 59,70].
For example, FIAT simulates the occurrence of hardware errors by
altering the contents of memory or registers [10]; similarly, FINE
can be used to inject software faults into an operating system [39].

One major difference with most of this previous work and ours
is that our approach focuses on how file systems handle the broad
class of modern disk failure modes; we know of no previous work
that does so. Our approach also assumes implicit knowledge of
file-system block types; by doing so, we ensure that we test many
different paths of the file system code. Much of the previous work
inserts faults in a “blind” fashion and hence is less likely to uncover
the problems we have found.

Our work is similar to Brown and Patterson’s work on RAID fail-
ure analysis [13]. Therein the authors suggest that hidden policies
of RAID systems are worth understanding, and demonstrate (via
fault injection) that three different software RAID systems have
qualitatively different failure-handling and recovery policies. We
also wish to discover “failure policy”, but target the file system (not
RAID), hence requiring a more complex type-aware approach.

Recent work by Yanget al. [75] uses model-checking to find a
host of file system bugs. Their techniques are well-suited tofind-
ing certain classes of bugs, whereas our approach is aimed atthe
discovery of file system failure policy. Interestingly, ourapproach
also uncovers some serious file system bugs that Yanget al.do not.

One reason for this may be that our testing is better under scale;
whereas model-checking must be limited to small file systemsto
reduce run-time, our approach can be applied to large file systems.

Our work builds upon our earlier work in failure injection under-
neath file systems [47]. In that work, we developed an approach to
test how file systems handle write failures during journal updates.
Our current work extends this to look at all data types under read,
write, and corruption failures.

IRON File Systems:Our work on IRON file systems was partially
inspired by work within Google. Therein, Acharya suggests that
when using cheap hardware, one should “be paranoid” and assume
it will fail often and in unpredictable ways [1]. However, Google
(perhaps with good reason) treats this as an application-level prob-
lem, and therefore builds checksumming on top of the file system;
disk-level redundancy is kept across drives (on different machines)
but not within a drive [23]. We extend this approach by incorporat-
ing such techniques into the file system, where all applications can
benefit from them. Note that our techniques are complimentary to
application-level approaches; for example, if a file systemmetadata
block becomes inaccessible, user-level checksums and replicas do
not enable recovery of the now-corrupted volume.

Another related approach is the “driver hardening” effort within
Linux. As stated therein: “A ‘hardened’ driver extends beyond the
realm of ‘well-written’ to include ‘professional paranoia’ features
to detect hardware and software problems” (page 5) [32]. However,
while such drivers would generally improve system reliability, we
believe that most faults should be handled by the file system (i.e.,
the end-to-end argument [53]).

The fail-partial failure model for disks is better understood by the
high-end storage and high-availability systems communities. For
example, Network Appliance introduced “Row-Diagonal” parity,
which can tolerate two disk faults and can continue to operate, in
order to ensure recovery despite the presence of latent sector er-
rors [16]. Further, virtually all Network Appliance products use
checksumming to detect block corruption [30]. Similarly, systems
such as the Tandem NonStop kernel [9] include end-to-end check-
sums, to handle problems such as misdirected writes [9].

Interestingly, redundancy has been usedwithin a single disk in
a few instances. For example, FFS uses internal replicationin a
limited fashion, specifically by making copies of the superblock
across different platters of the drive [40]. As we noted earlier, some
commodity file systems have similar provisions.

Yu et al.suggest making replicas within a disk in a RAID array
to reduce rotational latency [76]. Hence, although not the primary
intention, such copies could be used for recovery. However,within
a storage array, it would be difficult to apply said techniques in a
selective manner (e.g., for metadata). Yuet al.’s work also indicates
that replication can be useful for improvingbothperformance and
fault-tolerance, something that future investigation of IRON strate-
gies should consider.

Checksumming is also becoming more commonplace to improve
system security. For example, both Patilet al. [43] and Steinet
al. [64] suggest, implement, and evaluate methods for incorporat-
ing checksums into file systems. Both systems aim to make the
corruption of file system data by an attacker more difficult.

Finally, the Dynamic File System from Sun is a good example of
a file system that uses IRON techniques [73]. DFS uses checksums
to detect block corruption and employs redundancy across multiple
drives to ensure recoverability. In contrast, we emphasizethe utility
of replication within a drive, and suggest and evaluate techniques
for implementing such redundancy. Further, we show how to em-
bellish an existing commodity file system, whereas DFS is written
from scratch, perhaps limiting its impact.

