IRON File Systems

Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Computer Sciences Department, University of Wisconsin, Madison
{vijayan,laksh,nitina,haryadi,dusseau,remziy@cs.wisc.edu

ABSTRACT

Commodity file systems trust disks to either work or fail com-
pletely, yet modern disks exhibit more complex failure nadé/e
suggest a neMail-partial failure modelfor disks, which incorpo-
rates realistic localized faults such as latent sectorgand block
corruption. We then develop and apply a nofalure-policy fin-
gerprinting framework, to investigate how commodity file systems
react to a range of more realistic disk failures. We clastisir
failure policies in a new taxonomy that measures the@rnal RO-
bustNess (IRONWwhich includes both failure detection and recov-
ery techniques. We show that commaodity file system failudé po
cies are often inconsistent, sometimes buggy, and genénatie-
quate in their ability to recover from partial disk failureSinally,
we design, implement, and evaluate a prototype IRON fileesyst
Linux ixt3, showing that techniques such as in-disk chegksing,
replication, and parity greatly enhance file system rolesstnwvhile
incurring minimal time and space overheads.

Categories and Subject Descriptors:
D.4.3 [Operating System$: File Systems Management
D.4.5 [Operating System$: Reliability
General Terms: Design, Experimentation, Reliability
Keywords: IRON file systems, disks, storage, latent sector errors,
block corruption, fail-partial failure model, fault tokemce, reliabil-
ity, internal redundancy

1. INTRODUCTION

Disks fail — but not in the way most commodity file systems ex-
pect. For many years, file system and storage system desigmes
assumed that disks operate in a “fail stop” manner [56]; withis
classic model, the disks either are working perfectly, draaso-
lutely and in an easily detectable manner.

The fault model presented by modern disk drives, however, is
much more complex. For example, modern drives can exlabit
tent sector fault§16, 34, 57], where a block or set of blocks are
inaccessible. Worse, blocks sometimes becsitemtly corrupted
[9, 26, 73]. Finally, disks sometimes exhihiansientperformance
problems [7, 67].

Permission to make digital or hard copies of all or part of thvwork for

personal or classroom use is granted without fee providaticbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyies prior specific
permission and/or a fee.

SOSP’050ctober 23-26, 2005, Brighton, United Kingdom.

Copyright 2005 ACM 1-59593-079-5/05/00105.00.

There are many reasons for these complex failures in digks. F
example, a buggy disk controller could issue a “misdiretiatte
[73], placing the correct data on disk but in the wrong lomatiln-
terestingly, while these failures exist today, simply wajtfor disk
technology to improve will not remove these errors: indebdse
errors mayworsenover time, due to increasing drive complexity
[5], immense cost pressures in the storage industry, andstta-
lated use of less reliable ATA disks — not only in desktop P@s b
also in large-scale clusters [23] and storage systems §0, 2

Developers of high-end systems have realized the naturesét
disk faults and built mechanisms into their systems to taatitdm.
For example, many redundant storage systems incorporateka b
grounddisk scrubbingprocess [33, 57], to proactively detect and
subsequently correct latent sector errors by creating acogy of
inaccessible blocks; some recent storage arrays incdepexdra
levels of redundancy to lessen the potential damage of comis
ered latent errors [16]. Similarly, highly-reliable syste €.g, Tan-
dem NonStop) utilize end-to-end checksums to detect whaekbl
corruption occurs [9].

Unfortunately, such technology has not filtered down to éz¢m
of commodity file systems, including Linux file systems sush a
ext3 [71], ReiserFS [49], and IBM’s JFS [11], or Windows filess
tems such as NTFS [63]. Such file systems are not only pesvasiv
in the home environment, storing valuable (and often naiviaed)
user data such as photos, home movies, and tax returnssbunal
many internet services such as Google [23].

In this paper, the first question we poselisw do modern com-
modity file systems react to failures that are common in moder
disks?To answer this query, we aggregate knowledge from the re-
search literature, industry, and field experience to forrevamodel
for disk failure. We label our model tHail-partial failure model
to emphasize that portions of the disk can fail, either throllock
errors or data corruption.

With the model in place, we develop and apply an automated
failure-policy fingerprintingramework, to inject more realistic disk
faults beneath a file system. The goal of fingerprinting isteauth
the failure policy of each system: how it detects and recofrem
disk failures. Our approach leverages gray-box knowleégéZ2]
of file system data structures to meticulously exercise fiftesn
access paths to disk.

To better characterize failure policy, we developaternal RO-
bustNess (IRONjpxonomy, which catalogs a broad range of detec-
tion and recovery techniques. Hence, the output of our fprger
ing tool is a broad categorization of which IRON techniquédiea
system uses across its constituent data structures.

Our study focuses on three important and substantiallmfft
open-source file systems, ext3, ReiserFS, and IBM’s JFSpaed
closed-source file system, Windows NTFS. Across all platir

we find a great deal dfiogical inconsistencyin failure policy, of-
ten due to the diffusion of failure handling code through kiee-
nel; such inconsistency leads to substantially differegtection
and recovery strategies under similar fault scenariogiltieg in
unpredictable and often undesirable fault-handling sties. We
also discover that most systems implement portions of fladir
ure policy incorrectly, the presence of bugs in the implementa-
tions demonstrates the difficulty and complexity of corsebian-
dling certain classes of disk failure. We observe littletahce of
transient failures; most file systems assume a single tearpor
inaccessible block indicates a fatal whole-disk failuraalty, we
show that none of the file systems can recover from partid dis
failures, due to a lack ah-disk redundancy

This behavior under realistic disk failures leads us to egosd
question:how can we change file systems to better handle modern
disk failures?We advocate a single guiding principle for the design
of file systemsdon't trust the disk The file system should not view
the disk as an utterly reliable component. For example,dtkd
can become corrupt, the file system should apply measurestho b
detect and recover from such corruption, even when running o
single disk. Our approach is an instance of the end-to-eqnhaent
[53]: at the top of the storage stack, the file system is furetaaily
responsible for reliable management of its data and metadat

In our initial efforts, we develop a family of prototype IRCiNe
systems, all of which are robust variants of the Linux exi3 dis-
tem. Within our IRON ext3 (ixt3), we investigate the costaising
checksums to detect data corruption, replication to peovatiun-
dancy for metadata structures, and parity protection fer data.
We show that these techniques incur modest space and time ove
heads while greatly increasing the robustness of the filesyso
latent sector errors and data corruption. By implementietpct
tion and recovery techniques from the IRON taxonomy, a syste
can implement a well-defined failure policy and subseqyeprib-
vide vigorous protection against the broader range of digres.

The contributions of this paper are as follows:

We define a more realistic failure model for modern disks
(the fail-partial model) §2).

We formalize the techniques to detect and recover from disk
errors under the IRON taxonom§3).

We develop a fingerprinting framework to determine the fail-
ure policy of a file systems@).

We analyze four popular commodity file systems to discover
how they handle disk error§g).

We build a prototype version of an IRON file system (ixt3)
and analyze its robustness to disk failure and its perfooman
characteristics§g).

To bring the paper to a close, we discuss related wgrk, @nd
finally conclude ¢8).

2. DISK FAILURE

Generic File System
Specific File System

Generic Block 1/10
Device Driver
Device Controller

Firmware

Electrical

Mechanical

Host

Storage Subsystem

Disk

;

Figure 1:The Storage StackWe present a schematic of the entire
storage stack. At the top is the file system; beneath are thny ma
layers of the storage subsystem. Gray shading implies aftar
firmware, whereas white (unshaded) is hardware.

At the bottom of the “storage stack” is the disk itself; begidhe
magnetic storage media, there are mechanig|, the motor and
arm assembly) and electrical componertg(busses). A particu-
larly important component is firmware — the code embeddehlimvit
the drive to control most of its higher-level functions, lumting
caching, disk scheduling, and error handling. This firmwaorde
is often substantial and comples.§, a modern Seagate drive con-
tains roughly 400,000 lines of code [19]).

Connecting the drive to the host is the transport. In low-gysd
tems, the transport medium is often a besg(SCSI), whereas
networks are common in higher-end systemg(FibreChannel).

At the top of the stack is the host. Herein there is a hardware
controller that communicates with the device, and abovesitifa
ware device driver that controls the hardware. Block-leeftware
forms the next layer, providing a generic device interface in-
plementing various optimizations.@, request reordering).

Above all other software is the file system. This layer is fte
split into two pieces: a high-level component common to & fi
systems, and a specific component that maps generic operatio
onto the data structures of the particular file system. Adsieth
interface €.g, Vnode/VFS [36]) is positioned between the two.

2.2 Why Do Disks Fail?

To motivate our failure model, we first describe how errorthin
layers of the storage stack can cause failures.
Media: There are two primary errors that occur in the magnetic
media. First, the classic problem of “bit rot” occurs whea thag-
netism of a single bit or a few bits is flipped. This type of desb
can often (but not always) be detected and corrected witHdwoal
ECC embedded in the drive. Second, physical damage canatcur
the media. The quintessential “head crash” is one culphiere the
drive head contacts the surface momentarily. A media dtico
also occur when a particle is trapped between the drive hedithe
media [57]. Such dangers are well-known to drive manufactr

There are many reasons that the file system may see errors inand hence modern disks park the drive head when the drivet is no

the storage system below. In this section, we first discussraan
causes of disk failure. We then present a new, more reafatic
partial modelfor disks and discuss various aspects of this model.

2.1 The Storage Subsystem

Figure 1 presents a typical layered storage subsystem leow
file system. An error can occur in any of these layers and gatea
itself to the file system above.

in use to reduce the number of head crashes; SCSI disks soaseti
include filters to remove particles [5]. Media errors mosénflead

to permanent failure or corruption of individual disk black
Mechanical: “Wear and tear” eventually leads to failure of moving
parts. A drive motor can spin irregularly or fail completelyrratic

arm movements can cause head crashes and media flaws; inaccu-
rate arm movement can misposition the drive head duringesyrit
leaving blocks inaccessible or corrupted upon subseqeexsr

Electrical: A power spike or surge can damage in-drive circuits
and hence lead to drive failure [68]. Thus, electrical peotd can
lead to entire disk failure.

Drive firmware: Interesting errors arise in the drive controller,
which consists of many thousands of lines of real-time, comnt
firmware. For example, disks have been known to return correc
data but circularly shifted by a byte [37] or have memory &eak
that lead to intermittent failures [68]. Other firmware peohs
can lead to poor drive performance [54]. Some firmware bugs ar
well-enough known in the field that they have specific names; f
example, “misdirected” writes are writes that place theexrdata

on the disk but in the wrong location, and “phantom” writes ar
writes that the drive reports as completed but that nevarhréaze
media [73]. Phantom writes can be caused by a buggy or even mis
configured cache.g., write-back caching is enabled). In summary,
drive firmware errors often lead to sticky or transient blaokrup-

tion but can also lead to performance problems.

