Welcome to mirror list, hosted at ThFree Co, Russian Federation.

gitlab.com/quite/humla-spongycastle.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'core/src/main/java/org/bouncycastle/pqc/crypto/rainbow')
-rw-r--r--core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/Layer.java322
-rw-r--r--core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyGenerationParameters.java26
-rw-r--r--core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyPairGenerator.java414
-rw-r--r--core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyParameters.java25
-rw-r--r--core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowParameters.java111
-rw-r--r--core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowPrivateKeyParameters.java117
-rw-r--r--core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowPublicKeyParameters.java53
-rw-r--r--core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowSigner.java301
-rw-r--r--core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/util/ComputeInField.java490
-rw-r--r--core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/util/GF2Field.java139
-rw-r--r--core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/util/RainbowUtil.java230
11 files changed, 2228 insertions, 0 deletions
diff --git a/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/Layer.java b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/Layer.java
new file mode 100644
index 00000000..4c457ec5
--- /dev/null
+++ b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/Layer.java
@@ -0,0 +1,322 @@
+package org.bouncycastle.pqc.crypto.rainbow;
+
+import java.security.SecureRandom;
+
+import org.bouncycastle.pqc.crypto.rainbow.util.GF2Field;
+import org.bouncycastle.pqc.crypto.rainbow.util.RainbowUtil;
+import org.bouncycastle.util.Arrays;
+
+
+/**
+ * This class represents a layer of the Rainbow Oil- and Vinegar Map. Each Layer
+ * consists of oi polynomials with their coefficients, generated at random.
+ * <p/>
+ * To sign a document, we solve a LES (linear equation system) for each layer in
+ * order to find the oil variables of that layer and to be able to use the
+ * variables to compute the signature. This functionality is implemented in the
+ * RainbowSignature-class, by the aid of the private key.
+ * <p/>
+ * Each layer is a part of the private key.
+ * <p/>
+ * More information about the layer can be found in the paper of Jintai Ding,
+ * Dieter Schmidt: Rainbow, a New Multivariable Polynomial Signature Scheme.
+ * ACNS 2005: 164-175 (http://dx.doi.org/10.1007/11496137_12)
+ */
+public class Layer
+{
+ private int vi; // number of vinegars in this layer
+ private int viNext; // number of vinegars in next layer
+ private int oi; // number of oils in this layer
+
+ /*
+ * k : index of polynomial
+ *
+ * i,j : indices of oil and vinegar variables
+ */
+ private short[/* k */][/* i */][/* j */] coeff_alpha;
+ private short[/* k */][/* i */][/* j */] coeff_beta;
+ private short[/* k */][/* i */] coeff_gamma;
+ private short[/* k */] coeff_eta;
+
+ /**
+ * Constructor
+ *
+ * @param vi number of vinegar variables of this layer
+ * @param viNext number of vinegar variables of next layer. It's the same as
+ * (num of oils) + (num of vinegars) of this layer.
+ * @param coeffAlpha alpha-coefficients in the polynomials of this layer
+ * @param coeffBeta beta-coefficients in the polynomials of this layer
+ * @param coeffGamma gamma-coefficients in the polynomials of this layer
+ * @param coeffEta eta-coefficients in the polynomials of this layer
+ */
+ public Layer(byte vi, byte viNext, short[][][] coeffAlpha,
+ short[][][] coeffBeta, short[][] coeffGamma, short[] coeffEta)
+ {
+ this.vi = vi & 0xff;
+ this.viNext = viNext & 0xff;
+ this.oi = this.viNext - this.vi;
+
+ // the secret coefficients of all polynomials in this layer
+ this.coeff_alpha = coeffAlpha;
+ this.coeff_beta = coeffBeta;
+ this.coeff_gamma = coeffGamma;
+ this.coeff_eta = coeffEta;
+ }
+
+ /**
+ * This function generates the coefficients of all polynomials in this layer
+ * at random using random generator.