13

8. CONCLUSIONS
Commodity operating systems have grown to assume the pres-

ence of mostly reliable hardware. The result, in the case of file
systems, is that most commodity file systems do not include the
requisite machinery to handle the types of partial faults one can
reasonably expect from modern disk drives.

We believe it is time to reexamine how file systems handle fail-
ure. One excellent model is already available to us within the op-
erating system kernel: the networking subsystem. Indeed, because
network hardware has long been considered an unreliable hardware
medium, the software stacks above them have been designed with
well-defined policies to cope with common failure modes [46].

Because disks should be viewed as less than fully reliable, such
mistrust must be woven into the storage system framework as well.
Many challenges remain: Which failures should disks exposeto
the layers above? How should the file system software architecture
be redesigned to enable a more consistent and well-defined failure
policy? What kind of controls should be exposed to applications
and users? What low-overhead detection and recovery techniques
can IRON file systems employ? Answers to these questions should
lead to a better understanding of how to effectively implement the
next generation of robust and reliable IRON file systems.

Acknowledgments
We would like to extend particular thanks to Steve Kleiman ofNet-
work Appliance and Dave Anderson and Jim Dykes of Seagate for
their insights into how disks really work and fail. We would also
like to thank Liuba Shrira (our shepherd), Dave DeWitt, MarkHill,
Jiri Schindler, Mike Swift, the anonymous reviewers, and the mem-
bers of ADSL for their excellent suggestions and comments. We
thank Himani Apte and Meenali Rungta for their invaluable work
on implementing parity within ext3. Finally, we thank the Com-
puter Systems Lab (CSL) for providing a terrific computing en-
vironment for systems research. This work has been sponsored by
NSF CCR-0092840, CCR-0133456, NGS-0103670, ITR-0325267,
IBM, Network Appliance, and EMC.

9. REFERENCES
[1] A. Acharya. Reliability on the Cheap: How I Learned to Stop Worry-

ing and Love Cheap PCs. EASY Workshop ’02, October 2002.
[2] A. Altaparmakov. The Linux-NTFS Project. http://linux-

ntfs.sourceforge.net/ntfs/, August 2005.
[3] G. A. Alvarez, W. A. Burkhard, and F. Cristian. Tolerating Multiple

Failures in RAID Architectures with Optimal Storage and Uniform
Declustering. InProceedings of the 24th Annual International Sym-
posium on Computer Architecture (ISCA ’97), pages 62–72, Denver,
Colorado, May 1997.

[4] D. Anderson. “Drive manufacturers typically don’t talkabout disk
failures”. Personal Communication from Dave Anderson of Seagate,
2005.

[5] D. Anderson, J. Dykes, and E. Riedel. More Than an Interface: SCSI
vs. ATA. In Proceedings of the 2nd USENIX Symposium on File and
Storage Technologies (FAST ’03), San Francisco, California, April
2003.

[6] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and
Control in Gray-Box Systems. InProceedings of the 18th ACM Sym-
posium on Operating Systems Principles (SOSP ’01), pages 43–56,
Banff, Canada, October 2001.

[7] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Fail-Stutter Fault
Tolerance. InThe Eighth Workshop on Hot Topics in Operating Sys-
tems (HotOS VIII), pages 33–38, Schloss Elmau, Germany, May 2001.

[8] L. N. Bairavasundaram, M. Sivathanu, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. X-RAY: A Non-Invasive Exclusive Caching
Mechanism for RAIDs. InProceedings of the 31st Annual Interna-
tional Symposium on Computer Architecture (ISCA ’04), pages 176–
187, Munich, Germany, June 2004.

[9] W. Bartlett and L. Spainhower. Commercial Fault Tolerance: A Tale
of Two Systems.IEEE Transactions on Dependable and Secure Com-
puting, 1(1):87–96, January 2004.

[10] J. Barton, E. Czeck, Z. Segall, and D. Siewiorek. Fault Injec-
tion Experiments Using FIAT.IEEE Transactions on Computers,
39(4):1105–1118, April 1990.

[11] S. Best. JFS Overview. www.ibm.com/developerworks/library/l-
jfs.html, 2004.