Transport: The transport connecting the drive and host can also be
problematic. For example, a study of a large disk farm [6V¢ads
that most of the systems tested had interconnect problameh, s
as bus timeouts. Parity errors also occurred with some émcyy
either causing requests to succeed (slowly) or fail altegrefThus,

the transport often causes transient errors for the entive.d

Bus controller: The main bus controller can also be problematic.
For example, the EIDE controller on a particular series ofhmo
erboards incorrectly indicates completion of a disk retjbesore

the data has reached the main memory of the host, leadingdo da
corruption [72]. A similar problem causes some other cdlareto
return status bits as data if the floppy drive is in use at theesame

as the hard drive [26]. Others have also observed IDE prbtece
sion problems that yield corrupt data [23]. In summary, caltgr
problems can lead to transient block failure and data ctionp
Low-level drivers: Recent research has shown that device driver
code is more likely to contain bugs than the rest of the opeyat
system [15, 22, 66]. While some of these bugs will likely brése
operating system, others can issue disk requests with badpa
ters, data, or both, resulting in data corruption.

2.3 The Fail-Partial Failure Model

From our discussion of the many root causes for failure, e ar
now ready to put forth a more realistic model of disk failureour
model, failures manifest themselves in three ways:

e Entire disk failure: The entire disk is no longer accessible. If
permanent, this is the classic “fail-stop” failure.

e Block failure: One or more blocks are not accessible; often re-
ferred to as “latent sector errors” [33, 34].

e Block corruption: The data within individual blocks is altered.
Corruption is particularly insidious because it is siletihe storage
subsystem simply returns “bad” data upon a read.

We term this model thé&ail-Partial Failure Model to empha-
size that pieces of the storage subsystem can fail. We nawustis
some other key elements of the fail-partial model, inclgdihe
transience, locality, and frequency of failures, and theoubss how
technology and market trends will impact disk failures auese.

2.3.1 Transience of Failures

In our model, failures can be “sticky” (permanent) or “triams”
(temporary). Which behavior manifests itself depends uften
root cause of the problem. For example, a low-level medialpro
portends the failure of subsequent requests. In contrastnsport
or higher-level software issue might at first cause blockifaior
corruption; however, the operation could succeed if rdtrie

2.3.2 Locality of Failures

Because multiple blocks of a disk can fail, one must consider
whether such block failures are dependent. The root causes o
block failure suggest that some forms of block failure doeied
exhibit spatial locality [34]. For example, a scratchedate can
render a number of contiguous blocks inaccessible. Howedler
failures do not exhibit locality; for example, a corruptidoe to a
misdirected write may impact only a single block.

2.3.3 Frequency of Failures

Block failures and corruptions do occur — as one commercial
storage system developer succinctly stated, “Disks bréat-aall
guarantees are fiction” [29]. However, one must also consider
frequently such errors occur, particularly when modelingrall re-
liability and deciding which failures are most importantiandle.
Unfortunately, as Talagala and Patterson point out [68k drive
manufacturers are loathe to provide information on dislufas;
indeed, people within the industry refer to an implicit isthy-wide
agreement to not publicize such details [4]. Not surprisinthe
actual frequency of drive errors, especially errors thatotocause
the whole disk to fail, is not well-known in the literaturerelious
work on latent sector errors indicates that such errorsrocmre
commonly than absolute disk failure [34], and more recesgaech
estimates that such errors may occur five times more oftenaha
solute disk failures [57].

In terms of relative frequency, block failures are more ljjk®
occur on reads than writes, due to internal error handlimgraon
in most disk drives. For example, failed writes to a givent@ec
are often remapped to another (distant) sector, allowiegdtive
to transparently handle such problems [31]. However, rquimap
does not imply that writes cannot fail. A failure in a compone
above the mediag(g, a stuttering transport), can lead to an unsuc-
cessful write attempt; the move to network-attached sw{2d]
serves to increase the frequency of this class of failurdéso,Aor
remapping to succeed, free blocks must be available; asargéch
could render many blocks unwritable and quickly use up xeser
space. Reads are more problematic: if the media is unresadabl
drive has no choice but to return an error.

2.3.4 Trends

In many other arease(g, processor performance), technology
and market trends combine to improve different aspects of-co
puter systems. In contrast, we believe that technologydsremd
market forces may combine to make storage system failur@sg oc
morefrequently over time, for the following three reasons.

First, reliability is a greater challenge when drives arelenan-
creasingly more dense; as more bits are packed into smpélees,
drive logic (and hence complexity) increases [5].

Second, at the low-end of the drive market, cost-per-bytaido
nates, and hence many corners are cut to save pennies inTRE/A
drives [5]. Low-cost “PC class” drives tend to be tested kusg
have less internal machinery to prevent failures from aweg{31].
The result, in the field, is that ATA drives are observablys|esi-
able [67]; however, cost pressures serve to increase teagel
even in server environments [23].

Finally, the amount of software is increasing in storageesys
and, as others have noted, software is often the root cause of
rors [25]. In the storage system, hundreds of thousandsie$ lbf
software are present in the lower-level drivers and firmwdatas
low-level code is generally the type of code that is diffi¢altvrite
and debug [22, 66] — hence a likely source of increased eimors
the storage stack.

3. THE IRON TAXONOMY

In this section, we outline strategies for developing an ik

systemj.e., a file system that detects and recovers from a range of

modern disk failures. Our main focus is to develop differsrate-
gies, notacrossdisks as is common in storage arrays, Within a
single disk. Such Internal RObustNess (IRON) provides mafch
the needed protection within a file system.

To cope with the failures in modern disks, an IRON file sys-
tem includes machinery to bottetect(Level D) partial faults and
recover (Level R) from them. Tables 1 and 2 present our IRON
detection and recovery taxonomies, respectively. Notetiiestax-
onomy is by no means complete. Many other techniques arg like
to exist, just as many different RAID variations have beesppsed
over the years [3, 74].

The detection and recovery mechanisms employed by a file sys-

tem define itdailure policy. Currently, it is difficult to discuss the
failure policy of a system. With the IRON taxonomy, one can de
scribe the failure policy of a file system, much as one caradire
describe a cache replacement or a file-layout policy.

3.1 Levels of Detection

Level D techniques are used by a file system to detect that a

problem has occurred,e., that a block cannot currently be ac-
cessed or has been corrupted.

e Zero: The simplest detection strategy is none at all; the file
system assumes the disk works and does not check return dsles
we will see in§5, this approach is surprisingly common (although
often it is applied unintentionally).

e ErrorCode: A more pragmatic detection strategy that a file sys-
tem can implement is to check return codes provided by thedow
levels of the storage system.

e Sanity: With sanity checks, the file system verifies that its data
structures are consistent. This check can be performeet eifthin

a single block or across blocks.

When checking a single block, the file system can either yerif
individual fields €.g, that pointers are within valid ranges) or ver-
ify the typeof the block. For example, most file system superblocks
include a “magic number” and some older file systems such-as Pi
lot even include a header per data block [48]. By checkingtiadre
a block has the correct type information, a file system candyua
against some forms of block corruption.

Checking across blocks can involve verifying only a few kkoc
(e.g, that a bitmap corresponds to allocated blocks) or canwevol
periodically scanning all structures to determine if they itact
and consistente(g, similar tof sck [41]). Even journaling file
systems can benefit from periodic full-scan integrity clseckor
example, a buggy journaling file system could unknowingly- co
rupt its on-disk structures; runnirfgsck in the background could
detect and recover from such problems.

e Redundancy: The final level of the detection taxonomy is re-
dundancy. Many forms of redundancy can be used to detedkt bloc
corruption. For exampleshecksummingas been used in reliable
systems for years to detect corruption [9] and has receptiy lap-
plied to improve security as well [43, 64]. Checksums ardéui$er

a number of reasons. First, they assist in detecting clésisiot”,
where the bits of the media have been flipped. However, iniamed
ECC often catches and corrects such errors. Checksumseaee th
fore particularly well-suited for detecting corruptionhiigher lev-
els of the storage system staekd, a buggy controller that “misdi-
rects” disk updates to the wrong location or does not writevarg
block to disk at all). However, checksums must be carefatigle-
mented to detect these problems [9, 73]; specifically, alchen

Level Technique Comment
Dzero No detection Assumes disk works
DErrorCode Check return codes| Assumes lower level
from lower levels can detect errors
Dsanity Check data structures May require extra
for consistency space per block
DRedundancy Redundancy over Detect corruption
one or more blocks | in end-to-end way

Table 1:The Levels of the IRON Detection Taxonomy.

Level Technique Comment
Rzero No recovery Assumes disk works
Rpropagate Propagate error Informs user
Rsiop Stop activity Limit amount
(crash, prevent writes| of damage
RGuess Return “guess” at Could be wrong;
block contents failure hidden
RRetry Retry read or write Handles failures
that are transient
RRepair Repair data structs Could lose data
RRemap Remaps block or file| Assumes disk informs
to different locale FS of failures
RRedundancy Block replication Enables recovery
or other forms from loss/corruption

Table 2:The Levels of the IRON Recovery Taxonomy.

that is stored along with the data it checksums will not detach
misdirected or phantom writes.

Higher levels of redundancy, such as block mirroring [12};-p
ity [42, 45] and other error-correction codes [38], can alstect
corruption. For example, a file system could keep three sopie
each block, reading and comparing all three to determinedfias
been corrupted. However, such techniques are truly desifpre
correction (as discussed below); they often assume thempresf
a lower-overhead detection mechanism [45].

3.2 Detection Frequency

All detection techniques discussed above can be apdity,
upon block access, @agerly perhaps scanning the disk during
idle time. We believe IRON file systems should contain sommfo
of lazy detection and should additionally consider eagethous.

For exampledisk scrubbingis a classic eager technique used
by RAID systems to scan a disk and thereby discover latembisec
errors [34]. Disk scrubbing is particularly valuable if a ams for
recovery is available, that is, if a replica exists to reph& now-
unavailable block. To detect whether an error occurredjlding
typically leverages the return codes explicitly providective disk
and hence discovers block failure but not corruption. If borad
with other detection techniques (such as checksums), lsicigiban
discover block corruption as well.

3.3 Levels of Recovery

Level R of the IRON taxonomy facilitates recovery from block
failure within a single disk drive. These techniques harbéh
latent sector errors and block corruptions.

e Zero: Again, the simplest approach is to implement no recovery
strategy at all, not even notifying clients that a failure bacurred.
e Propagate: A straightforward recovery strategy is to propagate

errors up through the file system; the file system informs fhe a
plication that an error occurred and assumes the clientranogr
user will respond appropriately to the problem.

e Stop: One way to recover from a disk failure is to stop the cur-
rent file system activity. This action can be taken at marfgdiht
levels of granularity. At the coarsest level, one can crashen-
tire machine. One positive feature is that this recoveryhmaaism
turns alldetectedlisk failures into fail-stop failures and likely pre-
serves file system integrity. However, crashing assumeprtiie
lem is transient; if the faulty block contains repeatedtgessed
data €.g, a script run during initialization), the system may repeat
edly reboot, attempt to access the unavailable data, ast again.