+ *
+ * @param sr the random generator which is to be used
+ */
+ public Layer(int vi, int viNext, SecureRandom sr)
+ {
+ this.vi = vi;
+ this.viNext = viNext;
+ this.oi = viNext - vi;
+
+ // the coefficients of all polynomials in this layer
+ this.coeff_alpha = new short[this.oi][this.oi][this.vi];
+ this.coeff_beta = new short[this.oi][this.vi][this.vi];
+ this.coeff_gamma = new short[this.oi][this.viNext];
+ this.coeff_eta = new short[this.oi];
+
+ int numOfPoly = this.oi; // number of polynomials per layer
+
+ // Alpha coeffs
+ for (int k = 0; k < numOfPoly; k++)
+ {
+ for (int i = 0; i < this.oi; i++)
+ {
+ for (int j = 0; j < this.vi; j++)
+ {
+ coeff_alpha[k][i][j] = (short)(sr.nextInt() & GF2Field.MASK);
+ }
+ }
+ }
+ // Beta coeffs
+ for (int k = 0; k < numOfPoly; k++)
+ {
+ for (int i = 0; i < this.vi; i++)
+ {
+ for (int j = 0; j < this.vi; j++)
+ {
+ coeff_beta[k][i][j] = (short)(sr.nextInt() & GF2Field.MASK);
+ }
+ }
+ }
+ // Gamma coeffs
+ for (int k = 0; k < numOfPoly; k++)
+ {
+ for (int i = 0; i < this.viNext; i++)
+ {
+ coeff_gamma[k][i] = (short)(sr.nextInt() & GF2Field.MASK);
+ }
+ }
+ // Eta
+ for (int k = 0; k < numOfPoly; k++)
+ {
+ coeff_eta[k] = (short)(sr.nextInt() & GF2Field.MASK);
+ }
+ }
+
+ /**
+ * This method plugs in the vinegar variables into the polynomials of this
+ * layer and computes the coefficients of the Oil-variables as well as the
+ * free coefficient in each polynomial.
+ * <p/>
+ * It is needed for computing the Oil variables while signing.
+ *
+ * @param x vinegar variables of this layer that should be plugged into
+ * the polynomials.
+ * @return coeff the coefficients of Oil variables and the free coeff in the
+ * polynomials of this layer.
+ */
+ public short[][] plugInVinegars(short[] x)
+ {
+ // temporary variable needed for the multiplication
+ short tmpMult = 0;
+ // coeff: 1st index = which polynomial, 2nd index=which variable
+ short[][] coeff = new short[oi][oi + 1]; // gets returned
+ // free coefficient per polynomial
+ short[] sum = new short[oi];
+
+ /*
+ * evaluate the beta-part of the polynomials (it contains no oil
+ * variables)
+ */
+ for (int k = 0; k < oi; k++)
+ {
+ for (int i = 0; i < vi; i++)
+ {
+ for (int j = 0; j < vi; j++)
+ {
+ // tmp = beta * xi (plug in)
+ tmpMult = GF2Field.multElem(coeff_beta[k][i][j], x[i]);
+ // tmp = tmp * xj
+ tmpMult = GF2Field.multElem(tmpMult, x[j]);
+ // accumulate into the array for the free coefficients.
+ sum[k] = GF2Field.addElem(sum[k], tmpMult);
+ }
+ }
+ }
+
+ /* evaluate the alpha-part (it contains oils) */
+ for (int k = 0; k < oi; k++)
+ {
+ for (int i = 0; i < oi; i++)
+ {
+ for (int j = 0; j < vi; j++)
+ {
+ // alpha * xj (plug in)
+ tmpMult = GF2Field.multElem(coeff_alpha[k][i][j], x[j]);
+ // accumulate
+ coeff[k][i] = GF2Field.addElem(coeff[k][i], tmpMult);
+ }
+ }
+ }
+ /* evaluate the gama-part of the polynomial (containing no oils) */
+ for (int k = 0; k < oi; k++)
+ {
+ for (int i = 0; i < vi; i++)
+ {
+ // gamma * xi (plug in)
+ tmpMult = GF2Field.multElem(coeff_gamma[k][i], x[i]);
+ // accumulate in the array for the free coefficients (per
+ // polynomial).