[12] D. Bitton and J. Gray. Disk shadowing. InProceedings of the 14th
International Conference on Very Large Data Bases (VLDB 14), pages
331–338, Los Angeles, California, August 1988.

[13] A. Brown and D. A. Patterson. Towards Maintainability,Availabil-
ity, and Growth Benchmarks: A Case Study of Software RAID Sys-
tems. InProceedings of the USENIX Annual Technical Conference
(USENIX ’00), pages 263–276, San Diego, California, June 2000.

[14] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Mi-
croreboot – A Technique for Cheap Recovery. InProceedings of the
6th Symposium on Operating Systems Design and Implementation
(OSDI ’04), pages 31–44, San Francisco, California, December 2004.

[15] A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler. An Empirical
Study of Operating System Errors. InProceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP ’01), pages 73–
88, Banff, Canada, October 2001.

[16] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,J. Leong,
and S. Sankar. Row-Diagonal Parity for Double Disk Failure Correc-
tion. In Proceedings of the 3rd USENIX Symposium on File and Stor-
age Technologies (FAST ’04), pages 1–14, San Francisco, California,
April 2004.

[17] J. DeVale and P. Koopman. Performance Evaluation of Exception
Handling in I/O Libraries. InProceedings of the International Con-
ference on Dependable Systems and Networks (DSN-2001), Goteborg,
Sweden, June 2001.

[18] J. R. Douceur and W. J. Bolosky. A Large-Scale Study of File-System
Contents. InProceedings of the 1999 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS
’99), pages 59–69, Atlanta, Georgia, May 1999.

[19] J. Dykes. “A modern disk has roughly 400,000 lines of code”. Per-
sonal Communication from James Dykes of Seagate, August 2005.

[20] EMC. EMC Centera: Content Addressed Storage System.
http://www.emc.com/, 2004.

[21] R. W. Emerson. Essays and English Traits – IV: Self-Reliance. The
Harvard classics, edited by Charles W. Eliot. New York: P.F.Collier
and Son, 1909-14, Volume 5, 1841.A foolish consistency is the hob-
goblin of little minds, adored by little statesmen and philosophers and
divines.

[22] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
Deviant Behavior: A General Approach to Inferring Errors inSys-
tems Code. InProceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP ’01), pages 57–72, Banff, Canada, October
2001.

[23] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System.
In Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP ’03), pages 29–43, Bolton Landing (Lake George),
New York, October 2003.

[24] G. A. Gibson, D. Rochberg, J. Zelenka, D. F. Nagle, K. Amiri, F. W.
Chang, E. M. Feinberg, H. Gobioff, C. Lee, B. Ozceri, and E. Riedel.
File server scaling with network-attached secure disks. InProceed-
ings of the 1997 Joint International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS/PERFORMANCE
’97), pages 272–284, Seattle, Washington, June 1997.

[25] J. Gray. A Census of Tandem System Availability Between1985 and
1990. Technical Report 90.1, Tandem Computers, 1990.

[26] R. Green. EIDE Controller Flaws Version 24.
http://mindprod.com/eideflaw.html, February 2005.

[27] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang. Characterization of
Linux Kernel Behavior Under Error. InProceedings of the Interna-
tional Conference on Dependable Systems and Networks (DSN-2003),
pages 459–468, San Francisco, California, June 2003.

[28] H. S. Gunawi, N. Agrawal, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and J. Schindler. Deconstructing Commodity Storage Clus-
ters. InProceedings of the 32nd Annual International Symposium on
Computer Architecture (ISCA ’05), pages 60–73, Madison, Wiscon-
sin, June 2005.

[29] V. Henson. A Brief History of UNIX File Systems.
http://infohost.nmt.edu/∼val/fs slides.pdf, 2004.

[30] D. Hitz, J. Lau, and M. Malcolm. File System Design for anNFS File
Server Appliance. InProceedings of the USENIX Winter Technical
Conference (USENIX Winter ’94), San Francisco, California, January
1994.

[31] G. F. Hughes and J. F. Murray. Reliability and Security of RAID
Storage Systems and D2D Archives Using SATA Disk Drives.ACM
Transactions on Storage, 1(1):95–107, February 2005.

14

[32] Intel Corp. and IBM Corp. Device Driver Hardening.
http://hardeneddrivers.sourceforge.net/, 2002.

