Welcome to mirror list, hosted at ThFree Co, Russian Federation.

gitlab.com/quite/humla-spongycastle.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'core/src/main/java/org/bouncycastle/math/ec/ECFieldElement.java')
-rw-r--r--core/src/main/java/org/bouncycastle/math/ec/ECFieldElement.java1196
1 files changed, 1196 insertions, 0 deletions
diff --git a/core/src/main/java/org/bouncycastle/math/ec/ECFieldElement.java b/core/src/main/java/org/bouncycastle/math/ec/ECFieldElement.java
new file mode 100644
index 00000000..b5e9aa55
--- /dev/null
+++ b/core/src/main/java/org/bouncycastle/math/ec/ECFieldElement.java
@@ -0,0 +1,1196 @@
+package org.bouncycastle.math.ec;
+
+import java.math.BigInteger;
+import java.util.Random;
+
+public abstract class ECFieldElement
+ implements ECConstants
+{
+
+ public abstract BigInteger toBigInteger();
+ public abstract String getFieldName();
+ public abstract int getFieldSize();
+ public abstract ECFieldElement add(ECFieldElement b);
+ public abstract ECFieldElement subtract(ECFieldElement b);
+ public abstract ECFieldElement multiply(ECFieldElement b);
+ public abstract ECFieldElement divide(ECFieldElement b);
+ public abstract ECFieldElement negate();
+ public abstract ECFieldElement square();
+ public abstract ECFieldElement invert();
+ public abstract ECFieldElement sqrt();
+
+ public String toString()
+ {
+ return this.toBigInteger().toString(2);
+ }
+
+ public static class Fp extends ECFieldElement
+ {
+ BigInteger x;
+
+ BigInteger q;
+
+ public Fp(BigInteger q, BigInteger x)
+ {
+ this.x = x;
+
+ if (x.compareTo(q) >= 0)
+ {
+ throw new IllegalArgumentException("x value too large in field element");
+ }
+
+ this.q = q;
+ }
+
+ public BigInteger toBigInteger()
+ {
+ return x;
+ }
+
+ /**
+ * return the field name for this field.
+ *
+ * @return the string "Fp".
+ */
+ public String getFieldName()
+ {
+ return "Fp";
+ }
+
+ public int getFieldSize()
+ {
+ return q.bitLength();
+ }
+
+ public BigInteger getQ()
+ {
+ return q;
+ }
+
+ public ECFieldElement add(ECFieldElement b)
+ {
+ return new Fp(q, x.add(b.toBigInteger()).mod(q));
+ }
+
+ public ECFieldElement subtract(ECFieldElement b)
+ {
+ return new Fp(q, x.subtract(b.toBigInteger()).mod(q));
+ }
+
+ public ECFieldElement multiply(ECFieldElement b)
+ {
+ return new Fp(q, x.multiply(b.toBigInteger()).mod(q));
+ }
+
+ public ECFieldElement divide(ECFieldElement b)
+ {
+ return new Fp(q, x.multiply(b.toBigInteger().modInverse(q)).mod(q));
+ }
+
+ public ECFieldElement negate()
+ {
+ return new Fp(q, x.negate().mod(q));
+ }
+
+ public ECFieldElement square()
+ {
+ return new Fp(q, x.multiply(x).mod(q));
+ }
+
+ public ECFieldElement invert()
+ {
+ return new Fp(q, x.modInverse(q));
+ }
+
+ // D.1.4 91
+ /**
+ * return a sqrt root - the routine verifies that the calculation
+ * returns the right value - if none exists it returns null.
+ */
+ public ECFieldElement sqrt()
+ {
+ if (!q.testBit(0))
+ {
+ throw new RuntimeException("not done yet");
+ }
+
+ // note: even though this class implements ECConstants don't be tempted to
+ // remove the explicit declaration, some J2ME environments don't cope.