At an intermediate level, one can kill only the process thggered
the disk fault and subsequently mount the file system in a-ogdyl
mode. This approach is advantageous in that it does not take d
the entire system and thus allows other processes to centifsu
the finest level, a journaling file system can abort only theent
transaction. This approach is likely to lead to the mostlakte
system, but may be more complex to implement.

e Guess: As recently suggested by Rinadad al. [51], another
possible reaction to a failed block read would be to manufact
a response, perhaps allowing the system to keep runningiti sp
of a failure. The negative is that an artificial response najeks
desirable than failing.

e Retry: A simple response to failure is to retry the failed oper-
ation. Retry can appropriately handle transient errors wastes
time retrying if the failure is indeed permanent.

e Repair: If an IRON file system can detect an inconsistency in
its internal data structures, it can likely repair themt st sck
would. For example, a block that is not pointed to, but is radrk
as allocated in a bitmap, could be freed. As discussed alaes,
techniques are useful even in the context of journaling fiteims,

as bugs may lead to corruption of file system integrity.

e Remap: IRON file systems can perform block remapping. This
technique can be used to fix errors that occur when writingelibl
but cannot recover failed reads. Specifically, when a wotea t
given block fails, the file system could choose to simply athe
block to another location. More sophisticated strategiesccremap
an entire “semantic unit” at a time.@, a user file), thus preserving
logical contiguity.

e Redundancy: Finally, redundancy (in its many forms) can be
used to recover from block loss. The simplest formeiglication

in which a given block has two (or more) copies in differertde
tions within a disk. Another redundancy approach employgypa
to facilitate error correction. Similar to RAID 4/5 [45], ladding

a parity block per block group, a file system can tolerate tie u
availability or corruption of one block in each such grouporkl
complex encodingse(g, Tornado codes [38]) could also be used, a
subject worthy of future exploration.

However, redundancy within a disk can have negative conse-
quences. First, replicas must account for the spatial itycaf
failure (e.g, a surface scratch that corrupts a sequence of neighbor-
ing blocks); hence, copies should be allocated across eepaots
of the disk, which can lower performance. Second, in-diskire
dancy techniques can incur a high space cost; however, iy man
desktop settings, drives have sufficient available freeesjiEs].

3.4 Why IRON in the File System?

One natural question to ask is: why should the file systemempl
ment detection and recovery instead of the disk? Perhapsmmod
disks, with their internal mechanisms for detecting ana@vedng
from errors, are sufficient.

In our view, the primary reason for detection and recoveiwi
the file system is found in the end-to-end argument [53]; dvie
lower-levels of the system implement some forms of faulertol
ance, the file system must implement them as well to guarchsgai
all forms of failure. For example, the file system is tirdy place
that can detect corruption of data in higher levels of theagte
stack €.g, within the device driver or drive controller).

A second reason for implementing detection and recovery in
the file system is that the file system has exact knowledge wf ho
blocks are currently being used. Thus, the file system caly dpp
tection and recovery intelligently across different blagkes. For
example, the file system can provide a higher level of refiiodor
its own metadata, perhaps leaving failure detection andtction
of user data to applications (indeed, this is one specifittienl that
we explore ing6). Similarly, the file system can provide machinery
to enable application-controlled replication of impottdata, thus
enabling an explicit performance/reliability trade-off.

A third reason is performance: file systems and storageragste
have an “unwritten contract” [55] that allows the file systentay
out blocks to achieve high bandwidth. For example, the utevri
contract stipulates that adjacent blocks in the logicat diddress
space are physically proximate. Disk-level recovery maigms,
such as remapping, break this unwritten contract and caarserp
mance problems. If the file system instead assumes thisnsispo
bility, it can itself remap logically-related blocks.g, a file) and
hence avoid such problems.

However, there are some complexities to placing IRON fuameti
ality in the file system. First, some of these techniquesireqew
persistent data structures.g, to track where redundant copies or
parity blocks are located). Second, some mechanisms escpiir-
trol of the underlying drive mechanisms. For example, tovec
on-disk data, modern drives will attempt different positiay and
reading strategies [5]; no interface exists to control ¢hdifferent
low-level strategies in current systems.

3.5 Doesn’'t RAID Make Storage Reliable?

Another question that must be answered is: can't we simpy us
RAID techniques [45] to provide reliable and robust stofadie
believe that while RAID can indeed improve storage relighilt
is not a complete solution, for the following three reasons.

First, not all systems incorporate more than one disk,sthe
gua nonof redundant storage systems. For example, desktop PCs
currently ship with a single disk included; because costdgng
force in the marketplace, adding a $100 disk to a $300 PCysolel
for the sake of redundancy is not a palatable solution.

Second, RAID alone does not protect against failures higher
the storage stack, as shown in Figure 1. Because many layists e
between the storage subsystem and the file system, and earors
occur in these layers as well, the file system must ultimaely
responsible for detecting and perhaps recovering from suahms.
Ironically, a complex RAID controller can consist of millis of
lines of code [74], and hence be a source of faults itself.

Third, depending on the particular RAID system employed, no
all types of disk faults may be handled. For example, lowet-e
RAID controller cards do not use checksums to detect dataigor
tion, and only recently have some companies included maghin
to cope with latent sector errors [16].

Hence, we believe that IRON techniques within a file systesn ar
useful for all single-disk systems, and even when multiplees
are used in a RAID-like manner. Although we focus on singted
systems in this paper, we believe there is a rich space leéjalo-
ration between IRON file systems and redundant storagesarray

4. FAILURE POLICY FINGERPRINTING

We now describe our methodology to uncover fili&re policy
of file systems. Our main objective wifhilure-policy fingerprint-
ing is to determine which detection and recovery techniquek eac
file system uses and the assumptions each makes about hom the u
derlying storage system can fail. By comparing the failuwkges
across file systems, we can learn not only which file systems ar
the most robust to disk failures, but also suggest improvesier
each. Our analysis will also be helpful for inferring whidRON
techniques can be implemented the most effectively.

Our approach is to inject faults just beneath the file systath a
observe how the file system reacts. If the fault policy isrehti
consistent within a file system, this could be done quite kimpe
could run any workload, fail one of the blocks that is accésaad
conclude that the reaction to this block failure fully derstvates
the failure policy of the system. However, file systems argrac-
tice more complex: they employ different techniques depend
upon the operation performed and the type of the faulty block

Therefore, to extract the failure policy of a system, we nitigt
ger all interesting cases. Our challenge is to coerce theyf#em
down its different code paths to observe how each path handle
failure. This requires that we run workloads exercisingelivant
code paths in combination with induced faults on all file egst
data structures. We now describe how we create workloagstin
faults, and deduce failure policy.

4.1 Applied Workload

Our goal when applying workloads is to exercise the file syste
as thoroughly as possible. Although we do not claim to sieeesy
code path (leaving this as an avenue for future work), we deest
to execute as many of the interesting internal cases asyp@ssi

Our workload suite contains two sets of programs that run on
UNix-based file systems (fingerprinting NTFS requires a differen
set of similar programs). The first set of programs, cafliegjlets
each focus upon a single call in the file system A®Rg(nkdi r).

The second segienerics stresses functionality common across the
API (e.g, path traversal). Table 3 summarizes the test suite.

Workload
Singlets:
access, chdir,chroot,
stat,statfs,| stat,open,
uti nes, read,readlink,
getdirentries,creat,
I'i nk, nkdi r,r enane, chown,
synmink,wite,truncate,
ridi r,unl i nk, nount ,
chnod, f sync, sync, unount

Purpose

Exercise the
Posix API

Generics:
Path traversal Traverse hierarchy
Recovery Invoke recovery
Log writes Update journal

Table 3:Workloads. The table presents the workloads applied to
the file systems under test. The first set of workloads eaebssis

a single system call, whereas the second group invokes @esrer
erations that span many of the calls (e.g., path traversal).

of on-disk structures. However, we believe that the beneffitgpe-
awareness clearly outweigh these complexities. The blgust of
the file systems we test are listed in Table 4.

Our mechanism for injecting faults is to use a software lajer
rectly beneath the file systeme, a pseudo-device driver). This
layer injects both block failures (on reads or writes) aratklcor-
ruption (on reads). To emulate a block failure, we simplymethe
appropriate error code and do not issue the operation torttheru
lying disk. To emulate corruption, we change bits within bheck
before returning the data; in some cases we inject randosenoi
whereas in other cases we use a block similar to the expeoged o
but with one or more corrupted fields. The software layer alsed-
els both transient and sticky faults.

By injecting failures just below the file system, we emulatelfs
that could be caused by any of the layers in the storage sginsys
Therefore, unlike approaches that emulate faulty diskeguad-
ditional hardware [13], we can imitate faults introducedduggy

Each file system under test also introduces special cases thadevice drivers and controllers. A drawback of our approacihat

must be stressed. For example, the ext3 inode uses an irobdlan
tree with indirect, doubly-indirect, and triply-indirepbinters, to
support large files; hence, our workloads ensure that seffigi
large files are created to access these structures. Othgydtems
have similar peculiarities that we make sure to exeraisg, (the
B+-tree balancing code of ReiserFS).

4.2 Type-Aware Fault Injection

Our second step is to inject faults that emulate a disk aderi
to the fail-partial failure model. Many standard fault icfers [13,
59] fail disk blocks in aype obliviousmanner; that is, a block is
failed regardless of how it is being used by the file systemw-Ho
ever, repeatedly injecting faults into random blocks andimgto
uncover new aspects of the failure policy would be a labariand
time-consuming process, likely yielding little insight.

The key idea that allows us to test a file system in a relatively
efficient and thorough manner tigpe-aware fault injectionwhich
builds on our previous work with “semantically-smart” disks-
tems [8, 60, 61, 62]. With type-aware fault injection, iresteof
failing blocks obliviously, we fail blocks of a specific tyge.g,
an inode). Type information is crucial in reverse-engimegfail-
ure policy, allowing us to discern the different stratediest a file
system applies for its different data structures. The dizathge
of our type-aware approach is that the fault injector mustabe
lored to each file system tested and requires a solid undelisth

it does not discern how lower layers handle disk faults; fameple,
some SCSI drivers retry commands after a failure [50]. Hamev
given that we are characterizing how file systems react titsfaue
believe this is the correct layer for fault injection.

4.3 Failure Policy Inference

After running a workload and injecting a fault, the final siefo
determine how the file system behaved. To determine how & faul
affected the file system, we compare the results of runnitigavid
without the fault. We perform this comparison across alkboiable
outputs from the system: the errors codes and data retusngeb
file system API, the contents of the system log, and the latle
1/0 traces recorded by the fault-injection layer. Curngntthis is
the most human-intensive part of the process, as it requisgsial
inspection of the visible outputs.