[33] H. H. Kari. Latent Sector Faults and Reliability of Disk Arrays. PhD
thesis, Helsinki University of Technology, September 1997.

[34] H. H. Kari, H. Saikkonen, and F. Lombardi. Detection of Defective
Media in Disks. InThe IEEE International Workshop on Defect and
Fault Tolerance in VLSI Systems, pages 49–55, Venice, Italy, October
1993.

[35] J. Katcher. PostMark: A New File System Benchmark. Technical Re-
port TR-3022, Network Appliance Inc., October 1997.

[36] S. R. Kleiman. Vnodes: An Architecture for Multiple File System
Types in Sun UNIX. InProceedings of the USENIX Summer Technical
Conference (USENIX Summer ’86), pages 238–247, Atlanta, Georgia,
June 1986.

[37] B. Lewis. Smart Filers and Dumb Disks. NSIC OSD Working Group
Meeting, April 1999.

[38] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman,
and V. Stemann. Practical Loss-Resilient Codes. InProceedings of
the Twenty-ninth Annual ACM symposium on Theory of Computing
(STOC ’97), pages 150–159, El Paso, Texas, May 1997.

[39] W. lun Kao, R. K. Iyer, and D. Tang. FINE: A Fault Injection and
Monitoring Environment for Tracing the UNIX System Behavior Un-
der Faults. InIEEE Transactions on Software Engineering, pages
1105–1118, 1993.

[40] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A Fast
File System for UNIX.ACM Transactions on Computer Systems,
2(3):181–197, August 1984.

[41] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. Fsck - The
UNIX File System Check Program. Unix System Manager’s Manual
- 4.3 BSD Virtual VAX-11 Version, April 1986.

[42] A. Park and K. Balasubramanian. Providing fault tolerance in parallel
secondary storage systems. Technical Report CS-TR-057-86, Depart-
ment of Computer Science, Princeton University, November 1986.

[43] S. Patil, A. Kashyap, G. Sivathanu, and E. Zadok. I3FS: An In-kernel
Integrity Checker and Intrusion detection File System. InProceedings
of the 18th Annual Large Installation System Administration Confer-
ence (LISA ’04), Atlanta, Georgia, November 2004.

[44] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler,
P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer,
N. Sastry, W. Tetzlaff, J. Traupman, and N. Treuhaft. Recovery Ori-
ented Computing (ROC): Motivation, Definition, Techniques, and
Case Studies. Technical Report CSD-02-1175, U.C. Berkeley, March
2002.

[45] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays
of Inexpensive Disks (RAID). InProceedings of the 1988 ACM SIG-
MOD Conference on the Management of Data (SIGMOD ’88), pages
109–116, Chicago, Illinois, June 1988.

[46] J. Postel. RFC 793: Transmission Con-
trol Protocol, September 1981. Available from
ftp://ftp.rfc-editor.org/in-notes/rfc793.txt as
of August, 2003.

[47] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Model-Based Failure Analysis of Journaling File Systems. In Pro-
ceedings of the International Conference on Dependable Systems and
Networks (DSN-2005), Yokohama, Japan, June 2005.

[48] D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer, W. C.Lynch,
P. R. McJones, H. G. Murray, and S. C.Purcell. Pilot: An Operat-
ing System for a Personal Computer.Communications of the ACM,
23(2):81–92, February 1980.

[49] H. Reiser. ReiserFS. www.namesys.com, 2004.
[50] P. M. Ridge and G. Field.The Book of SCSI 2/E. No Starch, June

2000.
[51] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and

J. William S. Beebe. Enhancing Server Availability and Security
Through Failure-Oblivious Computing. InProceedings of the 6th
Symposium on Operating Systems Design and Implementation (OSDI
’04), San Francisco, California, December 2004.

[52] M. Rosenblum and J. Ousterhout. The Design and Implementation of
a Log-Structured File System.ACM Transactions on Computer Sys-
tems, 10(1):26–52, February 1992.

[53] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in
system design.ACM Transactions on Computer Systems, 2(4):277–
288, November 1984.

[54] J. Schindler. “We have experienced a severe performance degradation
that was identified as a problem with disk firmware. The disk drives
had to be reprogrammed to fix the problem”. Personal Communication
from J. Schindler of EMC, July 2005.