+ // p mod 4 == 3
+ if (q.testBit(1))
+ {
+ // z = g^(u+1) + p, p = 4u + 3
+ ECFieldElement z = new Fp(q, x.modPow(q.shiftRight(2).add(ECConstants.ONE), q));
+
+ return z.square().equals(this) ? z : null;
+ }
+
+ // p mod 4 == 1
+ BigInteger qMinusOne = q.subtract(ECConstants.ONE);
+
+ BigInteger legendreExponent = qMinusOne.shiftRight(1);
+ if (!(x.modPow(legendreExponent, q).equals(ECConstants.ONE)))
+ {
+ return null;
+ }
+
+ BigInteger u = qMinusOne.shiftRight(2);
+ BigInteger k = u.shiftLeft(1).add(ECConstants.ONE);
+
+ BigInteger Q = this.x;
+ BigInteger fourQ = Q.shiftLeft(2).mod(q);
+
+ BigInteger U, V;
+ Random rand = new Random();
+ do
+ {
+ BigInteger P;
+ do
+ {
+ P = new BigInteger(q.bitLength(), rand);
+ }
+ while (P.compareTo(q) >= 0
+ || !(P.multiply(P).subtract(fourQ).modPow(legendreExponent, q).equals(qMinusOne)));
+
+ BigInteger[] result = lucasSequence(q, P, Q, k);
+ U = result[0];
+ V = result[1];
+
+ if (V.multiply(V).mod(q).equals(fourQ))
+ {
+ // Integer division by 2, mod q
+ if (V.testBit(0))
+ {
+ V = V.add(q);
+ }
+
+ V = V.shiftRight(1);
+
+ //assert V.multiply(V).mod(q).equals(x);
+
+ return new ECFieldElement.Fp(q, V);
+ }
+ }
+ while (U.equals(ECConstants.ONE) || U.equals(qMinusOne));
+
+ return null;
+
+// BigInteger qMinusOne = q.subtract(ECConstants.ONE);
+// BigInteger legendreExponent = qMinusOne.shiftRight(1); //divide(ECConstants.TWO);
+// if (!(x.modPow(legendreExponent, q).equals(ECConstants.ONE)))
+// {
+// return null;
+// }
+//
+// Random rand = new Random();
+// BigInteger fourX = x.shiftLeft(2);
+//
+// BigInteger r;
+// do
+// {
+// r = new BigInteger(q.bitLength(), rand);
+// }
+// while (r.compareTo(q) >= 0
+// || !(r.multiply(r).subtract(fourX).modPow(legendreExponent, q).equals(qMinusOne)));
+//
+// BigInteger n1 = qMinusOne.shiftRight(2); //.divide(ECConstants.FOUR);
+// BigInteger n2 = n1.add(ECConstants.ONE); //q.add(ECConstants.THREE).divide(ECConstants.FOUR);
+//
+// BigInteger wOne = WOne(r, x, q);
+// BigInteger wSum = W(n1, wOne, q).add(W(n2, wOne, q)).mod(q);
+// BigInteger twoR = r.shiftLeft(1); //ECConstants.TWO.multiply(r);
+//
+// BigInteger root = twoR.modPow(q.subtract(ECConstants.TWO), q)
+// .multiply(x).mod(q)
+// .multiply(wSum).mod(q);
+//
+// return new Fp(q, root);
+ }
+
+// private static BigInteger W(BigInteger n, BigInteger wOne, BigInteger p)
+// {
+// if (n.equals(ECConstants.ONE))
+// {
+// return wOne;
+// }
+// boolean isEven = !n.testBit(0);
+// n = n.shiftRight(1);//divide(ECConstants.TWO);
+// if (isEven)
+// {
+// BigInteger w = W(n, wOne, p);
+// return w.multiply(w).subtract(ECConstants.TWO).mod(p);
+// }
+// BigInteger w1 = W(n.add(ECConstants.ONE), wOne, p);
+// BigInteger w2 = W(n, wOne, p);
+// return w1.multiply(w2).subtract(wOne).mod(p);
+// }
+//
+// private BigInteger WOne(BigInteger r, BigInteger x, BigInteger p)
+// {
+// return r.multiply(r).multiply(x.modPow(q.subtract(ECConstants.TWO), q)).subtract(ECConstants.TWO).mod(p);
+// }
+
+ private static BigInteger[] lucasSequence(
+ BigInteger p,
+ BigInteger P,
+ BigInteger Q,
+ BigInteger k)
+ {
+ int n = k.bitLength();
+ int s = k.getLowestSetBit();
+
+ BigInteger Uh = ECConstants.ONE;
+ BigInteger Vl = ECConstants.TWO;
+ BigInteger Vh = P;
+ BigInteger Ql = ECConstants.ONE;
+ BigInteger Qh = ECConstants.ONE;
+
+ for (int j = n - 1; j >= s + 1; --j)
+ {
+ Ql = Ql.multiply(Qh).mod(p);
+
+ if (k.testBit(j))
+ {
+ Qh = Ql.multiply(Q).mod(p);
+ Uh = Uh.multiply(Vh).mod(p);
+ Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
+ Vh = Vh.multiply(Vh).subtract(Qh.shiftLeft(1)).mod(p);
+ }
+ else
+ {
+ Qh = Ql;
+ Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
+ Vh = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
+ Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
+ }
+ }
+
+ Ql = Ql.multiply(Qh).mod(p);
+ Qh = Ql.multiply(Q).mod(p);
+ Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
+ Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
+ Ql = Ql.multiply(Qh).mod(p);
+
+ for (int j = 1; j <= s; ++j)
+ {
+ Uh = Uh.multiply(Vl).mod(p);
+ Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
+ Ql = Ql.multiply(Ql).mod(p);
+ }
+
+ return new BigInteger[]{ Uh, Vl };
+ }
+
+ public boolean equals(Object other)
+ {
+ if (other == this)
+ {
+ return true;
+ }
+
+ if (!(other instanceof ECFieldElement.Fp))
+ {
+ return false;
+ }
+
+ ECFieldElement.Fp o = (ECFieldElement.Fp)other;
+ return q.equals(o.q) && x.equals(o.x);
+ }
+
+ public int hashCode()
+ {
+ return q.hashCode() ^ x.hashCode();
+ }
+ }
+
+// /**
+// * Class representing the Elements of the finite field
+// * <code>F<sub>2<sup>m</sup></sub></code> in polynomial basis (PB)
+// * representation. Both trinomial (TPB) and pentanomial (PPB) polynomial
+// * basis representations are supported. Gaussian normal basis (GNB)
+// * representation is not supported.
