Welcome to mirror list, hosted at ThFree Co, Russian Federation.

poc_tree_iterator.md « database « development « doc - gitlab.com/gitlab-org/gitlab-foss.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 453f77f0cde0ca2a00159f2bb90f61f3bbfc5c70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
---
stage: Data Stores
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/product/ux/technical-writing/#assignments
---

# Batch iteration in a tree hierarchy (proof of concept)

The group hierarchy in GitLab is represented with a tree, where the root element
is the top-level namespace, and the child elements are the subgroups or the
recently introduced `Namespaces::ProjectNamespace` records.

The tree is implemented in the `namespaces` table ,via the `parent_id` column.
The column points to the parent namespace record. The top level namespace has no
`parent_id`.

Partial hierarchy of `gitlab-org`:

```mermaid
flowchart TD
    A("gitlab-org (9979)") --- B("quality (2750817)")
    B --- C("engineering-productivity (16947798)")
    B --- D("performance-testing (9453799)")
    A --- F("charts (5032027)")
    A --- E("ruby (14018648)")
```

Efficiently iterating over the group hierarchy has several potential use cases.
This is true especially in background jobs, which need to perform queries on the group hierarchy,
where stable and safe execution is more important than fast runtime. Batch iteration
requires more network round-trips, but each batch provides similar performance
characteristics.

A few examples:

- For each subgroup, do something.
- For each project in the hierarchy, do something.
- For each issue in the hierarchy, do something.

## Problem statement

A group hierarchy could grow so big that a single query would not be able to load
it in time. The query would fail with statement timeout error.

Addressing scalability issues related to very large groups requires us to store
the same data in different formats (de-normalization). However, if we're unable
to load the group hierarchy, then de-normalization could not be implemented.

One de-normalization technique would be to store all descendant group IDs for a
given group. This would speed up queries where we need to load the group and its
subgroups. Example:

```mermaid
flowchart TD
    A(1) --- B(2)
    A --- C(3)
    C --- D(4)
```

| GROUP_ID | DESCENDANT_GROUP_IDS   |
|----------|------------------------|
| 1        | `[2,3,4]`              |
| 2        | `[]`                   |
| 3        | `[4]`                  |
| 4        | `[]`                   |

With this structure, determining all the subgroups would require us to read only
one row from the database, instead of 4 rows. For a hierarchy as big as 1000 groups,
this could make a huge difference.

The reading of the hierarchy problem is solved with this de-normalization. However,
we still need to find a way to persist this data in a table. Because a group and
its hierarchy could grow very large, we cannot expect a single query to work here.

```sql
SELECT id FROM namespaces WHERE traversal_ids && ARRAY[9970]
```

The query above could time out for large groups, so we need to process the data in batches.

Implementing batching logic in a tree is not something we've looked at before,
and it's fairly complex to implement. An `EachBatch` or `find_in_batches` based
solution would not work because:

- The data (group IDs) are not sorted in the hierarchy.
- Groups in sub groups don't know about the top-level group ID.

## Algorithm

The batching query is implemented as a recursive CTE SQL query, where one batch
would read a maximum of N rows. Due to the tree structure, reading N rows might
not necessarily mean that we're reading N group IDs. If the tree is structured in
a non-optimal way, a batch could return less (but never more) group IDs.

The query implements a [depth-first](https://en.wikipedia.org/wiki/Depth-first_search)
tree walking logic, where the DB scans the first branch of the tree until the leaf
element. We're implementing depth-first algorithm because, when a batch is finished,
the query must return enough information for the next batch (cursor). In GitLab,
we limit the depth of the tree to 20, which means that in the worst case, the
query would return a cursor containing 19 elements.

Implementing a [breadth-first](https://en.wikipedia.org/wiki/Breadth-first_search)
tree walking algorithm would be impractical, because a group can have unbounded
number of descendants, thus we might end up with a huge cursor.