+ sum[k] = GF2Field.addElem(sum[k], tmpMult);
+ }
+ }
+ /* evaluate the gama-part of the polynomial (but containing oils) */
+ for (int k = 0; k < oi; k++)
+ {
+ for (int i = vi; i < viNext; i++)
+ { // oils
+ // accumulate the coefficients of the oil variables (per
+ // polynomial).
+ coeff[k][i - vi] = GF2Field.addElem(coeff_gamma[k][i],
+ coeff[k][i - vi]);
+ }
+ }
+ /* evaluate the eta-part of the polynomial */
+ for (int k = 0; k < oi; k++)
+ {
+ // accumulate in the array for the free coefficients per polynomial.
+ sum[k] = GF2Field.addElem(sum[k], coeff_eta[k]);
+ }
+
+ /* put the free coefficients (sum) into the coeff-array as last column */
+ for (int k = 0; k < oi; k++)
+ {
+ coeff[k][oi] = sum[k];
+ }
+ return coeff;
+ }
+
+ /**
+ * Getter for the number of vinegar variables of this layer.
+ *
+ * @return the number of vinegar variables of this layer.
+ */
+ public int getVi()
+ {
+ return vi;
+ }
+
+ /**
+ * Getter for the number of vinegar variables of the next layer.
+ *
+ * @return the number of vinegar variables of the next layer.
+ */
+ public int getViNext()
+ {
+ return viNext;
+ }
+
+ /**
+ * Getter for the number of Oil variables of this layer.
+ *
+ * @return the number of oil variables of this layer.
+ */
+ public int getOi()
+ {
+ return oi;
+ }
+
+ /**
+ * Getter for the alpha-coefficients of the polynomials in this layer.
+ *
+ * @return the coefficients of alpha-terms of this layer.
+ */
+ public short[][][] getCoeffAlpha()
+ {
+ return coeff_alpha;
+ }
+
+ /**
+ * Getter for the beta-coefficients of the polynomials in this layer.
+ *
+ * @return the coefficients of beta-terms of this layer.
+ */
+
+ public short[][][] getCoeffBeta()
+ {
+ return coeff_beta;
+ }
+
+ /**
+ * Getter for the gamma-coefficients of the polynomials in this layer.
+ *
+ * @return the coefficients of gamma-terms of this layer
+ */
+ public short[][] getCoeffGamma()
+ {
+ return coeff_gamma;
+ }
+
+ /**
+ * Getter for the eta-coefficients of the polynomials in this layer.
+ *
+ * @return the coefficients eta of this layer
+ */
+ public short[] getCoeffEta()
+ {
+ return coeff_eta;
+ }
+
+ /**
+ * This function compares this Layer with another object.
+ *
+ * @param other the other object
+ * @return the result of the comparison
+ */
+ public boolean equals(Object other)
+ {
+ if (other == null || !(other instanceof Layer))
+ {
+ return false;
+ }
+ Layer otherLayer = (Layer)other;
+
+ return vi == otherLayer.getVi()
+ && viNext == otherLayer.getViNext()
+ && oi == otherLayer.getOi()
+ && RainbowUtil.equals(coeff_alpha, otherLayer.getCoeffAlpha())
+ && RainbowUtil.equals(coeff_beta, otherLayer.getCoeffBeta())
+ && RainbowUtil.equals(coeff_gamma, otherLayer.getCoeffGamma())
+ && RainbowUtil.equals(coeff_eta, otherLayer.getCoeffEta());
+ }
+
+ public int hashCode()
+ {
+ int hash = vi;
+ hash = hash * 37 + viNext;
+ hash = hash * 37 + oi;
+ hash = hash * 37 + Arrays.hashCode(coeff_alpha);
+ hash = hash * 37 + Arrays.hashCode(coeff_beta);
+ hash = hash * 37 + Arrays.hashCode(coeff_gamma);
+ hash = hash * 37 + Arrays.hashCode(coeff_eta);
+
+ return hash;
+ }
+}
diff --git a/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyGenerationParameters.java b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyGenerationParameters.java
new file mode 100644
index 00000000..b634f9cc
--- /dev/null
+++ b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyGenerationParameters.java
@@ -0,0 +1,26 @@
+package org.bouncycastle.pqc.crypto.rainbow;
+
+import java.security.SecureRandom;
+
+import org.bouncycastle.crypto.KeyGenerationParameters;
+
+public class RainbowKeyGenerationParameters
+ extends KeyGenerationParameters
+{
+ private RainbowParameters params;
+
+ public RainbowKeyGenerationParameters(
+ SecureRandom random,
+ RainbowParameters params)
+ {
+ // TODO: key size?