4.4 Summary

We have developed a three-step fingerprinting methodology t
determine file system failure policy. We believe our apphostcikes
a good balance: itis straightforward to run and yet exesdise file
system under test quite thoroughly. Our workload suite aiost
roughly 30 programs, each file system has on the order of 10 to 2
different block types, and each block can be failed on a rea o
write or have its data corrupted. For each file system, thisumts
to roughly 400 relevant tests.

Ext3 Structures Purpose

inode Info about files and directories
directory List of files in directory

data bitmap Tracks data blocks per group
inode bitmap Tracks inodes per group
indirect Allows for large files to exist
data Holds user data

super Contains info about file system

group descriptor
journal super
journal revoke
journal descriptor
journal commit
journal data

Holds info about each block group
Describes journal

Tracks blocks that will not be replayed
Describes contents of transaction
Marks the end of a transaction
Contains blocks that are journaled

ReiserFS Structures Purpose

leaf node Contains items of various kinds
stat item Info about files and directories
directory item List of files in directory
direct item Holds small files or tail of file
indirect item Allows for large files to exist
data bitmap Tracks data blocks
data Holds user data
super Contains info about tree and file system

journal header
journal descriptor
journal commit
journal data
root/internal node

Describes journal

Describes contents of transaction
Marks end of transaction
Contains blocks that are journaled
Used for tree traversal

JFS Structures Purpose
inode Info about files and directories
directory List of files in directory

block alloc map
inode alloc map

Tracks data blocks per group
Tracks inodes per group

internal Allows for large files to exist
data Holds user data

super Contains info about file system
journal super Describes journal

journal data Contains records of transactions

aggregate inode
bmap descriptor

Contains info about disk partition
Describes block allocation map

imap control Summary info about imaps

NTFS Structures Purpose

MFT record Info about files/directories
directory List of files in directory

volume bitmap Tracks free logical clusters

MFT bitmap Tracks unused MFT records
logfile The transaction log file

data Holds user data

boot file Contains info about NTFS volume

Table 4:File System Data Structures.The table presents the data
structures of interest across the four file systems undér 33,
ReiserFS, JFS, and NTFS. In each table, we list the nameg of th
major structures and their purpose. Note that our knowledfe
NTFS data structures is incomplete, as it is a closed-sosyseem.

5. FAILURE POLICY: RESULTS

We now present the results of our failure policy analysisfdor
commodity file systems: ext3, ReiserFS (version 3), and BWS
on Linux and NTFS on Windows. For each file system, we first
present basic background information and then discussahergl
failure policy we uncovered along with bugs and illogicatdan-
sistencies; where appropriate and available, we also lbskiace
code to better explain the problems we discover.

Due to the sheer volume of experimental data, it is difficalt t
present all results for the reader’s inspection. For eaelsfistem
that we studied in depth, we present a graphical depictioouof
results, showing for each workload/blocktype pair how a&gide-
tection or recovery technique is used. Figure 2 presentmagex)
graphical depiction of our results — see the caption forprta-
tion details. We now provide a qualitative summary of thaultss
that are presented within the figure.

5.1 Linux ext3

Linux ext3 is the most similar to many classiaix file systems
such as the Berkeley Fast File system [40]. Ext3 divides tble d
into a set of block groups; within each are statically-resdispaces
for bitmaps, inodes, and data blocks. The major additionxi8 e
over ext2 is journaling [71]; hence, ext3 includes a new $&ne
disk structures to manage its write-ahead log.

Detection: To detect read failures, ext3 primarily uses error codes
(DErrorcode).- However, when a write fails, ext3 does not record
the error codeDz.0); hence, write errors are often ignored, po-
tentially leading to serious file system probleragy(when check-
pointing a transaction to its final location). Ext3 also perfs a fair
amount of sanity checking¥sanity). FOr example, ext3 explicitly
performs type checks for certain blocks such as the supsialiod
many of its journal blocks. However, little type checkingdisne

for many important blocks, such as directories, bitmap kdpand
indirect blocks. Ext3 also performs numerous other sarkigcks
(e.g, when the file-size field of an inode contains an overly-large
value,open detects this and reports an error).

Recovery: For most detected errors, ext3 propagates the error
to the user Rpropagate). FOr read failures, ext3 also often aborts
the journal Rs:.p); aborting the journal usually leads to a read-
only remount of the file system, preventing future updatebaouit
explicit administrator interaction. Ext3 also uses retRz(+ry),
although sparingly; when a prefetch read fails, ext3 retoigly the
originally requested block.

Bugs and Inconsistencies: We found a number of bugs and in-
consistencies in the ext3 failure policy. First, errorsaoealways
propagated to the useg.@, t r uncat e andr ndi r fail silently).
Second, there are important cases when ext3 does not imelgdia
abort the journal on failurei.€., does not implemenRs:op). For
example, when a journal write fails, ext3 still writes thestref
the transaction, including the commit block, to the journhals,

if the journal is later used for recovery, the file system cas-e
ily become corrupted. Third, ext3 does not always perfornitga
checking; for exampleynl i nk does not check thiei nkscount
field before modifying it and therefore a corrupted value lesau

to a system crash. Finally, although ext3 has redundanesayi
the superblockR redundancy), these copies are never updated after
file system creation and hence are not useful.

5.2 ReiserFS

ReiserFS [49] is comprised of vastly different data strresu
than ext3. Virtually all metadata and data are placed in artzad
tree, similar to a database index. A key advantage of treetstr
ing is scalability [65], allowing many files to coexist in aelitory.

Read Failure Write Failure

abcdefghi jkl

Corruption

inode

i jklmnopqrst
]

dir

j——— 000 (] I
Q]

bitmap
-bitmay
ndirec
data
super
g-desc
-super
-revoke
-desc .
-commit
-data

Ext3 Detection

Ext3 Recovery

-data

stat item
dir item
bitmap
indirect
data

internal

stat item

dir item
bitmap
indirect
data
super
-header

ReiserFS Recovery ReiserFS Detection

root
nternal

klmnopqrst

JFS Detection

aggr-inode
bmap-desd
map-cntl

inode

dir

) W

bmap

aggr-inod
bmap-des
map-cntl

JFS Recovery

Figure 2:File System Failure PoliciesThe tables indicate both detection and recovKey for Detection

Key for Recovery

ery policies of ext3, ReiserFS, and JFS for read, write, asuption faults injected DZero

for each block type across a range of workloads. The world@ada: path traversal — p ErrorCod
b: access,chdir,chroot,stat,statfs,Istat,openchmod,chown,utimed: read e: read- D rorete
link f: getdirentriesg: creath: link i: mkdirj: renamek: symlinkl: write m: truncate | Sanity

n: rmdir o: unlink p: mountq: fysnc,syne: umounts: FS recovent: log write oper-
ations. A gray box indicates that the workload is not apgdiesfor the block type. If
multiple mechanisms are observed, the symbols are supesadp

RZero
RRetry
RPropagate
RRedundancy
RStop

—— | 0O

Detection: Our analysis reveals that ReiserFS pays close attention location map read fails. Error codes for all metadata reeglan-

to error codes across reads and Writ€sz(,orcode). ReiserFS
also performs a great deal of internal sanity checkibg {»ity)-

For example, all internal and leaf nodes in the balancedhase

a block header containing information about the level oflitoek

in the tree, the number of items, and the available free sphee
super block and journal metadata blocks have “magic nurhbers
which identify them as valid; the journal descriptor and oain
blocks also have additional information; finally, inodes atirec-
tory blocks have known formats. ReiserFS checks whethdr eac
of these blocks has the expected values in the appropridds.fie
However, not all blocks are checked this carefully. For eplem
bitmaps and data blocks do not have associated type infammat
and hence are never type-checked.

Recovery: The most prominent aspect of the recovery policy of
ReiserFS is its tendency fwani ¢ the system upon detection of
virtually any write failure Rs:op). When ReiserFS callgani c,

the file system crashes, usually leading to a reboot and eegov
sequence. By doing so, ReiserFS attempts to ensure that-its o
disk structures are not corrupted. ReiserFS recovers feah and
write failures differently. For most read failures, ReRB8rpropa-
gates the error to the useR fropagate) @aNd sometimes performs a
single retry Rretry) (€.9, When a data block read fails, or when an
indirect block read fails duringnl i nk,t runcat e,andwrite
operations). However, ReiserFS never retries upon a vailigré.
Bugs and InconsistenciesReiserFS also exhibits inconsistencies
and bugs. For example, when an ordered data block write fails
ReiserFS journals and commits the transaction without lagnd
the error Rz, instead of the expecteRs:.p), Which can lead

to corrupted data blocks since the metadata blocks now point
invalid data contents. Second, while dealing with indirgloicks,
ReiserFS detects but ignores a read failure; hencef oruacat e

or unl i nk, it updates the bitmaps and super block incorrectly,
leaking space. Third, ReiserFS sometimes ga#iai ¢ on fail-

ing a sanity check, instead of simply returning an error cdéie
nally, there is no sanity or type checking to detect corroptial
data; therefore, replaying a corrupted journal block cakartae
file system unusablee(g, the block is written as the super block).

5.3 IBMJFS

dled by generic file system code called by JFS; this genede co
attempts to recover from read errors by retrying the readhglesi
time (Rretry). Finally, the reaction for a failed sanity check is
to propagate the errofRpropagate) @nd remount the file system
as read-only Rs:.p); during journal replay, a sanity-check failure
causes the replay to aboR {+0p)-

Bugs and InconsistenciesWe also found problems with the JFS
failure policy. First, while JFS has some built-in redundanit
does not always use it as one would expect; for example, JES do
not use its secondary copies of aggregate inode tablesigbpec
odes used to describe the file system) when an error codeiineet
for an aggregate inode read. Second, a blank page is sorsetime
returned to the userRguess), although we believe this is not by
design {.e, it is a bug); for example, this occurs when a read to
an internal tree block does not pass its sanity check. Thothe
bugs limit the utility of JFS recovery; for example, althbugeneric
code detects read errors and retries, a bug in the JFS implame
tion leads to ignoring the error and corrupting the file syste

5.4 Windows NTFS

NTFS [2, 63] is the only non-Nix file system in our study. Be-
cause our analysis requires detailed knowledge of on-disic-s
tures, we do not yet have a complete analysis as in Figure 2.

We find that NTFS uses error codd34,.code) 10 detect both
block read and write failures. Similar to ext3 and JFS, whdata
write fails, NTFS records the error code but does not use (),
which can corrupt the file system.

NTFS performs strong sanity checkin®§.n::,) on metadata
blocks; the file system becomes unmountable if any of its datta
blocks (except the journal) are corrupted. NTFS surprlgidges
not always perform sanity checking; for example, a corrdijpieck
pointer can point to important system structures and heoceiut
them when the block pointed to is updated.

In most cases, NTFS propagates erraf{opagate). NTFS
aggressively uses retnRk.:ry) When operations failg.g, up to
seven times under read failures). With writes, the numbeetoies
varies €.g, three times for data blocks, two times for MFT blocks).