1. Create an initializer row that contains:
   1. The currently processed group ID (top-level group ID)
   1. Two arrays (tree depth and the collected IDs)
   1. A counter for tracking the number of row reads in the query.
1. Recursively process the row and do one of the following (whenever the condition matches):
    - Load the first child namespace and update the currently processed namespace
      ID if we're not at the leaf node. (Walking down a branch)
    - Load the next namespace record on the current depth if there are any rows left.
    - Walk up one node and process rows at one level higher.
1. Continue the processing until the number of reads reaches our `LIMIT` (batch size).
1. Find the last processed row which contains the data for the cursor, and all the collected record IDs.

```sql
WITH RECURSIVE result AS (
  (
    SELECT
      9970 AS current_id, /* current namespace id we're processing */
      ARRAY[9970]::int[] AS depth, /* cursor */
      ARRAY[9970]::int[] AS ids,  /* collected ids */
      1::bigint AS reads,
      'initialize' AS action
  ) UNION ALL
  (
    WITH cte AS ( /* trick for referencing the result cte multiple times */
      select * FROM result
    )
    SELECT * FROM (
      (
        SELECT /* walk down the branch */
          namespaces.id,
          cte.depth || namespaces.id,
          cte.ids || namespaces.id,
          cte.reads + 1,
          'walkdown'
        FROM namespaces, cte
        WHERE
        namespaces.parent_id = cte.current_id
        ORDER BY namespaces.id ASC
        LIMIT 1
      ) UNION ALL
      (
        SELECT /* find next element on the same level */
          namespaces.id,
          cte.depth[:array_length(cte.depth, 1) - 1] || namespaces.id,
          cte.ids || namespaces.id,
          cte.reads + 1,
          'next'
        FROM namespaces, cte
        WHERE
        namespaces.parent_id = cte.depth[array_length(cte.depth, 1) - 1] AND
        namespaces.id > cte.depth[array_length(cte.depth, 1)]
        ORDER BY namespaces.id ASC
        LIMIT 1
      ) UNION ALL
      (
        SELECT /* jump up one node when finished with the current level */
          cte.current_id,
          cte.depth[:array_length(cte.depth, 1) - 1],
          cte.ids,
          cte.reads + 1,
          'jump'
        FROM cte
        WHERE cte.depth <> ARRAY[]::int[]
        LIMIT 1
      )
    ) next_row LIMIT 1
  )
)
SELECT current_id, depth, ids, action
FROM result
```

```plaintext
 current_id |    depth     |          ids           |   action
------------+--------------+------------------------+------------
         24 | {24}         | {24}                   | initialize
         25 | {24,25}      | {24,25}                | walkdown
         26 | {24,26}      | {24,25,26}             | next
        112 | {24,112}     | {24,25,26,112}         | next
        113 | {24,113}     | {24,25,26,112,113}     | next
        114 | {24,113,114} | {24,25,26,112,113,114} | walkdown
        114 | {24,113}     | {24,25,26,112,113,114} | jump
        114 | {24}         | {24,25,26,112,113,114} | jump
        114 | {}           | {24,25,26,112,113,114} | jump
```

NOTE:
Using this query to find all the namespace IDs in a group hierarchy is likely slower
than other querying methods, such as the current `self_and_descendants` implementation
based on the `traversal_ids` column. The query above should be only used when
implementing batch iteration over the group hierarchy.

Rudimentary batching implementation in Ruby:

```ruby
class NamespaceEachBatch
  def initialize(namespace_id:, cursor: nil)
    @namespace_id = namespace_id
    @cursor = cursor || { current_id: namespace_id, depth: [namespace_id] }
  end

  def each_batch(of: 500)
    current_cursor = cursor.dup

    first_iteration = true
    loop do
      new_cursor, ids = load_batch(cursor: current_cursor, of: of, first_iteration: first_iteration)
      first_iteration = false
      current_cursor = new_cursor

      yield ids

      break if new_cursor[:depth].empty?
    end
  end

  private

  # yields array of namespace ids
  def load_batch(cursor:, of:, first_iteration: false)
    recursive_cte = Gitlab::SQL::RecursiveCTE.new(:result,
      union_args: { remove_order: false, remove_duplicates: false })

    ids = first_iteration ? namespace_id.to_s : ""

    recursive_cte << Namespace.select(
      Arel.sql(Integer(cursor.fetch(:current_id)).to_s).as('current_id'),
      Arel.sql("ARRAY[#{cursor.fetch(:depth).join(',')}]::int[]").as('depth'),
      Arel.sql("ARRAY[#{ids}]::int[]").as('ids'),
      Arel.sql("1::bigint AS count")
    ).from('(VALUES (1)) AS does_not_matter').limit(1)

    cte = Gitlab::SQL::CTE.new(:cte, Namespace.select('*').from('result'))

    union_query = Namespace.with(cte.to_arel).from_union(
      walk_down,
      next_elements,
      up_one_level,
      remove_duplicates: false,
      remove_order: false
    ).select('current_id', 'depth', 'ids', 'count').limit(1)

    recursive_cte << union_query

    scope = Namespace.with
      .recursive(recursive_cte.to_arel)
      .from(recursive_cte.alias_to(Namespace.arel_table))
      .limit(of)
    row = Namespace.from(scope.arel.as('namespaces')).order(count: :desc).limit(1).first

    [
      { current_id: row[:current_id], depth: row[:depth] },
      row[:ids]
    ]
  end

  attr_reader :namespace_id, :cursor

  def walk_down
    Namespace.select(
      Arel.sql('namespaces.id').as('current_id'),
      Arel.sql('cte.depth || namespaces.id').as('depth'),
      Arel.sql('cte.ids || namespaces.id').as('ids'),
      Arel.sql('cte.count + 1').as('count')
    ).from('cte, LATERAL (SELECT id FROM namespaces WHERE parent_id = cte.current_id ORDER BY id LIMIT 1) namespaces')
  end

  def next_elements
    Namespace.select(
      Arel.sql('namespaces.id').as('current_id'),
      Arel.sql('cte.depth[:array_length(cte.depth, 1) - 1] || namespaces.id').as('depth'),
      Arel.sql('cte.ids || namespaces.id').as('ids'),
      Arel.sql('cte.count + 1').as('count')
    ).from('cte, LATERAL (SELECT id FROM namespaces WHERE namespaces.parent_id = cte.depth[array_length(cte.depth, 1) - 1] AND namespaces.id > cte.depth[array_length(cte.depth, 1)] ORDER BY id LIMIT 1) namespaces')
  end

  def up_one_level
    Namespace.select(
      Arel.sql('cte.current_id').as('current_id'),
      Arel.sql('cte.depth[:array_length(cte.depth, 1) - 1]').as('depth'),
      Arel.sql('cte.ids').as('ids'),
      Arel.sql('cte.count + 1').as('count')
    ).from('cte')
      .where('cte.depth <> ARRAY[]::int[]')
      .limit(1)
  end
end

iterator = NamespaceEachBatch.new(namespace_id: 9970)
all_ids = []
iterator.each_batch do |ids|
  all_ids.concat(ids)
end

# Test
puts all_ids.count
puts all_ids.sort == Namespace.where('traversal_ids && ARRAY[9970]').pluck(:id).sort
```