+// */
+// public static class F2m extends ECFieldElement
+// {
+// BigInteger x;
+//
+// /**
+// * Indicates gaussian normal basis representation (GNB). Number chosen
+// * according to X9.62. GNB is not implemented at present.
+// */
+// public static final int GNB = 1;
+//
+// /**
+// * Indicates trinomial basis representation (TPB). Number chosen
+// * according to X9.62.
+// */
+// public static final int TPB = 2;
+//
+// /**
+// * Indicates pentanomial basis representation (PPB). Number chosen
+// * according to X9.62.
+// */
+// public static final int PPB = 3;
+//
+// /**
+// * TPB or PPB.
+// */
+// private int representation;
+//
+// /**
+// * The exponent <code>m</code> of <code>F<sub>2<sup>m</sup></sub></code>.
+// */
+// private int m;
+//
+// /**
+// * TPB: The integer <code>k</code> where <code>x<sup>m</sup> +
+// * x<sup>k</sup> + 1</code> represents the reduction polynomial
+// * <code>f(z)</code>.<br>
+// * PPB: The integer <code>k1</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br>
+// */
+// private int k1;
+//
+// /**
+// * TPB: Always set to <code>0</code><br>
+// * PPB: The integer <code>k2</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br>
+// */
+// private int k2;
+//
+// /**
+// * TPB: Always set to <code>0</code><br>
+// * PPB: The integer <code>k3</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br>
+// */
+// private int k3;
+//
+// /**
+// * Constructor for PPB.
+// * @param m The exponent <code>m</code> of
+// * <code>F<sub>2<sup>m</sup></sub></code>.
+// * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.
+// * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.
+// * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.
+// * @param x The BigInteger representing the value of the field element.
+// */
+// public F2m(
+// int m,
+// int k1,
+// int k2,
+// int k3,
+// BigInteger x)
+// {
+//// super(x);
+// this.x = x;
+//
+// if ((k2 == 0) && (k3 == 0))
+// {
+// this.representation = TPB;
+// }
+// else
+// {
+// if (k2 >= k3)
+// {
+// throw new IllegalArgumentException(
+// "k2 must be smaller than k3");
+// }
+// if (k2 <= 0)
+// {
+// throw new IllegalArgumentException(
+// "k2 must be larger than 0");
+// }
+// this.representation = PPB;
+// }
+//
+// if (x.signum() < 0)
+// {
+// throw new IllegalArgumentException("x value cannot be negative");
+// }
+//
+// this.m = m;
+// this.k1 = k1;
+// this.k2 = k2;
+// this.k3 = k3;
+// }
+//
+// /**
+// * Constructor for TPB.
+// * @param m The exponent <code>m</code> of
+// * <code>F<sub>2<sup>m</sup></sub></code>.
+// * @param k The integer <code>k</code> where <code>x<sup>m</sup> +
+// * x<sup>k</sup> + 1</code> represents the reduction
+// * polynomial <code>f(z)</code>.
+// * @param x The BigInteger representing the value of the field element.
