Welcome to mirror list, hosted at ThFree Co, Russian Federation.

namespaces.md « development « doc - gitlab.com/gitlab-org/gitlab-foss.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e25b0f57f0801472f898d595cb98ada569e32d67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
---
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/product/ux/technical-writing/#assignments
---

# Namespaces

Namespaces are containers for projects and associated resources. A `Namespace` is instantiated through its subclasses of `Group`, `ProjectNamespace`, and `UserNamespace`.

```mermaid
graph TD
  Namespace -.- Group
  Namespace -.- ProjectNamespace
  Namespace -.- UserNamespace
```

A `User` has one `UserNamespace`, and can be a member of many `Namespaces`.

```mermaid
graph TD
  Namespace -.- Group
  Namespace -.- ProjectNamespace
  Namespace -.- UserNamespace

  User -- has one --- UserNamespace
  Namespace --- Member --- User
```

`Group` exists in a recursive hierarchical relationship. `Groups` have many `ProjectNamespaces` which parent one `Project`.

```mermaid
graph TD
  Group -- has many --- ProjectNamespace -- has one --- Project
  Group -- has many --- Group
```

## Querying namespaces

There is a set of methods provided to query the namespace hierarchy. The methods produce standard Rails `ActiveRecord::Relation` objects.
The methods can be split into two similar halves. One set of methods operate on a Namespace object, while the other set operate as composable Namespace scopes.

By their nature, the object methods will operate within a single `Namespace` hierarchy, while the scopes can span hierarchies.

The following is a non-exhaustive list of methods to query `Namespace` hierarchies.

### Root namespaces

The root is the top most `Namespace` in the hierarchy. A root has a `nil` `parent_id`.

```mermaid
graph TD
  classDef active fill:#f00,color:#fff
  classDef sel fill:#00f,color:#fff

  A --- A.A --- A.A.A
  A.A --- A.A.B
  A --- A.B --- A.B.A
  A.B --- A.B.B

  class A.A.B active
  class A sel
```

```ruby
Namespace.where(...).roots

namespace_object.root_ancestor
```

### Descendant namespaces

The descendants of a namespace are its children, their children, and so on.

```mermaid
graph TD
  classDef active fill:#f00,color:#fff
  classDef sel fill:#00f,color:#fff

  A --- A.A --- A.A.A
  A.A --- A.A.B
  A --- A.B --- A.B.A
  A.B --- A.B.B

  class A.A active
  class A.A.A,A.A.B sel
```

We can return ourself and our descendants through `self_and_descendants`.

```ruby
Namespace.where(...).self_and_descendants

namespace_object.self_and_descendants
```

We can return only our descendants excluding ourselves:

```ruby
Namespace.where(...).self_and_descendants(include_self: false)

namespace_object.descendants
```

We could not name the scope method `.descendants` because we would override the `Object` method of the same name.

It can be more efficient to return the descendant IDs instead of the whole record:

```ruby
Namespace.where(...).self_and_descendant_ids
Namespace.where(...).self_and_descendant_ids(include_self: false)

namespace_object.self_and_descendant_ids
namespace_object.descendant_ids
```

### Ancestor namespaces

The ancestors of a namespace are its children, their children, and so on.

```mermaid
graph TD
  classDef active fill:#f00,color:#fff
  classDef sel fill:#00f,color:#fff

  A --- A.A --- A.A.A
  A.A --- A.A.B
  A --- A.B --- A.B.A
  A.B --- A.B.B

  class A.A active
  class A sel
```

We can return ourself and our ancestors through `self_and_ancestors`.

```ruby
Namespace.where(...).self_and_ancestors

namespace_object.self_and_ancestors
```

We can return only our ancestors excluding ourselves:

```ruby
Namespace.where(...).self_and_ancestors(include_self: false)

namespace_object.ancestors
```

We could not name the scope method `.ancestors` because we would override the `Module` method of the same name.

It can be more efficient to return the ancestor ids instead of the whole record:

```ruby
Namespace.where(...).self_and_ancstor_ids
Namespace.where(...).self_and_ancestor_ids(include_self: false)

namespace_object.self_and_ancestor_ids
namespace_object.ancestor_ids
```

### Hierarchies

A Namespace hierarchy is a `Namespace`, its ancestors, and its descendants.

```mermaid
graph TD
  classDef active fill:#f00,color:#fff
  classDef sel fill:#00f,color:#fff

  A --- A.A --- A.A.A
  A.A --- A.A.B
  A --- A.B --- A.B.A
  A.B --- A.B.B

  class A.A active
  class A,A.A.A,A.A.B sel
```

We can query a namespace hierarchy:

```ruby
Namespace.where(...).self_and_hierarchy

namespace_object.self_and_hierarchy
```

### Recursive queries

The queries above are known as the linear queries because they use the `namespaces.traversal_ids` column to perform standard SQL queries instead of recursive CTE queries.