[55] S. W. Schlosser and G. R. Ganger. MEMS-based storage devices and
standard disk interfaces: A square peg in a round hole? InProceed-

ings of the 3rd USENIX Symposium on File and Storage Technologies
(FAST ’04), pages 87–100, San Francisco, California, April 2004.

[56] F. B. Schneider. Implementing Fault-Tolerant Services Using The
State Machine Approach: A Tutorial.ACM Computing Surveys,
22(4):299–319, December 1990.

[57] T. J. Schwarz, Q. Xin, E. L. Miller, D. D. Long, A. Hospodor,
and S. Ng. Disk Scrubbing in Large Archival Storage Systems.In
Proceedings of the 12th Annual Meeting of the IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), Volendam, Netherlands,
October 2004.

[58] M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin. AnImple-
mentation of a Log-Structured File System for UNIX. InProceedings
of the USENIX Winter Technical Conference (USENIX Winter ’93),
pages 307–326, San Diego, California, January 1993.

[59] D. Siewiorek, J. Hudak, B. Suh, and Z. Segal. Development of a
Benchmark to Measure System Robustness. InProceedings of the
23rd International Symposium on Fault-Tolerant Computing(FTCS-
23), Toulouse, France, June 1993.

[60] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Life or Death at Block Level. InProceedings
of the 6th Symposium on Operating Systems Design and Implementa-
tion (OSDI ’04), pages 379–394, San Francisco, California, December
2004.

[61] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Improving Storage System Availability with D-
GRAID. In Proceedings of the 3rd USENIX Symposium on File and
Storage Technologies (FAST ’04), pages 15–30, San Francisco, Cali-
fornia, April 2004.

[62] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Denehy, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Semantically-Smart Disk
Systems. InProceedings of the 2nd USENIX Symposium on File and
Storage Technologies (FAST ’03), pages 73–88, San Francisco, Cali-
fornia, April 2003.

[63] D. A. Solomon.Inside Windows NT. Microsoft Programming Series.
Microsoft Press, 2nd edition, May 1998.

[64] C. A. Stein, J. H. Howard, and M. I. Seltzer. Unifying File System
Protection. InProceedings of the USENIX Annual Technical Confer-
ence (USENIX ’01), Boston, Massachusetts, June 2001.

[65] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and
G. Peck. Scalability in the XFS File System. InProceedings of the
USENIX Annual Technical Conference (USENIX ’96), San Diego,
California, January 1996.

[66] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the Re-
liability of Commodity Operating Systems. InProceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP ’03),
Bolton Landing (Lake George), New York, October 2003.

[67] N. Talagala and D. Patterson. An Analysis of Error Behaviour in a
Large Storage System. InThe IEEE Workshop on Fault Tolerance in
Parallel and Distributed Systems, San Juan, Puerto Rico, April 1999.

[68] The Data Clinic. Hard Disk Failure. http://www.dataclinic.co.uk/hard-
disk-failures.htm, 2004.

[69] Transaction Processing Council. TPC Benchmark B Standard Speci-
fication, Revision 3.2. Technical Report, 1990.

[70] T. K. Tsai and R. K. Iyer. Measuring Fault Tolerance withthe FTAPE
Fault Injection Tool. InThe 8th International Conference On Mod-
eling Techniques and Tools for Computer Performance Evaluation,
pages 26–40, September 1995.

[71] S. C. Tweedie. Journaling the Linux ext2fs File System.In The Fourth
Annual Linux Expo, Durham, North Carolina, May 1998.

[72] J. Wehman and P. den Haan. The Enhanced IDE/Fast-ATA FAQ.
http://thef-nym.sci.kun.nl/cgi-pieterh/atazip/atafq.html, 1998.

[73] G. Weinberg. The Solaris Dynamic File System.
http://members.visi.net/∼thedave/sun/DynFS.pdf, 2004.

[74] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID
Hierarchical Storage System.ACM Transactions on Computer Sys-
tems, 14(1):108–136, February 1996.

[75] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using Model
Checking to Find Serious File System Errors. InProceedings of the
6th Symposium on Operating Systems Design and Implementation
(OSDI ’04), San Francisco, California, December 2004.

[76] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishnamurthy, and
T. E. Anderson. Trading Capacity for Performance in a Disk Array. In
Proceedings of the 4th Symposium on Operating Systems Design and
Implementation (OSDI ’00), San Diego, California, October 2000.

15