+// */
+// public F2m(int m, int k, BigInteger x)
+// {
+// // Set k1 to k, and set k2 and k3 to 0
+// this(m, k, 0, 0, x);
+// }
+//
+// public BigInteger toBigInteger()
+// {
+// return x;
+// }
+//
+// public String getFieldName()
+// {
+// return "F2m";
+// }
+//
+// public int getFieldSize()
+// {
+// return m;
+// }
+//
+// /**
+// * Checks, if the ECFieldElements <code>a</code> and <code>b</code>
+// * are elements of the same field <code>F<sub>2<sup>m</sup></sub></code>
+// * (having the same representation).
+// * @param a field element.
+// * @param b field element to be compared.
+// * @throws IllegalArgumentException if <code>a</code> and <code>b</code>
+// * are not elements of the same field
+// * <code>F<sub>2<sup>m</sup></sub></code> (having the same
+// * representation).
+// */
+// public static void checkFieldElements(
+// ECFieldElement a,
+// ECFieldElement b)
+// {
+// if ((!(a instanceof F2m)) || (!(b instanceof F2m)))
+// {
+// throw new IllegalArgumentException("Field elements are not "
+// + "both instances of ECFieldElement.F2m");
+// }
+//
+// if ((a.toBigInteger().signum() < 0) || (b.toBigInteger().signum() < 0))
+// {
+// throw new IllegalArgumentException(
+// "x value may not be negative");
+// }
+//
+// ECFieldElement.F2m aF2m = (ECFieldElement.F2m)a;
+// ECFieldElement.F2m bF2m = (ECFieldElement.F2m)b;
+//
+// if ((aF2m.m != bF2m.m) || (aF2m.k1 != bF2m.k1)
+// || (aF2m.k2 != bF2m.k2) || (aF2m.k3 != bF2m.k3))
+// {
+// throw new IllegalArgumentException("Field elements are not "
+// + "elements of the same field F2m");
+// }
+//
+// if (aF2m.representation != bF2m.representation)
+// {
+// // Should never occur
+// throw new IllegalArgumentException(
+// "One of the field "
+// + "elements are not elements has incorrect representation");
+// }
+// }
+//
+// /**
+// * Computes <code>z * a(z) mod f(z)</code>, where <code>f(z)</code> is
+// * the reduction polynomial of <code>this</code>.
+// * @param a The polynomial <code>a(z)</code> to be multiplied by
+// * <code>z mod f(z)</code>.
+// * @return <code>z * a(z) mod f(z)</code>
+// */
+// private BigInteger multZModF(final BigInteger a)
+// {
+// // Left-shift of a(z)
+// BigInteger az = a.shiftLeft(1);
+// if (az.testBit(this.m))
+// {
+// // If the coefficient of z^m in a(z) equals 1, reduction
+// // modulo f(z) is performed: Add f(z) to to a(z):
+// // Step 1: Unset mth coeffient of a(z)
+// az = az.clearBit(this.m);
+//
+// // Step 2: Add r(z) to a(z), where r(z) is defined as
+// // f(z) = z^m + r(z), and k1, k2, k3 are the positions of
+// // the non-zero coefficients in r(z)
+// az = az.flipBit(0);
+// az = az.flipBit(this.k1);
+// if (this.representation == PPB)
+// {
+// az = az.flipBit(this.k2);
+// az = az.flipBit(this.k3);
+// }
+// }
+// return az;
+// }
+//
+// public ECFieldElement add(final ECFieldElement b)
+// {
+// // No check performed here for performance reasons. Instead the
+// // elements involved are checked in ECPoint.F2m
+// // checkFieldElements(this, b);
+// if (b.toBigInteger().signum() == 0)
+// {
+// return this;
+// }
+//
+// return new F2m(this.m, this.k1, this.k2, this.k3, this.x.xor(b.toBigInteger()));
+// }
+//
+// public ECFieldElement subtract(final ECFieldElement b)
+// {
+// // Addition and subtraction are the same in F2m
+// return add(b);
+// }
+//
+//
+// public ECFieldElement multiply(final ECFieldElement b)
+// {
+// // Left-to-right shift-and-add field multiplication in F2m