Example batch query:

```sql
SELECT
    "namespaces".*
FROM ( WITH RECURSIVE "result" AS ((
            SELECT
                15847356 AS current_id,
                ARRAY[9970,
                12061481,
                12128714,
                12445111,
                15847356]::int[] AS depth,
                ARRAY[]::int[] AS ids,
                1::bigint AS count
            FROM (
                VALUES (1)) AS does_not_matter
            LIMIT 1)
    UNION ALL ( WITH "cte" AS MATERIALIZED (
            SELECT
                *
            FROM
                result
)
            SELECT
                current_id,
                depth,
                ids,
                count
            FROM ((
                    SELECT
                        namespaces.id AS current_id,
                        cte.depth || namespaces.id AS depth,
                        cte.ids || namespaces.id AS ids,
                        cte.count + 1 AS count
                    FROM
                        cte,
                        LATERAL (
                            SELECT
                                id
                            FROM
                                namespaces
                            WHERE
                                parent_id = cte.current_id
                            ORDER BY
                                id
                            LIMIT 1
) namespaces
)
                UNION ALL (
                    SELECT
                        namespaces.id AS current_id,
                        cte.depth[:array_length(
                            cte.depth, 1
) - 1] || namespaces.id AS depth,
                        cte.ids || namespaces.id AS ids,
                        cte.count + 1 AS count
                    FROM
                        cte,
                        LATERAL (
                            SELECT
                                id
                            FROM
                                namespaces
                            WHERE
                                namespaces.parent_id = cte.depth[array_length(
                                    cte.depth, 1
) - 1]
                                AND namespaces.id > cte.depth[array_length(
                                    cte.depth, 1
)]
                            ORDER BY
                                id
                            LIMIT 1
) namespaces
)
                UNION ALL (
                    SELECT
                        cte.current_id AS current_id,
                        cte.depth[:array_length(
                            cte.depth, 1
) - 1] AS depth,
                        cte.ids AS ids,
                        cte.count + 1 AS count
                    FROM
                        cte
                    WHERE (
                        cte.depth <> ARRAY[]::int[]
)
                LIMIT 1
)
) namespaces
    LIMIT 1
))
SELECT
    "namespaces".*
FROM
    "result" AS "namespaces"
LIMIT 500) namespaces
ORDER BY
    "count" DESC
LIMIT 1
```