5.5 File System Summary

JFS [11] uses modern techniques to manage data, block-alloca We now present a qualitative summary of each of the file system

tion and journaling, with scalable tree structures to manfgs,
directories, and block allocation. Unlike ext3 and Rei&rBFS
uses record-level journaling to reduce journal traffic.

Detection: Error codes Dgrrorcode) are used to detect read fail-
ures, but, like ext3, most write errors are ignorédz(,,), with

the exception of journal superblock writes. JFS employy amh-
imal type checking; the superblock and journal superbloakeh
magic and version numbers that are checked. Other sanitkghe
(Dsanity) are used for different block types. For example, internal
tree blocks, directory blocks, and inode blocks containrthm-
ber of entries (pointers) in the block; JFS checks to make this
number is less than the maximum possible for each block type.
As another example, an equality check on a field is perforroed f
block allocation maps to verify that the block is not coredht
Recovery: The recovery strategies of JFS vary dramatically de-
pending on the block type. For example, when an error ocaurs d
ing a journal superblock write, JFS crashes the systBmi4,);
however, other write errors are ignored entireljz(.,). On a
block read failure to the primary superblock, JFS acces$sealter-
nate copy Rredundancy) 10 COMplete the mount operation; how-
ever, a corrupt primary results in a mount failufest.,). Explicit
crashes Rs:op) are used when a block allocation map or inode al-

we tested. Table 5 presents a summary of the techniquesdtiat e
file system employs (excluding NTFS).

e Ext3: Overall simplicity. Ext3 implements a simple and mostly
reliable failure policy, matching the design philosophyrid in the
ext family of file systems. It checks error codes, uses a nideles

of sanity checking, and recovers by propagating errors hodiag
operations. The main problem with ext3 is its failure hamgllfor
write errors, which are ignored and cause serious problentisd-
ing possible file system corruption.

e ReiserFS: First, do no harm. ReiserFS is the most concerned
about disk failure. This concern is particularly evidenbopvrite
failures, which often induce pani c; ReiserFS takes this action
to ensure that the file system is not corrupted. ReiserFSusis®

a great deal of sanity and type checking. These behaviorbicem
to form a Hippocratic failure policy: first, do no harm.

e JFS: The kitchen sink. JFS is the least consistent and most di-
verse in its failure detection and recovery techniques. debec-
tion, JFS sometimes uses sanity, sometimes checks erres,cand
sometimes does nothing at all. For recovery, JFS sometises u
available redundancy, sometimes crashes the system, amet so
times retries operations, depending on the block type #ikst the
error detection and the API that was called.

Level ext3 Reiser JFS
Dzero VvV VI VvV
Dgrrorcode | VVVV | VVVV Vv
Dsanity VWV VYV VVY
DRedundancy

Rzero VvV v VvV
Rovopagare | VWV | WV | WV
Rstop W v | W
RGuess \/
RRetry v &%
RRepair

RRemap

RRedundancy \/

Table 5:IRON Techniques Summary. The table depicts a sum-

code. One suggestion in the literature that could be helpuild

be to periodically inject faults in normal operation as mdra “fire
drill” [44]. Our method reveals that testing needs to be draad
cover as many code paths as possible; for example, only by tes
ing the indirect-block handling of ReiserFS did we obsemgain
classes of fault mishandling.

e Detection: Error codes are sometimes ignored. Amazingly
(to us), error codes were sometimes clearly ignored by tbeyit-
tem. This was most common in JFS, but found occasionallyen th
other file systems. Perhaps a testing framework such asloamtds
be a part of the file system developer’s toolkit; with sucHdpthis
class of error is easily discovered.

e Detection: Sanity checking is of limited utility. Many of the
file systems use sanity checking to ensure that the metduatate
about to use meets the expectations of the code. Howeveermmod

mary of the IRON techniques used by the file systems under testdisk failure modes such as misdirected and phantom writed le

More check marks,f) indicate a higher relative frequency of us-
age of the given technique.

e NTFS: Persistence is a virtue. Compared to the Linux file
systems, NTFS is the most persistent, retrying failed reiguaany
times before giving up. It also seems to propagate errofstaser
quite reliably. However, more thorough testing of NTFS isded
in order to broaden these conclusions (a part of our ongooviw

5.6 Technique Summary

Finally, we present a broad analysis of the techniques egbply
all of the file systems to detect and recover from disk fadui/e
concentrate upon techniques that are underused, oversaskd
in an inappropriate manner.

e Detection and Recovery: lllogical inconsistency is comman
We found a high degree dllogical inconsistencyin failure pol-
icy across all file systems (observable in the patterns inrgi@).
For example, ReiserFS performs a great deal of sanity chgcki
however, in one important case it does not (journal replay), the
result is that a single corrupted block in the journal camguatrthe
entire file system. JFS is the most illogically inconsistemploy-
ing different techniques in scenarios that are quite simila

We note that inconsistency in and of itself is not problemati
[21]; for example, it would bdogically inconsistent (and a good
idea, perhaps) for a file system to provide a higher level dfine
dancy to data structures it deems more important, such asdhe
directory [61]. What we are criticizing are inconsisterscieat are
undesirable (and likely unintentional); for example, JF8 at-
tempt to read the alternate superblock if a read failure oaten
reading the primary superblock, but it does not attempt &ol the
alternate if it deems the primary corrupted.

In our estimation, the root cause of illogical inconsisteisdail-
ure policy diffusionthe code that implements the failure policy is
spread throughout the kernel. Indeed, the diffusion is ersged
by some architectural features of modern file systems, ssithea
split between generic and specific file systems. Further, ave h
observed some cases where different developers implerifant d
ent portions of the code and hence implement differentraiboli-
cies €.g, one of the few cases in which ReiserFS doespanic
on write failure arises due to this); perhaps this incoesisy is
indicative of the lack of attention paid to failure policy.

e Detection and Recovery: Bugs are commonWe also found

to cases where the file system could receive a properly foechat
(but incorrect) block; the bad block thus passes sanity kshes
used, and can corrupt the file system. Indeed, all file systeens
tested exhibit this behavior. Hence, we believe strongss f@such
as checksums) should be used.

e Recovery: Stop is useful — if used correctlyMost file systems
employed some form aRs:., in order to limit damage to the file
system when some types of errors arose; ReiserFS is thedaast e
ple of this, as it callpani ¢ on virtually any write error to prevent
corruption of its structures. However, one has to be cangfthl
such techniques. For example, upon a write failure, ext tto
abort the transaction, but does not correctly squelch atewito
the file system, leading to corruption. Perhaps this indkahat
fine-grained rebooting is difficult to apply in practice [14]

e Recovery: Stop should not be overusedOne downside to halt-
ing file system activity in reaction to failure is the inconience it
causes: recovery takes time and often requires admirgtriat
volvement to fix. However, all of the file systems used sommfor
of Rstop When something as innocuous as a read failure occurred;
instead of simply returning an error to the requesting psscthe
entire system stops. Such draconian reactions to posshipd-
rary failures should be avoided.

e Recovery: Retry is underutilized. Most of the file systems as-
sume that failures are not transient, or that lower layeth®sys-
tem handle such failures, and hence do not retry requestiaggra
time. The systems that employ retry generally assume reagd re
is useful, but write retry is not; however, transient fadte to de-
vice drivers or transport issues are equally likely to oamureads
and writes. Hence, retry should be applied more uniformlyFS

is the lone file system that embraces retry; it is willing teuis a
much higher number of requests when a block failure is oleskrv
e Recovery: Automatic repair is rare. Automatic repair is used
rarely by the file systems; instead, after usingi&n., technique,
most of the file systems require manual intervention to giteim
fix the observed problem.¢., running fsck).

e Detection and Recovery: Redundancy is not usedFinally,
and perhaps most importantly, while virtually all file systein-
clude some machinery to detect disk failures, none of theptyap
redundancyto enable recovery from such failures. The lone ex-
ception is the minimal amount of superblock redundancy doun
JFS; even this redundancy is used inconsistently. Also pl&Ss

numerous bugs across the file systems we tested, some of whichthe copies in close proximity, making them vulnerable tdisfig-
are serious, and many of which are not found by other sophisti local errors. As it is the least explored and potentially tneseful

cated techniques [75]. We believe this is generally indieatf the
difficulty of implementing a correct failure policy; it cainly hints
that more effort needs to be put into testing and debuggirsycif

10

in handling the failures common in drives today, we next tive
gate the inclusion of various forms of redundancy into thkirfe
policy of a file system.

Read Failure

Write Failure Corruption

inode

abcdefghi jklmnopqrst abcdefghijklmnopqgrst abcdefghijklmnopqgrst

dir

bitmap

-bitmay

ndirec

data

super

g-desc

-super

-revoke

Ixt3 Detection

-desc

-commit

-data

inode K 4+

dir

bitmap

-bitma

ndirec

data

super

g-desc

+

-super -

-revoke

-desc

Ixt3 Recovery

-commit
d

-data

Figure 3:1xt3 Failure Policy. The tables plot both detection and recovery policies of
ixt3 for read, write, and corruption faults injected for éablock type across a range
of workloads. The workloads are varied across the columngheffigure, and the
different block types of the ixt3 file system are varied aths rows. The workloads

are grouped in the same manner as in Figure 2.

6. ANIRON FILE SYSTEM

We now describe our implementation and evaluationR®ON
ext3 (ixt3) Within ixt3, we implement a family of recovery tech-
nigues that most commodity file systems do not currently ipev
To increase its robustness, ixt3 applies checksums to bethdata
and data blocks, uses pure replication for metadata, andbgsnp
parity-based redundancy to protect user data.

In this section, we first describe our implementation, arehth
demonstrate that it is robust to a broad class of partial fdiikres.
Then, we investigate the time and space costs of ixt3, stgpthizat
the time costs are often quite small and otherwise modedttren
space costs are also quite reasonable. In our performanae me
surements, we activate and deactivate each of the IRONrésatu
independently, so as to better understand the cost of eachaagh.

6.1 Implementation

We now briefly describe the ixt3 implementation. We explain
how we add checksumming, metadata replication, user paritya
new performance enhancement known as transactional airasks
into the existing ext3 file system framework.

Checksumming: To implement checksumming within ixt3, we
borrow techniques from other recent research in checksngini
file systems [64, 43]. Specifically, we place checksums fitstthe
journal, and then checkpoint these checksums to their fiation,
distant from the blocks they checksum. Checksums are veajl sm
and can be cached for read verification. In our current imptem
tation, we use SHA-1 to compute the checksums. By incorjmarat
checksumming into existing transactional machinery, oleanly
integrates into the ext3 framework.

Metadata Replication: We apply a similar approach in adding
metadata replication to ixt3. All metadata blocks are writto

a separateeplica log they are later checkpointed to a fixed loca-
tion in a block group distant from the original metadata. \Weia
use transactions to ensure that either both copies redchatisis-
tently, or that neither do.