+ super(random, params.getVi()[params.getVi().length - 1] - params.getVi()[0]);
+ this.params = params;
+ }
+
+ public RainbowParameters getParameters()
+ {
+ return params;
+ }
+}
+
diff --git a/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyPairGenerator.java b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyPairGenerator.java
new file mode 100644
index 00000000..e7fe0593
--- /dev/null
+++ b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyPairGenerator.java
@@ -0,0 +1,414 @@
+package org.bouncycastle.pqc.crypto.rainbow;
+
+import java.security.SecureRandom;
+
+import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
+import org.bouncycastle.crypto.AsymmetricCipherKeyPairGenerator;
+import org.bouncycastle.crypto.KeyGenerationParameters;
+import org.bouncycastle.pqc.crypto.rainbow.util.ComputeInField;
+import org.bouncycastle.pqc.crypto.rainbow.util.GF2Field;
+
+/**
+ * This class implements AsymmetricCipherKeyPairGenerator. It is used
+ * as a generator for the private and public key of the Rainbow Signature
+ * Scheme.
+ * <p/>
+ * Detailed information about the key generation is to be found in the paper of
+ * Jintai Ding, Dieter Schmidt: Rainbow, a New Multivariable Polynomial
+ * Signature Scheme. ACNS 2005: 164-175 (http://dx.doi.org/10.1007/11496137_12)
+ */
+public class RainbowKeyPairGenerator
+ implements AsymmetricCipherKeyPairGenerator
+{
+ private boolean initialized = false;
+ private SecureRandom sr;
+ private RainbowKeyGenerationParameters rainbowParams;
+
+ /* linear affine map L1: */
+ private short[][] A1; // matrix of the lin. affine map L1(n-v1 x n-v1 matrix)
+ private short[][] A1inv; // inverted A1
+ private short[] b1; // translation element of the lin.affine map L1
+
+ /* linear affine map L2: */
+ private short[][] A2; // matrix of the lin. affine map (n x n matrix)
+ private short[][] A2inv; // inverted A2
+ private short[] b2; // translation elemt of the lin.affine map L2
+
+ /* components of F: */
+ private int numOfLayers; // u (number of sets S)
+ private Layer layers[]; // layers of polynomials of F
+ private int[] vi; // set of vinegar vars per layer.
+
+ /* components of Public Key */
+ private short[][] pub_quadratic; // quadratic(mixed) coefficients
+ private short[][] pub_singular; // singular coefficients
+ private short[] pub_scalar; // scalars
+
+ // TODO
+
+ /**
+ * The standard constructor tries to generate the Rainbow algorithm identifier
+ * with the corresponding OID.
+ * <p/>
+ */
+ public RainbowKeyPairGenerator()
+ {
+ }
+
+
+ /**
+ * This function generates a Rainbow key pair.
+ *
+ * @return the generated key pair
+ */
+ public AsymmetricCipherKeyPair genKeyPair()
+ {
+ RainbowPrivateKeyParameters privKey;
+ RainbowPublicKeyParameters pubKey;
+
+ if (!initialized)
+ {
+ initializeDefault();
+ }
+
+ /* choose all coefficients at random */
+ keygen();
+
+ /* now marshall them to PrivateKey */
+ privKey = new RainbowPrivateKeyParameters(A1inv, b1, A2inv, b2, vi, layers);
+
+
+ /* marshall to PublicKey */
+ pubKey = new RainbowPublicKeyParameters(vi[vi.length - 1] - vi[0], pub_quadratic, pub_singular, pub_scalar);
+
+ return new AsymmetricCipherKeyPair(pubKey, privKey);
+ }
+
+ // TODO
+ public void initialize(
+ KeyGenerationParameters param)
+ {
+ this.rainbowParams = (RainbowKeyGenerationParameters)param;
+
+ // set source of randomness
+ this.sr = new SecureRandom();
+
+ // unmarshalling:
+ this.vi = this.rainbowParams.getParameters().getVi();
+ this.numOfLayers = this.rainbowParams.getParameters().getNumOfLayers();
+
+ this.initialized = true;
+ }
+
+ private void initializeDefault()
+ {
+ RainbowKeyGenerationParameters rbKGParams = new RainbowKeyGenerationParameters(new SecureRandom(), new RainbowParameters());
+ initialize(rbKGParams);
+ }
+
+ /**
+ * This function calls the functions for the random generation of the coefficients
+ * and the matrices needed for the private key and the method for computing the public key.