A set of legacy recursive queries are also accessible if needed:

```ruby
Namespace.where(...).recursive_self_and_descendants
Namespace.where(...).recursive_self_and_descendants(include_self: false)
Namespace.where(...).recursive_self_and_descendant_ids
Namespace.where(...).recursive_self_and_descendant_ids(include_self: false)
Namespace.where(...).recursive_self_and_ancestors
Namespace.where(...).recursive_self_and_ancestors(include_self: false)
Namespace.where(...).recursive_self_and_ancstor_ids
Namespace.where(...).recursive_self_and_ancestor_ids(include_self: false)
Namespace.where(...).recursive_self_and_hierarchy

namespace_object.recursive_root_ancestor
namespace_object.recursive_self_and_descendants
namespace_object.recursive_descendants
namespace_object.recursive_self_and_descendant_ids
namespace_object.recursive_descendant_ids
namespace_object.recursive_self_and_ancestors
namespace_object.recursive_ancestors
namespace_object.recursive_self_and_ancestor_ids
namespace_object.recursive_ancestor_ids
namespace_object.recursive_self_and_hierarchy
```

## Namespace query implementation

The linear queries are executed using the `namespaces.traversal_ids` array column. Each array represents an ordered set of `Namespace` IDs from the root `Namespace` to the current `Namespace`.

Given the scenario:

```mermaid
graph TD
  classDef active fill:#f00,color:#fff
  classDef sel fill:#00f,color:#fff

  A --- A.A --- A.A.A
  A.A --- A.A.B
  A --- A.B --- A.B.A
  A.B --- A.B.B

  class A.A.B active
```

The `traversal_ids` for `Namespace` `A.A.B` would be `[A, A.A, A.A.B]`.

The `traversal_ids` have some useful properties to keep in mind if working in this area:

- The root of every `Namespace` is provided by `traversal_ids[1]`. Note that PostgreSQL array indexes begin at `1`.
- The ID of the current `Namespace` is provided by `traversal_ids[array_length(traversal_ids, 1)]`.
- The `Namespace` ancestors are represented by the `traversal_ids`.
- A `Namespace`'s `traversal_ids` are a subset of their descendants `traversal_ids`. A `Namespace` with `traversal_ids = [1,2,3]` will have descendants that all start with `[1,2,3,...]`.
- PostgreSQL arrays are ordered such that `[1] < [1,1] < [2]`.

Using these properties we find the `root` and `ancestors` are already provided for by `traversal_ids`.

With the object descendant queries we lean on the `@>` array operator which will test inclusion of an array inside another array.
The `@>` operator has been found to be quite slow as the search space grows. Another method is used for scope queries which tend to have larger search spaces.
With scope queries we combine comparison operators with the array ordering property.

All descendants of a `Namespace` with `traversal_ids = [1,2,3]` have `traversal_ids` that are greater than `[1,2,3]` but less than `[1,2,4]`.
In this example `[1,2,3]` and `[1,2,4]` are siblings, and `[1,2,4]` is the next sibling after `[1,2,3]`. A SQL function is provided to find the next sibling of a `traversal_ids` called `next_traversal_ids_sibling`.

```sql
gitlabhq_development=# select next_traversal_ids_sibling(ARRAY[1,2,3]);
 next_traversal_ids_sibling
----------------------------
 {1,2,4}
(1 row)
```

We then build descendant linear query scopes using comparison operators:

```sql
WHERE namespaces.traversal_ids > ARRAY[1,2,3]
  AND namespaces.traversal_ids < next_traversal_ids_sibling(ARRAY[1,2,3])
```

### Superset

`Namespace` queries are prone to returning duplicate results. For example, consider a query to find descendants of `A` and `A.A`:

```mermaid
graph TD
  classDef active fill:#f00,color:#fff
  classDef sel fill:#00f,color:#fff

  A --- A.A --- A.A.A
  A.A --- A.A.B
  A --- A.B --- A.B.A
  A.B --- A.B.B

  class A,A.A active
  class A.A.A,A.A.B,A.B,A.B.A,A.B.B sel
```

```ruby
namespaces = Namespace.where(name: ['A', 'A.A'])

namespaces.self_and_descendants

=> A.A, A.A.A, A.A.B, A.B, A.B.A, A.B.B
```

Searching for the descendants of both `A` and `A.A` is unnecessary because `A.A` is already a descendant of `A`.
In extreme cases this can create excessive I/O leading to poor performance.

Redundant `Namespaces` are eliminated from a query if a `Namespace` `ID` in the `traversal_ids` attribute matches an `ID` belonging to another `Namespace` in the set of `Namespaces` being queried.
A match of this condition signifies that an ancestor exists in the set of `Namespaces` being queried, and the current `Namespace` is therefore redundant.
This optimization will result in much better performance of edge cases that would otherwise be very slow.