+// // Input: Binary polynomials a(z) and b(z) of degree at most m-1
+// // Output: c(z) = a(z) * b(z) mod f(z)
+//
+// // No check performed here for performance reasons. Instead the
+// // elements involved are checked in ECPoint.F2m
+// // checkFieldElements(this, b);
+// final BigInteger az = this.x;
+// BigInteger bz = b.toBigInteger();
+// BigInteger cz;
+//
+// // Compute c(z) = a(z) * b(z) mod f(z)
+// if (az.testBit(0))
+// {
+// cz = bz;
+// }
+// else
+// {
+// cz = ECConstants.ZERO;
+// }
+//
+// for (int i = 1; i < this.m; i++)
+// {
+// // b(z) := z * b(z) mod f(z)
+// bz = multZModF(bz);
+//
+// if (az.testBit(i))
+// {
+// // If the coefficient of x^i in a(z) equals 1, b(z) is added
+// // to c(z)
+// cz = cz.xor(bz);
+// }
+// }
+// return new ECFieldElement.F2m(m, this.k1, this.k2, this.k3, cz);
+// }
+//
+//
+// public ECFieldElement divide(final ECFieldElement b)
+// {
+// // There may be more efficient implementations
+// ECFieldElement bInv = b.invert();
+// return multiply(bInv);
+// }
+//
+// public ECFieldElement negate()
+// {
+// // -x == x holds for all x in F2m
+// return this;
+// }
+//
+// public ECFieldElement square()
+// {
+// // Naive implementation, can probably be speeded up using modular
+// // reduction
+// return multiply(this);
+// }
+//
+// public ECFieldElement invert()
+// {
+// // Inversion in F2m using the extended Euclidean algorithm
+// // Input: A nonzero polynomial a(z) of degree at most m-1
+// // Output: a(z)^(-1) mod f(z)
+//
+// // u(z) := a(z)
+// BigInteger uz = this.x;
+// if (uz.signum() <= 0)
+// {
+// throw new ArithmeticException("x is zero or negative, " +
+// "inversion is impossible");
+// }
+//
+// // v(z) := f(z)
+// BigInteger vz = ECConstants.ZERO.setBit(m);
+// vz = vz.setBit(0);
+// vz = vz.setBit(this.k1);
+// if (this.representation == PPB)
+// {
+// vz = vz.setBit(this.k2);
+// vz = vz.setBit(this.k3);
+// }
+//
+// // g1(z) := 1, g2(z) := 0
+// BigInteger g1z = ECConstants.ONE;
+// BigInteger g2z = ECConstants.ZERO;
+//
+// // while u != 1
+// while (!(uz.equals(ECConstants.ZERO)))
+// {
+// // j := deg(u(z)) - deg(v(z))
+// int j = uz.bitLength() - vz.bitLength();
+//
+// // If j < 0 then: u(z) <-> v(z), g1(z) <-> g2(z), j := -j
+// if (j < 0)
+// {
+// final BigInteger uzCopy = uz;
+// uz = vz;
+// vz = uzCopy;
+//
+// final BigInteger g1zCopy = g1z;
+// g1z = g2z;
+// g2z = g1zCopy;
+//
+// j = -j;
+// }
+//
+// // u(z) := u(z) + z^j * v(z)
+// // Note, that no reduction modulo f(z) is required, because
+// // deg(u(z) + z^j * v(z)) <= max(deg(u(z)), j + deg(v(z)))
+// // = max(deg(u(z)), deg(u(z)) - deg(v(z)) + deg(v(z))
+// // = deg(u(z))
+// uz = uz.xor(vz.shiftLeft(j));
+//
+// // g1(z) := g1(z) + z^j * g2(z)
+// g1z = g1z.xor(g2z.shiftLeft(j));
+//// if (g1z.bitLength() > this.m) {
+//// throw new ArithmeticException(
+//// "deg(g1z) >= m, g1z = " + g1z.toString(2));
+//// }
+// }
+// return new ECFieldElement.F2m(
+// this.m, this.k1, this.k2, this.k3, g2z);
+// }
+//
+// public ECFieldElement sqrt()
+// {
+// throw new RuntimeException("Not implemented");
+// }
+//
+// /**
+// * @return the representation of the field
+// * <code>F<sub>2<sup>m</sup></sub></code>, either of
+// * TPB (trinomial
+// * basis representation) or
+// * PPB (pentanomial
+// * basis representation).
+// */
+// public int getRepresentation()
+// {
+// return this.representation;
+// }
+//
+// /**
+// * @return the degree <code>m</code> of the reduction polynomial
+// * <code>f(z)</code>.