11

Key for Detection Key for Recovery

O DZer'o O RZer'o
- DEr'ro'rCOde / RRet'r‘y
| DSanity - RPropagate
\ DRedundancy \ RRedundancy
| Rstop

Parity: We implement a simple parity-based redundancy scheme
for data blocks. One parity block is allocated for each fildnisT
simple design enables one to recover from at most one datk-bl
failure in each file. We modify the inode structure of ext3 & a
sociate a file's parity block with its data blocks. Paritydke are
allocated when files are created. When a file is modified, itisypa
block is read and updated with respect to the new contentsnTo
prove the performance of file creates, we preallocate phhityks

and assign them to files when they are created.

Transactional Checksums:We also explore a new idea for lever-
aging checksums in a journaling file system; specificallgokh
sums can be used to relax ordering constraints and thus tovwep
performance. In particular, when updating its journalpdtad ext3
ensures that all previous journal data reaches disk befieredm-

mit block; to enforce this ordering, standard ext3 induaesxra
wait before writing the commit block, and thus incurs exintar
tional delay. To avoid this wait, ixt3 implements what welcal
transactional checksumvhich is a checksum over the contents of a
transaction. By placing this checksum in the journal contutk,

ixt3 can safely issue all blocks of the transaction conauilye If

a crash occurs during the commit, the recovery procedurgesan
liably detect the crash and not replay the transaction, usscthe
checksum over the journal data will not match the checksum in
the commit block. Note that a transactional checksum pes/itte
same crash semantics as in the original ext3 and thus carelde us
without other IRON extensions.

Cleaning Overheads: Note that “cleaning overhead”, which can
be a large problem in pure log-structured file systems [52,i58
not a major performance issue for journaling file systemsneavith
ixt3-style checksumming and replication. Journaling fitstems
already incorporate cleaning into their on-line mainteaoosts;
for example, ext3 first writes all metadata to the journal #veh
cleans the journal by checkpointing the data to a final fixedtion.
Hence, the additional cleaning performed by ixt3 incredets
traffic only by a small amount.

6.2 Evaluation

We now evaluate our prototype implementation of ixt3. Wautoc
on three major axes of assessment: robustness of ixt3 tormode
disk failures, and both the time and space overhead of thtéeua
redundancy mechanisms employed by ixt3.

Robustness: To test the robustness of ixt3, we harness our fault
injection framework, running the same partial-failure esiments
on ixt3. The results are shown in Figure 3.

Ixt3 detects read failures in the same way as ext3, by usiag th
error codes from the lower level(g;rorcode). When a meta-
data block read fails, ixt3 reads the corresponding reptimay
(RRedundancy)- If the replica read also fails, it behaves like ext3
by propagating the erroi{propagate) @and stopping the file system
activity (Rstop)- When a data block read fails, the parity block and
the other data blocks of the file are read to compute the fdi¢a
block’s contents R redundancy)-

Ixt3 detects write failures using error codes as WAk rorcode)-

It then aborts the journal and mounts the file system as ragdt@
stop any writes from going to the disRg:op).

When a data or metadata block is read, the checksum of its con-
tents is computed and is compared with the correspondingkehe
sum of the block D redundancy)- If the checksums do not match, a
read error is generate®Reropagate). On read errors, the contents
of the failed block are read either from the replica or coredut
using the parity blockR redundancy)-

In the process of building ixt3, we also fixed numerous bugs
within ext3. By doing so, we avoided some cases where ext3dvou
commit failed transactions to disk and potentially corrtip file
system [47].

Overall, by employing checksumming to detect corruptiord a
replication and parity to recover lost blocks, ixt3 prodd®bust
file service in spite of partial disk failures. More quartiitaly, ixt3
detects and recovers from over 200 possible differentadeetror
scenarios that we induced. The result is a logical and weflhdd
failure policy.

Time Overhead: We now assess the performance overhead of ixt3.
We isolate the overhead of each IRON mechanism by enabling
checksumming for metadatd4.) and data D.), metadata repli-
cation (M,), parity for user datalf,), and transactional check-
summing {.) separately and in all combinations.

We use four standard file system benchmarks: SSH-Build,twhic
unpacks and compiles the SSH source distribution; a weleserv
benchmark, which responds to a set of static HTTP GET reguest
PostMark [35], which emulates file system traffic of an emeiver;
and TPC-B [69], which runs a series of debit-credit trarisast

#| M. M, D. D, T.|SSH Web Post TPCB
0 (Baseline: ext3) 1.00 1.00 1.00 1.00
1| M. 1.00 1.00 1.01 1.00
2 M, 1.00 1.00 118 1.19
3 D. 1.00 1.00 1.13 1.00
4 D, 1.02 1.00 107 103
5 T. | 1.00 1.00 1.01 [0.80]
6| M. M, 1.01 1.00 1.19 1.20
7| M. D. 1.02 1.00 1.11 1.00
8| M. D, 1.01 1.00 1.10 1.03
9| M. T. | 1.00 1.00 1.05 [0.81]
10 M, D. 1.02 1.00 126 1.20
11 M, D, 1.02 1.00 120 1.39
12 M, T. | 1.00 1.00 1.15 1.00
13 e » 1.03 1.00 1.13 1.04
14 . T.|1.01 1.01 1.15 [0.81]
15 » 1.| 101 1.00 106 [0.84]
16 | M. M, B 1.02 1.00 128 1.19
17| M. M, » 1.02 1.01 130 1.42
18| M. M, T. |1 1.01 1.00 1.19 101
19 | M. D. D, 1.03 1.00 120 1.03
20 | M. D. T. | 1.02 100 1.06 [0.81]
21| M, D, T.|101 1.00 1.03 [0.85]
22 M, D. D, 1.03 1.00 135 1.42
23 M, D. T. | 1.02 100 126 1.01
24 M, D, T.]|102 100 121 1.19
25 D. D, T.|102 101 1.18 [0.85]
26| M. M, D. D, 1.03 1.00 1.37 1.42
27| M. M, D, T. | 1.04 1.00 1.24 101
28| M. M, D, T.]102 100 125 1.19
29 | M. D. D, T.|1.03 1.00 1.18 [0.87]
30 M, D. D, T.|105 100 130 1.20
31\M. M, D. D, T.|106 100 132 121

Table 6: Overheads of ixt3 File System Variants. Results from
running different variants of ixt3 under the SSH-Build ($SMeb
Server (Web), PostMark (Post), and TPC-B (TPCB) benchmarks
are presented. The SSH-Build time measures the time to kinpac
configure, and build the SSH source tree (the tar'd sourcd. is1B

in size); the Web server benchmark transfers 25 MB of data us-
ing http requests; with PostMark, we run 1500 transactiorith w
file sizes ranging from 4 KB to 1 MB, with 10 subdirectories and
1500 files; with TPC-B, we run 1000 randomly generated debit-
credit transactions. Along the rows, we vary which redurjan
technique is implemented, in all possible combinationg; im-
plies that metadata checksumming is enabled;that data check-

against a simple database. We run each experiment five or moreSUmming is enabledy/. that replication of metadata is turned on;

times and present the average results.

These benchmarks exhibit a broad set of behaviors. Spdlgifica
SSH-Build is a good (albeit simple) model of the typical anti
of a developer or administrator; the web server is read &iNen
with concurrency; PostMark is metadata intensive, with ynfde
creations and deletions; TPC-B induces a great deal of sgnohs
update traffic to the file system.

Table 6 reports the relative performance of the variantst8ffor
the four workloads, as compared to stock Linux ext3. Fronsehe
numbers, we draw three main conclusions.

First, for both SSH-Build and the web server workload, there
is little time overhead, even with all IRON techniques erdbl
Hence, if SSH-Build is indicative of typical activity, ugjrcheck-
summing, replication, and even parity incurs little cosmigrly,
from the web server benchmark, we can conclude that readsive
workloads do not suffer from the addition of IRON techniques

12

D, that parity for data blocks is enabledf. that transactional
checksums are in use. All results are normalized to the perfo
mance of standard Linux ext3; for the interested readerniig
times for standard ext3 on SSH-Build, Web, PostMark, and-BPC
are 117.78, 53.05, 150.80, and 58.13 seconds, respectiStiw-
downs greater than 10% are marked lold, whereas speedups
relative to base ext3 are marked in [brackets]. All testinglone

on the Linux 2.6.9 kernel on a 2.4 GHz Intel P4 with 1 GB of mem-
ory and a Western Digital WDC WD1200BB-00DAAO disk.

Second, for metadata intensive workloads such as Posthvidrk a
TPC-B, the overhead is more noticeable — up to 37% for Po&Mar
and 42% for TPC-B (row 26). Since these workloads are quite
metadata intensive, these results represent the worstpeasor-
mance that we expect. We also can observe that our implementa
tion of metadata replication (row 2) incurs a substantizt om its

own, as does data checksumming (row 3). User parity and ratetad
checksums, in contrast, incur very little cost (rows 1 and3#yen
our relatively untuned implementation of ixt3, we beliebattall

of these results demonstrate that even in the worst caseosite of
robustness are not prohibitive.

One reason for this may be that our testing is better undée;sca
whereas model-checking must be limited to small file systeams
reduce run-time, our approach can be applied to large filesys
Our work builds upon our earlier work in failure injectionder-
neath file systems [47]. In that work, we developed an apjbraac

Finally, the performance of the synchronous TPC-B workload test how file systems handle write failures during journalatps.

demonstrates the possible benefits of the transactionakshen.
In the base case, this technique improves standard ext8rperf
mance by 20% (row 5), and in combination with parity, check-
summing, replication, and parity, reduces overall ovedhizam

roughly 42% (row 26) to 21% (row 31). Hence, even when not used

for additional robustness, checksums can be applied tcoweghe
performanceof journaling file systems.

Our current work extends this to look at all data types undedy
write, and corruption failures.

IRON File Systems: Our work on IRON file systems was partially
inspired by work within Google. Therein, Acharya suggebtst t
when using cheap hardware, one should “be paranoid” anaressu
it will fail often and in unpredictable ways [1]. However, Ggle
(perhaps with good reason) treats this as an applicatiei{eob-

Space Overhead: To evaluate space overhead, we measured a |gm and therefore builds checksumming on top of the fileesgst
number of local file systems and computed the increase irespac gisk-jevel redundancy is kept across drives (on differeathines)

required if all metadata was replicated, room for checksuas
included, and an extra block for parity was allocated. ONera

but not within a drive [23]. We extend this approach by incogt-
ing such techniques into the file system, where all appbticatcan

we found that the space overhead of checksumming and matadat panefit from them. Note that our techniques are complimgritar

replication is small, in the 3% to 10% range. We found thaitpar
block overhead for all user files is a bit more substantialthi
range of 3% to 17% depending on the volume analyzed.