Execution plan:

```plaintext
 Limit  (cost=16.36..16.36 rows=1 width=76) (actual time=436.963..436.970 rows=1 loops=1)
   Buffers: shared hit=3721 read=423 dirtied=8
   I/O Timings: read=412.590 write=0.000
   ->  Sort  (cost=16.36..16.39 rows=11 width=76) (actual time=436.961..436.968 rows=1 loops=1)
         Sort Key: namespaces.count DESC
         Sort Method: top-N heapsort  Memory: 27kB
         Buffers: shared hit=3721 read=423 dirtied=8
         I/O Timings: read=412.590 write=0.000
         ->  Limit  (cost=15.98..16.20 rows=11 width=76) (actual time=0.005..436.394 rows=500 loops=1)
               Buffers: shared hit=3718 read=423 dirtied=8
               I/O Timings: read=412.590 write=0.000
               CTE result
                 ->  Recursive Union  (cost=0.00..15.98 rows=11 width=76) (actual time=0.003..432.924 rows=500 loops=1)
                       Buffers: shared hit=3718 read=423 dirtied=8
                       I/O Timings: read=412.590 write=0.000
                       ->  Limit  (cost=0.00..0.01 rows=1 width=76) (actual time=0.002..0.003 rows=1 loops=1)
                             I/O Timings: read=0.000 write=0.000
                             ->  Result  (cost=0.00..0.01 rows=1 width=76) (actual time=0.001..0.002 rows=1 loops=1)
                                   I/O Timings: read=0.000 write=0.000
                       ->  Limit  (cost=0.76..1.57 rows=1 width=76) (actual time=0.862..0.862 rows=1 loops=499)
                             Buffers: shared hit=3718 read=423 dirtied=8
                             I/O Timings: read=412.590 write=0.000
                             CTE cte
                               ->  WorkTable Scan on result  (cost=0.00..0.20 rows=10 width=76) (actual time=0.000..0.000 rows=1 loops=499)
                                     I/O Timings: read=0.000 write=0.000
                             ->  Append  (cost=0.56..17.57 rows=21 width=76) (actual time=0.862..0.862 rows=1 loops=499)
                                   Buffers: shared hit=3718 read=423 dirtied=8
                                   I/O Timings: read=412.590 write=0.000
                                   ->  Nested Loop  (cost=0.56..7.77 rows=10 width=76) (actual time=0.675..0.675 rows=0 loops=499)
                                         Buffers: shared hit=1693 read=357 dirtied=1
                                         I/O Timings: read=327.812 write=0.000
                                         ->  CTE Scan on cte  (cost=0.00..0.20 rows=10 width=76) (actual time=0.001..0.001 rows=1 loops=499)
                                               I/O Timings: read=0.000 write=0.000
                                         ->  Limit  (cost=0.56..0.73 rows=1 width=4) (actual time=0.672..0.672 rows=0 loops=499)
                                               Buffers: shared hit=1693 read=357 dirtied=1
                                               I/O Timings: read=327.812 write=0.000
                                               ->  Index Only Scan using index_namespaces_on_parent_id_and_id on public.namespaces namespaces_1  (cost=0.56..5.33 rows=29 width=4) (actual time=0.671..0.671 rows=0 loops=499)
                                                     Index Cond: (namespaces_1.parent_id = cte.current_id)
                                                     Heap Fetches: 7
                                                     Buffers: shared hit=1693 read=357 dirtied=1
                                                     I/O Timings: read=327.812 write=0.000
                                   ->  Nested Loop  (cost=0.57..9.45 rows=10 width=76) (actual time=0.208..0.208 rows=1 loops=442)
                                         Buffers: shared hit=2025 read=66 dirtied=7
                                         I/O Timings: read=84.778 write=0.000
                                         ->  CTE Scan on cte cte_1  (cost=0.00..0.20 rows=10 width=72) (actual time=0.000..0.000 rows=1 loops=442)
                                               I/O Timings: read=0.000 write=0.000
                                         ->  Limit  (cost=0.57..0.89 rows=1 width=4) (actual time=0.203..0.203 rows=1 loops=442)
                                               Buffers: shared hit=2025 read=66 dirtied=7
                                               I/O Timings: read=84.778 write=0.000
                                               ->  Index Only Scan using index_namespaces_on_parent_id_and_id on public.namespaces namespaces_2  (cost=0.57..3.77 rows=10 width=4) (actual time=0.201..0.201 rows=1 loops=442)
                                                     Index Cond: ((namespaces_2.parent_id = (cte_1.depth)[(array_length(cte_1.depth, 1) - 1)]) AND (namespaces_2.id > (cte_1.depth)[array_length(cte_1.depth, 1)]))
                                                     Heap Fetches: 35
                                                     Buffers: shared hit=2025 read=66 dirtied=6
                                                     I/O Timings: read=84.778 write=0.000
                                   ->  Limit  (cost=0.00..0.03 rows=1 width=76) (actual time=0.003..0.003 rows=1 loops=59)
                                         I/O Timings: read=0.000 write=0.000
                                         ->  CTE Scan on cte cte_2  (cost=0.00..0.29 rows=9 width=76) (actual time=0.002..0.002 rows=1 loops=59)
                                               Filter: (cte_2.depth <> '{}'::integer[])
                                               Rows Removed by Filter: 0
                                               I/O Timings: read=0.000 write=0.000
               ->  CTE Scan on result namespaces  (cost=0.00..0.22 rows=11 width=76) (actual time=0.005..436.240 rows=500 loops=1)
                     Buffers: shared hit=3718 read=423 dirtied=8
                     I/O Timings: read=412.590 write=0.000
```