+// */
+// public int getM()
+// {
+// return this.m;
+// }
+//
+// /**
+// * @return TPB: The integer <code>k</code> where <code>x<sup>m</sup> +
+// * x<sup>k</sup> + 1</code> represents the reduction polynomial
+// * <code>f(z)</code>.<br>
+// * PPB: The integer <code>k1</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br>
+// */
+// public int getK1()
+// {
+// return this.k1;
+// }
+//
+// /**
+// * @return TPB: Always returns <code>0</code><br>
+// * PPB: The integer <code>k2</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br>
+// */
+// public int getK2()
+// {
+// return this.k2;
+// }
+//
+// /**
+// * @return TPB: Always set to <code>0</code><br>
+// * PPB: The integer <code>k3</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br>
+// */
+// public int getK3()
+// {
+// return this.k3;
+// }
+//
+// public boolean equals(Object anObject)
+// {
+// if (anObject == this)
+// {
+// return true;
+// }
+//
+// if (!(anObject instanceof ECFieldElement.F2m))
+// {
+// return false;
+// }
+//
+// ECFieldElement.F2m b = (ECFieldElement.F2m)anObject;
+//
+// return ((this.m == b.m) && (this.k1 == b.k1) && (this.k2 == b.k2)
+// && (this.k3 == b.k3)
+// && (this.representation == b.representation)
+// && (this.x.equals(b.x)));
+// }
+//
+// public int hashCode()
+// {
+// return x.hashCode() ^ m ^ k1 ^ k2 ^ k3;
+// }
+// }
+
+ /**
+ * Class representing the Elements of the finite field
+ * <code>F<sub>2<sup>m</sup></sub></code> in polynomial basis (PB)
+ * representation. Both trinomial (TPB) and pentanomial (PPB) polynomial
+ * basis representations are supported. Gaussian normal basis (GNB)
+ * representation is not supported.
+ */
+ public static class F2m extends ECFieldElement
+ {
+ /**
+ * Indicates gaussian normal basis representation (GNB). Number chosen
+ * according to X9.62. GNB is not implemented at present.
+ */
+ public static final int GNB = 1;
+
+ /**
+ * Indicates trinomial basis representation (TPB). Number chosen
+ * according to X9.62.
+ */
+ public static final int TPB = 2;
+
+ /**
+ * Indicates pentanomial basis representation (PPB). Number chosen
+ * according to X9.62.
+ */
+ public static final int PPB = 3;
+
+ /**
+ * TPB or PPB.
+ */
+ private int representation;
+
+ /**
+ * The exponent <code>m</code> of <code>F<sub>2<sup>m</sup></sub></code>.
+ */
+ private int m;
+
+ /**
+ * TPB: The integer <code>k</code> where <code>x<sup>m</sup> +
+ * x<sup>k</sup> + 1</code> represents the reduction polynomial
+ * <code>f(z)</code>.<br>
+ * PPB: The integer <code>k1</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.<br>
+ */
+ private int k1;
+
+ /**
+ * TPB: Always set to <code>0</code><br>
+ * PPB: The integer <code>k2</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.<br>
+ */
+ private int k2;
+
+ /**
+ * TPB: Always set to <code>0</code><br>
+ * PPB: The integer <code>k3</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.<br>
+ */
+ private int k3;
+
+ /**
+ * The <code>IntArray</code> holding the bits.
+ */
+ private IntArray x;
+
+ /**
+ * The number of <code>int</code>s required to hold <code>m</code> bits.
+ */
+ private int t;
+
+ /**
+ * Constructor for PPB.
+ * @param m The exponent <code>m</code> of
+ * <code>F<sub>2<sup>m</sup></sub></code>.
+ * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.
+ * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.
+ * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.
+ * @param x The BigInteger representing the value of the field element.
+ */
+ public F2m(
+ int m,
+ int k1,
+ int k2,
+ int k3,
+ BigInteger x)
+ {
+ // t = m / 32 rounded up to the next integer
+ t = (m + 31) >> 5;
+ this.x = new IntArray(x, t);
+
+ if ((k2 == 0) && (k3 == 0))
+ {
+ this.representation = TPB;
+ }
+ else
+ {
+ if (k2 >= k3)
+ {
+ throw new IllegalArgumentException(
+ "k2 must be smaller than k3");
+ }
+ if (k2 <= 0)
+ {
+ throw new IllegalArgumentException(
+ "k2 must be larger than 0");
+ }
+ this.representation = PPB;
+ }
+
+ if (x.signum() < 0)
+ {
+ throw new IllegalArgumentException("x value cannot be negative");
+ }
+
+ this.m = m;
+ this.k1 = k1;
+ this.k2 = k2;
+ this.k3 = k3;
+ }
+
+ /**
+ * Constructor for TPB.
+ * @param m The exponent <code>m</code> of
+ * <code>F<sub>2<sup>m</sup></sub></code>.
+ * @param k The integer <code>k</code> where <code>x<sup>m</sup> +
+ * x<sup>k</sup> + 1</code> represents the reduction
+ * polynomial <code>f(z)</code>.