6.3 Summary

application-level approaches; for example, if a file systeetadata
block becomes inaccessible, user-level checksums anidasmlo
not enable recovery of the now-corrupted volume.

Another related approach is the “driver hardening” effoittnm
Linux. As stated therein: “A ‘hardened’ driver extends begdhe

We have investigated a family of redundancy techniques, and realm of ‘well-written’ to include ‘professional paranoi@atures

found that ixt3 greatly increases the robustness of the ytem
under partial failures while incurring modest time and gpacer-
heads. However, much work is left; new designs and impleaaent
tion techniques should be explored to better understanioethefits
and costs of the IRON approach.

7. RELATED WORK

Our effort builds upon related work from two bodies of litenae.
Our file system analysig4) is related to efforts that inject faults or
otherwise test the robustness of systems to failure. Ouofyme
IRON file system §6) draws on recent efforts in building software
that is more robust to hardware failure. We discuss eactrin tu
Fault Injection and Robustness Testing:The fault-tolerance com-
munity has worked for many years on techniques for injedtingts
into a system to determine its robustness [10, 17, 27, 397@,
For example, FIAT simulates the occurrence of hardwaraby
altering the contents of memory or registers [10]; simjlaBINE
can be used to inject software faults into an operating sy§89].

One major difference with most of this previous work and ours
is that our approach focuses on how file systems handle tta bro
class of modern disk failure modes; we know of no previouskwor

that does so. Our approach also assumes implicit knowletige o

file-system block types; by doing so, we ensure that we tegyma
different paths of the file system code. Much of the previooskw
inserts faults in a “blind” fashion and hence is less likelyihcover
the problems we have found.

Our work is similar to Brown and Patterson’s work on RAID fail
ure analysis [13]. Therein the authors suggest that hiddéaigs
of RAID systems are worth understanding, and demonstrage (v
fault injection) that three different software RAID systerave
qualitatively different failure-handling and recoverylipes. We
also wish to discover “failure policy”, but target the filestgm (not
RAID), hence requiring a more complex type-aware approach.

Recent work by Yangt al. [75] uses model-checking to find a
host of file system bugs. Their techniques are well-suitefihth
ing certain classes of bugs, whereas our approach is aimtbe at
discovery of file system failure policy. Interestingly, approach
also uncovers some serious file system bugs that ¥aagdo not.

13

to detect hardware and software problems” (page 5) [32]. évew
while such drivers would generally improve system religpilve
believe that most faults should be handled by the file system (
the end-to-end argument [53]).

The fail-partial failure model for disks is better undesidy the
high-end storage and high-availability systems commesitiFor
example, Network Appliance introduced “Row-Diagonal” ipar
which can tolerate two disk faults and can continue to opetiat
order to ensure recovery despite the presence of laterdrsset
rors [16]. Further, virtually all Network Appliance prodscuse
checksumming to detect block corruption [30]. Similarlystems
such as the Tandem NonStop kernel [9] include end-to-enckehe
sums, to handle problems such as misdirected writes [9].

Interestingly, redundancy has been uséthin a single disk in
a few instances. For example, FFS uses internal replicati@n
limited fashion, specifically by making copies of the supeck
across different platters of the drive [40]. As we notediegrsome
commodity file systems have similar provisions.

Yu et al. suggest making replicas within a disk in a RAID array
to reduce rotational latency [76]. Hence, although not theary
intention, such copies could be used for recovery. Howevigijn
a storage array, it would be difficult to apply said techngjirea
selective mannee(g, for metadata). Yet al.s work also indicates
that replication can be useful for improvitgth performance and
fault-tolerance, something that future investigationRON strate-
gies should consider.

Checksumming is also becoming more commonplace to improve
system security. For example, both Patilal. [43] and Steinet
al. [64] suggest, implement, and evaluate methods for incatpor
ing checksums into file systems. Both systems aim to make the
corruption of file system data by an attacker more difficult.

Finally, the Dynamic File System from Sun is a good example of
a file system that uses IRON techniques [73]. DFS uses chexksu
to detect block corruption and employs redundancy acrodtateu
drives to ensure recoverability. In contrast, we emphabieeitility
of replication within a drive, and suggest and evaluateniphes
for implementing such redundancy. Further, we show how te em
bellish an existing commodity file system, whereas DFS istermi
from scratch, perhaps limiting its impact.

8. CONCLUSIONS

Commodity operating systems have grown to assume the pres-
ence of mostly reliable hardware. The result, in the casel®f fi
systems, is that most commodity file systems do not include th

requisite machinery to handle the types of partial faulte oan
reasonably expect from modern disk drives.

We believe it is time to reexamine how file systems handle fail

ure. One excellent model is already available to us withindp-
erating system kernel: the networking subsystem. Indesthuse
network hardware has long been considered an unrelialdievaae

medium, the software stacks above them have been desigtied wi

well-defined policies to cope with common failure modes [46]
Because disks should be viewed as less than fully reliabtdy s

mistrust must be woven into the storage system frameworledls w

Many challenges remain: Which failures should disks expose
the layers above? How should the file system software acthiee
be redesigned to enable a more consistent and well-defiledefa
policy? What kind of controls should be exposed to apploreti
and users? What low-overhead detection and recovery ot

can IRON file systems employ? Answers to these questionddshou

lead to a better understanding of how to effectively implatribe
next generation of robust and reliable IRON file systems.

Acknowledgments
We would like to extend particular thanks to Steve Kleimahlef-

work Appliance and Dave Anderson and Jim Dykes of Seagate for

their insights into how disks really work and fail. We woulda
like to thank Liuba Shrira (our shepherd), Dave DeWitt, MHiik,
Jiri Schindler, Mike Swift, the anonymous reviewers, argitiem-

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

bers of ADSL for their excellent suggestions and comments. W [21]

thank Himani Apte and Meenali Rungta for their invaluablerkvo
on implementing parity within ext3. Finally, we thank therGo

puter Systems Lab (CSL) for providing a terrific computing en

vironment for systems research. This work has been spahégre

NSF CCR-0092840, CCR-0133456, NGS-0103670, ITR-0325267,

IBM, Network Appliance, and EMC.

9. REFERENCES
[1] A. Acharya. Reliability on the Cheap: How | Learned to Siorry-
ing and Love Cheap PCs. EASY Workshop '02, October 2002.
[2] A. Altaparmakov. The Linux-NTFS Project. http:/linux
ntfs.sourceforge.net/ntfs/, August 2005.
[3] G. A. Alvarez, W. A. Burkhard, and F. Cristian. ToleraiMultiple
Failures in RAID Architectures with Optimal Storage and fdnin

Declustering. InProceedings of the 24th Annual International Sym-

posium on Computer Architecture (ISCA '9ppges 62—72, Denver,
Colorado, May 1997.

[4] D. Anderson. “Drive manufacturers typically don’t talibout disk
failures”. Personal Communication from Dave Anderson cidé¢e,

2005.
[5] D. Anderson, J. Dykes, and E. Riedel. More Than an Interfé&8CSI

vs. ATA. In Proceedings of the 2nd USENIX Symposium on File and

Storage Technologies (FAST '03%an Francisco, California, April

2003.
[6] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Infoioratand

Control in Gray-Box Systems. IRroceedings of the 18th ACM Sym-

posium on Operating Systems Principles (SOSP, 'fapges 43-56,
Banff, Canada, October 2001.
[7] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Failt8tuFault

Tolerance. InThe Eighth Workshop on Hot Topics in Operating Sys-
tems (HotOS Vlil)pages 33—-38, Schloss Elmau, Germany, May 2001.

[8] L. N. Bairavasundaram, M. Sivathanu, A. C. Arpaci-Dusseand
R. H. Arpaci-Dusseau. X-RAY: A Non-Invasive Exclusive Caxh

Mechanism for RAIDs. InProceedings of the 31st Annual Interna-

tional Symposium on Computer Architecture (ISCA ,@8ges 176—
187, Munich, Germany, June 2004.
[9] W. Bartlett and L. Spainhower. Commercial Fault Toleam@nA Tale

of Two SystemslEEE Transactions on Dependable and Secure Com-

puting, 1(1):87-96, January 2004.

14

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

J. Barton, E. Czeck, Z. Segall, and D. Siewiorek. Fauied-
tion Experiments Using FIATIEEE Transactions on Computers
39(4):1105-1118, April 1990.

S. Best. JFS Overview. www.ibm.com/developerwoiksdry/I-
jfs.html, 2004.

D. Bitton and J. Gray. Disk shadowing. Proceedings of the 14th
International Conference on Very Large Data Bases (VLDB pdyes
331-338, Los Angeles, California, August 1988.

A. Brown and D. A. Patterson. Towards Maintainabiliyailabil-

ity, and Growth Benchmarks: A Case Study of Software RAID-Sys
tems. InProceedings of the USENIX Annual Technical Conference
(USENIX '00) pages 263-276, San Diego, California, June 2000.

G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and Ax.Rdi-
croreboot — A Technique for Cheap RecoveryPioceedings of the
6th Symposium on Operating Systems Design and Implententati
(OSDI '04), pages 31-44, San Francisco, California, December 2004.
A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Englen. Bmpirical
Study of Operating System Errors. Rroceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP, pflaijes 73—
88, Banff, Canada, October 2001.

P. Corbett, B. English, A. Goel, T. Grcanac, S. KleimadnLeong,
and S. Sankar. Row-Diagonal Parity for Double Disk Failuogr€c-
tion. In Proceedings of the 3rd USENIX Symposium on File and Stor-
age Technologies (FAST 'Q4)ages 1-14, San Francisco, California,
April 2004.

J. DeVale and P. Koopman. Performance Evaluation ofeption
Handling in 1/O Libraries. InProceedings of the International Con-
ference on Dependable Systems and Networks (DSN-2B6fdborg,
Sweden, June 2001.

J. R. Douceur and W. J. Bolosky. A Large-Scale Study t&-Blystem
Contents. IrProceedings of the 1999 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems (SIGMESRIC
'99), pages 59-69, Atlanta, Georgia, May 1999.

J. Dykes. “A modern disk has roughly 400,000 lines of&odPer-
sonal Communication from James Dykes of Seagate, Augu$t 200
EMC. EMC Centera: Content Addressed Storage System.
http://www.emc.com/, 2004.

R. W. Emerson. Essays and English Traits — IV: Self-&ale. The
Harvard classics, edited by Charles W. Eliot. New York: Eéllier

and Son, 1909-14, Volume 5, 184A foolish consistency is the hob-
goblin of little minds, adored by little statesmen and pddphers and
divines.

D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.g8las
Deviant Behavior: A General Approach to Inferring ErrorsSgs-
tems Code. IfProceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP 'Qppges 57-72, Banff, Canada, October

2001.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google Bystem.

In Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP '03)pages 29-43, Bolton Landing (Lake George),
New York, October 2003.

G. A. Gibson, D. Rochberg, J. Zelenka, D. F. Nagle, K. Apk. W.
Chang, E. M. Feinberg, H. Gobioff, C. Lee, B. Ozceri, and Edei.

