Welcome to mirror list, hosted at ThFree Co, Russian Federation.

implementation.md « uploads « development « doc - gitlab.com/gitlab-org/gitlab-foss.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 13a875cd1afe8e035ee692c0eba9a20fb983f9f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
---

# Uploads guide: How uploads work technically

This page is for developers trying to better understand what kinds of uploads exist in GitLab and how they are implemented.

## Kinds of uploads and how to choose between them

We can identify three major use-cases for an upload:

1. **storage:** if we are uploading for storing a file (like artifacts, packages, or discussion attachments). In this case [direct upload](#direct-upload) is the proper level as it's the less resource-intensive operation. Additional information can be found on [File Storage in GitLab](../file_storage.md).
1. **in-controller/synchronous processing:** if we allow processing **small files** synchronously, using [disk buffered upload](#disk-buffered-upload) may speed up development.
1. **Sidekiq/asynchronous processing:** Asynchronous processing must implement [direct upload](#direct-upload), the reason being that it's the only way to support Cloud Native deployments without a shared NFS.

Selecting the proper acceleration is a tradeoff between speed of development and operational costs.

For more details about currently broken feature see [epic &1802](https://gitlab.com/groups/gitlab-org/-/epics/1802).

### Handling repository uploads

Some features involves Git repository uploads without using a regular Git client.
Some examples are uploading a repository file from the web interface and [design management](../../user/project/issues/design_management.md).

Those uploads requires the rails controller to act as a Git client in lieu of the user.
Those operation falls into _in-controller/synchronous processing_ category, but we have no warranties on the file size.

In case of a LFS upload, the file pointer is committed synchronously, but file upload to object storage is performed asynchronously with Sidekiq.

## Upload encodings

By upload encoding we mean how the file is included within the incoming request.

We have three kinds of file encoding in our uploads:

1. <i class="fa fa-check-circle"></i> **multipart**: `multipart/form-data` is the most common, a file is encoded as a part of a multipart encoded request.
1. <i class="fa fa-check-circle"></i> **body**: some APIs uploads files as the whole request body.
1. <i class="fa fa-times-circle"></i> **JSON**: some JSON APIs upload files as base64-encoded strings. This requires a change to GitLab Workhorse,
   which is tracked [in this issue](https://gitlab.com/gitlab-org/gitlab/-/issues/325068).

## Uploading technologies

By uploading technologies we mean how all the involved services interact with each other.

GitLab supports 3 kinds of uploading technologies, here follows a brief description with a sequence diagram for each one. Diagrams are not meant to be exhaustive.

### Rack Multipart upload

This is the default kind of upload, and it's the most expensive in terms of resources.

In this case, Workhorse is unaware of files being uploaded and acts as a regular proxy.

When a multipart request reaches the rails application, `Rack::Multipart` leaves behind temporary files in `/tmp` and uses valuable Ruby process time to copy files around.

```mermaid
sequenceDiagram
    participant c as Client
    participant w as Workhorse
    participant r as Rails

    activate c
    c ->>+w: POST /some/url/upload
    w->>+r:  POST /some/url/upload

    r->>r: save the incoming file on /tmp
    r->>r: read the file for processing

    r-->>-c: request result
    deactivate c
    deactivate w
```

### Disk buffered upload

This kind of upload avoids wasting resources caused by handling upload writes to `/tmp` in rails.

This optimization is not active by default on REST API requests.

When enabled, Workhorse looks for files in multipart MIME requests, uploading
any it finds to a temporary file on shared storage. The MIME data in the request
is replaced with the path to the corresponding file before it is forwarded to
Rails.

To prevent abuse of this feature, Workhorse signs the modified request with a
special header, stating which entries it modified. Rails ignores any
unsigned path entries.

```mermaid
sequenceDiagram
    participant c as Client
    participant w as Workhorse
    participant r as Rails
    participant s as NFS

    activate c
    c ->>+w: POST /some/url/upload

    w->>+s: save the incoming file on a temporary location
    s-->>-w: request result

    w->>+r:  POST /some/url/upload
    Note over w,r: file was replaced with its location<br>and other metadata

    opt requires async processing
      r->>+redis: schedule a job
      redis-->>-r: job is scheduled
    end

    r-->>-c: request result
    deactivate c
    w->>-w: cleanup

    opt requires async processing
      activate sidekiq
      sidekiq->>+redis: fetch a job
      redis-->>-sidekiq: job

      sidekiq->>+s: read file
      s-->>-sidekiq: file

      sidekiq->>sidekiq: process file

      deactivate sidekiq
    end
```

### Direct upload

This is the more advanced acceleration technique we have in place.

Workhorse asks Rails for temporary pre-signed object storage URLs and directly uploads to object storage.

In this setup, an extra Rails route must be implemented in order to handle authorization. Examples of this can be found in:

- [`Projects::LfsStorageController`](https://gitlab.com/gitlab-org/gitlab/-/blob/cc723071ad337573e0360a879cbf99bc4fb7adb9/app/controllers/projects/lfs_storage_controller.rb)
  and [its routes](https://gitlab.com/gitlab-org/gitlab/-/blob/cc723071ad337573e0360a879cbf99bc4fb7adb9/config/routes/git_http.rb#L31-32).
- [API endpoints for uploading packages](../packages.md#file-uploads).

Direct upload falls back to _disk buffered upload_ when `direct_upload` is disabled inside the [object storage setting](../../administration/uploads.md#object-storage-settings).
The answer to the `/authorize` call contains only a file system path.

```mermaid
sequenceDiagram
    participant c as Client
    participant w as Workhorse
    participant r as Rails
    participant os as Object Storage

    activate c
    c ->>+w: POST /some/url/upload

    w ->>+r: POST /some/url/upload/authorize
    Note over w,r: this request has an empty body
    r-->>-w: presigned OS URL

    w->>+os: PUT file
    Note over w,os: file is stored on a temporary location. Rails select the destination
    os-->>-w: request result

    w->>+r:  POST /some/url/upload
    Note over w,r: file was replaced with its location<br>and other metadata

    r->>+os: move object to final destination
    os-->>-r: request result

    opt requires async processing
      r->>+redis: schedule a job
      redis-->>-r: job is scheduled
    end

    r-->>-c: request result
    deactivate c
    w->>-w: cleanup

    opt requires async processing
      activate sidekiq
      sidekiq->>+redis: fetch a job
      redis-->>-sidekiq: job

      sidekiq->>+os: get object
      os-->>-sidekiq: file

      sidekiq->>sidekiq: process file

      deactivate sidekiq
    end
```