+ * @param x The BigInteger representing the value of the field element.
+ */
+ public F2m(int m, int k, BigInteger x)
+ {
+ // Set k1 to k, and set k2 and k3 to 0
+ this(m, k, 0, 0, x);
+ }
+
+ private F2m(int m, int k1, int k2, int k3, IntArray x)
+ {
+ t = (m + 31) >> 5;
+ this.x = x;
+ this.m = m;
+ this.k1 = k1;
+ this.k2 = k2;
+ this.k3 = k3;
+
+ if ((k2 == 0) && (k3 == 0))
+ {
+ this.representation = TPB;
+ }
+ else
+ {
+ this.representation = PPB;
+ }
+
+ }
+
+ public BigInteger toBigInteger()
+ {
+ return x.toBigInteger();
+ }
+
+ public String getFieldName()
+ {
+ return "F2m";
+ }
+
+ public int getFieldSize()
+ {
+ return m;
+ }
+
+ /**
+ * Checks, if the ECFieldElements <code>a</code> and <code>b</code>
+ * are elements of the same field <code>F<sub>2<sup>m</sup></sub></code>
+ * (having the same representation).
+ * @param a field element.
+ * @param b field element to be compared.
+ * @throws IllegalArgumentException if <code>a</code> and <code>b</code>
+ * are not elements of the same field
+ * <code>F<sub>2<sup>m</sup></sub></code> (having the same
+ * representation).
+ */
+ public static void checkFieldElements(
+ ECFieldElement a,
+ ECFieldElement b)
+ {
+ if ((!(a instanceof F2m)) || (!(b instanceof F2m)))
+ {
+ throw new IllegalArgumentException("Field elements are not "
+ + "both instances of ECFieldElement.F2m");
+ }
+
+ ECFieldElement.F2m aF2m = (ECFieldElement.F2m)a;
+ ECFieldElement.F2m bF2m = (ECFieldElement.F2m)b;
+
+ if ((aF2m.m != bF2m.m) || (aF2m.k1 != bF2m.k1)
+ || (aF2m.k2 != bF2m.k2) || (aF2m.k3 != bF2m.k3))
+ {
+ throw new IllegalArgumentException("Field elements are not "
+ + "elements of the same field F2m");
+ }
+
+ if (aF2m.representation != bF2m.representation)
+ {
+ // Should never occur
+ throw new IllegalArgumentException(
+ "One of the field "
+ + "elements are not elements has incorrect representation");
+ }
+ }
+
+ public ECFieldElement add(final ECFieldElement b)
+ {
+ // No check performed here for performance reasons. Instead the
+ // elements involved are checked in ECPoint.F2m
+ // checkFieldElements(this, b);
+ IntArray iarrClone = (IntArray)this.x.clone();
+ F2m bF2m = (F2m)b;
+ iarrClone.addShifted(bF2m.x, 0);
+ return new F2m(m, k1, k2, k3, iarrClone);
+ }
+
+ public ECFieldElement subtract(final ECFieldElement b)
+ {
+ // Addition and subtraction are the same in F2m
+ return add(b);
+ }
+
+ public ECFieldElement multiply(final ECFieldElement b)
+ {
+ // Right-to-left comb multiplication in the IntArray
+ // Input: Binary polynomials a(z) and b(z) of degree at most m-1
+ // Output: c(z) = a(z) * b(z) mod f(z)
+
+ // No check performed here for performance reasons. Instead the
+ // elements involved are checked in ECPoint.F2m
+ // checkFieldElements(this, b);
+ F2m bF2m = (F2m)b;
+ IntArray mult = x.multiply(bF2m.x, m);
+ mult.reduce(m, new int[]{k1, k2, k3});
+ return new F2m(m, k1, k2, k3, mult);
+ }
+
+ public ECFieldElement divide(final ECFieldElement b)
+ {
+ // There may be more efficient implementations
+ ECFieldElement bInv = b.invert();
+ return multiply(bInv);
+ }
+
+ public ECFieldElement negate()
+ {
+ // -x == x holds for all x in F2m
+ return this;
+ }
+
+ public ECFieldElement square()
+ {
+ IntArray squared = x.square(m);
+ squared.reduce(m, new int[]{k1, k2, k3});
+ return new F2m(m, k1, k2, k3, squared);
+ }
+
+
+ public ECFieldElement invert()
+ {