File server scaling with network-attached secure diskPriszceed-
ings of the 1997 Joint International Conference on Measergm
and Modeling of Computer Systems (SIGMETRICS/PERFORMANCE
'97), pages 272-284, Seattle, Washington, June 1997.

J. Gray. A Census of Tandem System Availability Betw&885 and
1990. Technical Report 90.1, Tandem Computers, 1990.

R. Green. EIDE Controller Flaws Version 24,
http://mindprod.com/eideflaw.html, February 2005.

W. Gu, Z. Kalbarczyk, R. K. lyer, and Z. Yang. Charactation of
Linux Kernel Behavior Under Error. IRroceedings of the Interna-
tional Conference on Dependable Systems and Networks @DSB)
pages 459-468, San Francisco, California, June 2003.

H. S. Gunawi, N. Agrawal, A. C. Arpaci-Dusseau, R. H. Acp
Dusseau, and J. Schindler. Deconstructing Commodity §¢oTius-
ters. InProceedings of the 32nd Annual International Symposium on
Computer Architecture (ISCA '05pages 60—-73, Madison, Wiscon-
sin, June 2005.

V. Henson. A Brief History of UNIX File Systems.
http://infohost.nmt.eduéval/fs_slides.pdf, 2004.

D. Hitz, J. Lau, and M. Malcolm. File System Design for/dRS File
Server Appliance. IrProceedings of the USENIX Winter Technical
Conference (USENIX Winter '94%an Francisco, California, January

1994.

G. F. Hughes and J. F. Murray. Reliability and SecurityRAID
Storage Systems and D2D Archives Using SATA Disk DrivéEM
Transactions on Storagé(1):95-107, February 2005.

[32]
(33]
[34]

[35]

[36]

[37]
(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]

[51]

[52]

(53]

[54]

[55]

Intel Corp. and IBM Corp. Device Driver
http://hardeneddrivers.sourceforge.net/, 2002.

H. H. Kari. Latent Sector Faults and Reliability of Disk ArrayghD
thesis, Helsinki University of Technology, September 1997

H. H. Kari, H. Saikkonen, and F. Lombardi. Detection oéfBctive
Media in Disks. InThe IEEE International Workshop on Defect and
Fault Tolerance in VLSI Systenmages 49-55, Venice, Italy, October

Hardening.

1993.

J. Katcher. PostMark: A New File System Benchmark. Técdl Re-
port TR-3022, Network Appliance Inc., October 1997.

S. R. Kleiman. Vnodes: An Architecture for Multiple EilSystem
Types in Sun UNIX. IrProceedings of the USENIX Summer Technical
Conference (USENIX Summer '8fpges 238-247, Atlanta, Georgia,
June 1986.

B. Lewis. Smart Filers and Dumb Disks. NSIC OSD WorkingpGp
Meeting, April 1999.

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Sgiman,
and V. Stemann. Practical Loss-Resilient CodesPioceedings of
the Twenty-ninth Annual ACM symposium on Theory of Congputin
(STOC '97) pages 150-159, El Paso, Texas, May 1997.

W. lun Kao, R. K. lyer, and D. Tang. FINE: A Fault Injecticand
Monitoring Environment for Tracing the UNIX System Behavidn-
der Faults. InIEEE Transactions on Software Engineeringages
1105-1118, 1993.

M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. Adt
File System for UNIX.ACM Transactions on Computer Systems
2(3):181-197, August 1984.

M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabrycks The
UNIX File System Check Program. Unix System Manager's Manua
- 4.3 BSD Virtual VAX-11 Version, April 1986.

A. Park and K. Balasubramanian. Providing fault tofe@in parallel
secondary storage systems. Technical Report CS-TR-05De}6art-
ment of Computer Science, Princeton University, NovemIiS&61

S. Patil, A. Kashyap, G. Sivathanu, and E. ZadékS: An In-kernel
Integrity Checker and Intrusion detection File SystenPiaceedings
of the 18th Annual Large Installation System Administrat@onfer-
ence (LISA'04)Atlanta, Georgia, November 2004.

D. Patterson, A. Brown, P. Broadwell, G. Candea, M. CleiCutler,
P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher, D. Oppenteim
N. Sastry, W. Tetzlaff, J. Traupman, and N. Treuhaft. Rego@ri-
ented Computing (ROC): Motivation, Definition, Techniguesd
Case Studies. Technical Report CSD-02-1175, U.C. Berkbklaych

2002.

D. Patterson, G. Gibson, and R. Katz. A Case for Redundamays

of Inexpensive Disks (RAID). IfProceedings of the 1988 ACM SIG-
MOD Conference on the Management of Data (SIGMOD,’'@8pes
109-116, Chicago, lllinois, June 1988.

J. Postel. RFC 793: Transmission Con-
trol Protocol, September 1981. Available from
ftp://ftp.rfc-editor.org/in-notes/rfc793.txt as
of August, 2003.

V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arfiacsseau.
Model-Based Failure Analysis of Journaling File SystenmsPto-
ceedings of the International Conference on Dependablte®gsand
Networks (DSN-2005)okohama, Japan, June 2005.

D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer, W. Cynch,

P. R. McJones, H. G. Murray, and S. C.Purcell. Pilot: An Opera
ing System for a Personal Comput@ommunications of the ACM
23(2):81-92, February 1980.

H. Reiser. ReiserFS. www.namesys.com, 2004.

P. M. Ridge and G. FieldThe Book of SCSI 2/ENo Starch, June

2000.

M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and
J. William S. Beebe. Enhancing Server Availability and Sigu
Through Failure-Oblivious Computing. IRroceedings of the 6th
Symposium on Operating Systems Design and Implement&®D|(
'04), San Francisco, California, December 2004.

M. Rosenblum and J. Ousterhout. The Design and Impléatien of

a Log-Structured File SysterACM Transactions on Computer Sys-
tems 10(1):26-52, February 1992.

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-endiargnts in
system designACM Transactions on Computer Syster@§l):277—
288, November 1984.

J. Schindler. “We have experienced a severe performdagradation
that was identified as a problem with disk firmware. The diskedr
had to be reprogrammed to fix the problem”. Personal Commatiait
from J. Schindler of EMC, July 2005.

S. W. Schlosser and G. R. Ganger. MEMS-based storageegeand
standard disk interfaces: A square peg in a round holeRrdoeed-

15

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

(65]

[66]

[67]

[68]
[69]

[70]

[71]
[72]
[73]

[74]

[75]

[76]

ings of the 3rd USENIX Symposium on File and Storage Tecbigslo
(FAST '04) pages 87-100, San Francisco, California, April 2004.
F. B. Schneider. Implementing Fault-Tolerant Sersiddsing The
State Machine Approach: A TutoriaACM Computing Surveys
22(4):299-319, December 1990.
T. J. Schwarz, Q. Xin, E. L. Miller, D. D. Long, A. Hospodo
and S. Ng. Disk Scrubbing in Large Archival Storage Systeims.
Proceedings of the 12th Annual Meeting of the IEEE Inteowtl
Symposium on Modeling, Analysis, and Simulation of Comgunte
Telecommunication Systems (MASCQT®)lendam, Netherlands,
October 2004.)))
M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin. Ample-
mentation of a Log-Structured File System for UNIX.Pnoceedings
of the USENIX Winter Technical Conference (USENIX Wint&),’9
pages 307-326, San Diego, California, January 1993.
D. Siewiorek, J. Hudak, B. Suh, and Z. Segal. Developma#na
Benchmark to Measure System RobustnessPioceedings of the
23rd International Symposium on Fault-Tolerant ComputfRgCS-
23), Toulouse, France, June 1993.
M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dems, and
R. H. Arpaci-Dusseau. Life or Death at Block Level.Pnoceedings
of the 6th Symposium on Operating Systems Design and Imptieme
tion (OSDI '04) pages 379-394, San Francisco, California, December
4

2004,

M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau] & H.
Arpaci-Dusseau. Improving Storage System AvailabilitythwD-
GRAID. In Proceedings of the 3rd USENIX Symposium on File and
Storage Technologies (FAST 'Q4)ages 15-30, San Francisco, Cali-
fornia, April 2004.

M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. DeneA. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. SemanticatigrEDisk
Systems. IrProceedings of the 2nd USENIX Symposium on File and
Storage Technologies (FAST 'Q®)ages 73-88, San Francisco, Cali-
fornia, April 2003.

D. A. Solomon.Inside Windows NTMicrosoft Programming Series.
Microsoft Press, 2nd edition, May 1998.

C. A. Stein, J. H. Howard, and M. I. Seltzer. Unifying &iSystem
Protection. InProceedings of the USENIX Annual Technical Confer-
ence (USENIX '01)Boston, Massachusetts, June 2001.

A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimaind

G. Peck. Scalability in the XFS File System. Bmoceedings of the
USENIX Annual Technical Conference (USENIX ;96pn Diego,
California, January 1996.

M. M. Swift, B. N. Bershad, and H. M. Levy. Improving theeR
liability of Commodity Operating Systems. IRroceedings of the
19th ACM Symposium on Operating Systems Principles (SCHP '0
Bolton Landing (Lake George), New York, October 2003.

N. Talagala and D. Patterson. An Analysis of Error Bébaw in a
Large Storage System. [Fhe IEEE Workshop on Fault Tolerance in
Parallel and Distributed SystemSan Juan, Puerto Rico, April 1999.
The Data Clinic. Hard Disk Failure. http://www.datemit.co.uk/hard-
disk-failures.htm, 2004.

Transaction Processing Council. TPC Benchmark B Stah&peci-
fication, Revision 3.2. Technical Report, 1990.

T. K. Tsai and R. K. lyer. Measuring Fault Tolerance vitle FTAPE
Fault Injection Tool. InThe 8th International Conference On Mod-
eling Techniques and Tools for Computer Performance Evialna
pages 26-40, September 1995.

S. C. Tweedie. Journaling the Linux ext2fs File Systémihe Fourth
Annual Linux ExppDurham, North Carolina, May 1998.

J. Wehman and P. den Haan. The Enhanced IDE/Fast-ATA. FAQ
http://thef-nym.sci.kun.nl/cgi-pieterh/atazip/atafionl, 1998.
G. Weinberg. The Solaris Dynamic File
http://members.visi.netthedave/sun/DynFS.pdf, 2004.
J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. ThE HutoRAID
Hierarchical Storage SystemPACM Transactions on Computer Sys-
tems 14(1):108-136, February 1996.

J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using ddb
Checking to Find Serious File System Errors.Hroceedings of the
6th Symposium on Operating Systems Design and Implententati
(OSDI '04), San Francisco, California, December 2004.

X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishnamurthgnd

T. E. Anderson. Trading Capacity for Performance in a Distagrin
Proceedings of the 4th Symposium on Operating SystemsrDeasity
Implementation (OSDI '00)San Diego, California, October 2000.

System.