+ // Inversion in F2m using the extended Euclidean algorithm
+ // Input: A nonzero polynomial a(z) of degree at most m-1
+ // Output: a(z)^(-1) mod f(z)
+
+ // u(z) := a(z)
+ IntArray uz = (IntArray)this.x.clone();
+
+ // v(z) := f(z)
+ IntArray vz = new IntArray(t);
+ vz.setBit(m);
+ vz.setBit(0);
+ vz.setBit(this.k1);
+ if (this.representation == PPB)
+ {
+ vz.setBit(this.k2);
+ vz.setBit(this.k3);
+ }
+
+ // g1(z) := 1, g2(z) := 0
+ IntArray g1z = new IntArray(t);
+ g1z.setBit(0);
+ IntArray g2z = new IntArray(t);
+
+ // while u != 0
+ while (!uz.isZero())
+// while (uz.getUsedLength() > 0)
+// while (uz.bitLength() > 1)
+ {
+ // j := deg(u(z)) - deg(v(z))
+ int j = uz.bitLength() - vz.bitLength();
+
+ // If j < 0 then: u(z) <-> v(z), g1(z) <-> g2(z), j := -j
+ if (j < 0)
+ {
+ final IntArray uzCopy = uz;
+ uz = vz;
+ vz = uzCopy;
+
+ final IntArray g1zCopy = g1z;
+ g1z = g2z;
+ g2z = g1zCopy;
+
+ j = -j;
+ }
+
+ // u(z) := u(z) + z^j * v(z)
+ // Note, that no reduction modulo f(z) is required, because
+ // deg(u(z) + z^j * v(z)) <= max(deg(u(z)), j + deg(v(z)))
+ // = max(deg(u(z)), deg(u(z)) - deg(v(z)) + deg(v(z))
+ // = deg(u(z))
+ // uz = uz.xor(vz.shiftLeft(j));
+ // jInt = n / 32
+ int jInt = j >> 5;
+ // jInt = n % 32
+ int jBit = j & 0x1F;
+ IntArray vzShift = vz.shiftLeft(jBit);
+ uz.addShifted(vzShift, jInt);
+
+ // g1(z) := g1(z) + z^j * g2(z)
+// g1z = g1z.xor(g2z.shiftLeft(j));
+ IntArray g2zShift = g2z.shiftLeft(jBit);
+ g1z.addShifted(g2zShift, jInt);
+
+ }
+ return new ECFieldElement.F2m(
+ this.m, this.k1, this.k2, this.k3, g2z);
+ }
+
+ public ECFieldElement sqrt()
+ {
+ throw new RuntimeException("Not implemented");
+ }
+
+ /**
+ * @return the representation of the field
+ * <code>F<sub>2<sup>m</sup></sub></code>, either of
+ * TPB (trinomial
+ * basis representation) or
+ * PPB (pentanomial
+ * basis representation).
+ */
+ public int getRepresentation()
+ {
+ return this.representation;
+ }
+
+ /**
+ * @return the degree <code>m</code> of the reduction polynomial
+ * <code>f(z)</code>.
+ */
+ public int getM()
+ {
+ return this.m;
+ }
+
+ /**
+ * @return TPB: The integer <code>k</code> where <code>x<sup>m</sup> +
+ * x<sup>k</sup> + 1</code> represents the reduction polynomial
+ * <code>f(z)</code>.<br>
+ * PPB: The integer <code>k1</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.<br>
+ */
+ public int getK1()
+ {
+ return this.k1;
+ }
+
+ /**
+ * @return TPB: Always returns <code>0</code><br>
+ * PPB: The integer <code>k2</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.<br>
+ */
+ public int getK2()
+ {
+ return this.k2;
+ }
+
+ /**
+ * @return TPB: Always set to <code>0</code><br>
+ * PPB: The integer <code>k3</code> where <code>x<sup>m</sup> +
+ * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+ * represents the reduction polynomial <code>f(z)</code>.<br>
+ */
+ public int getK3()
+ {
+ return this.k3;
+ }
+
+ public boolean equals(Object anObject)
+ {
+ if (anObject == this)
+ {
+ return true;
+ }
+
+ if (!(anObject instanceof ECFieldElement.F2m))
+ {
+ return false;
+ }
+
+ ECFieldElement.F2m b = (ECFieldElement.F2m)anObject;
+
+ return ((this.m == b.m) && (this.k1 == b.k1) && (this.k2 == b.k2)
+ && (this.k3 == b.k3)
+ && (this.representation == b.representation)
+ && (this.x.equals(b.x)));
+ }
+
+ public int hashCode()
+ {
+ return x.hashCode() ^ m ^ k1 ^ k2 ^ k3;
+ }
+ }
+}