+ */
+ private void keygen()
+ {
+ generateL1();
+ generateL2();
+ generateF();
+ computePublicKey();
+ }
+
+ /**
+ * This function generates the invertible affine linear map L1 = A1*x + b1
+ * <p/>
+ * The translation part b1, is stored in a separate array. The inverse of
+ * the matrix-part of L1 A1inv is also computed here.
+ * <p/>
+ * This linear map hides the output of the map F. It is on k^(n-v1).
+ */
+ private void generateL1()
+ {
+
+ // dimension = n-v1 = vi[last] - vi[first]
+ int dim = vi[vi.length - 1] - vi[0];
+ this.A1 = new short[dim][dim];
+ this.A1inv = null;
+ ComputeInField c = new ComputeInField();
+
+ /* generation of A1 at random */
+ while (A1inv == null)
+ {
+ for (int i = 0; i < dim; i++)
+ {
+ for (int j = 0; j < dim; j++)
+ {
+ A1[i][j] = (short)(sr.nextInt() & GF2Field.MASK);
+ }
+ }
+ A1inv = c.inverse(A1);
+ }
+
+ /* generation of the translation vector at random */
+ b1 = new short[dim];
+ for (int i = 0; i < dim; i++)
+ {
+ b1[i] = (short)(sr.nextInt() & GF2Field.MASK);
+ }
+ }
+
+ /**
+ * This function generates the invertible affine linear map L2 = A2*x + b2
+ * <p/>
+ * The translation part b2, is stored in a separate array. The inverse of
+ * the matrix-part of L2 A2inv is also computed here.
+ * <p/>
+ * This linear map hides the output of the map F. It is on k^(n).
+ */
+ private void generateL2()
+ {
+
+ // dimension = n = vi[last]
+ int dim = vi[vi.length - 1];
+ this.A2 = new short[dim][dim];
+ this.A2inv = null;
+ ComputeInField c = new ComputeInField();
+
+ /* generation of A2 at random */
+ while (this.A2inv == null)
+ {
+ for (int i = 0; i < dim; i++)
+ {
+ for (int j = 0; j < dim; j++)
+ { // one col extra for b
+ A2[i][j] = (short)(sr.nextInt() & GF2Field.MASK);
+ }
+ }
+ this.A2inv = c.inverse(A2);
+ }
+ /* generation of the translation vector at random */
+ b2 = new short[dim];
+ for (int i = 0; i < dim; i++)
+ {
+ b2[i] = (short)(sr.nextInt() & GF2Field.MASK);
+ }
+
+ }
+
+ /**
+ * This function generates the private map F, which consists of u-1 layers.
+ * Each layer consists of oi polynomials where oi = vi[i+1]-vi[i].
+ * <p/>
+ * The methods for the generation of the coefficients of these polynomials
+ * are called here.
+ */
+ private void generateF()
+ {
+
+ this.layers = new Layer[this.numOfLayers];
+ for (int i = 0; i < this.numOfLayers; i++)
+ {
+ layers[i] = new Layer(this.vi[i], this.vi[i + 1], sr);
+ }
+ }
+
+ /**
+ * This function computes the public key from the private key.
+ * <p/>
+ * The composition of F with L2 is computed, followed by applying L1 to the
+ * composition's result. The singular and scalar values constitute to the
+ * public key as is, the quadratic terms are compacted in
+ * <tt>compactPublicKey()</tt>
+ */
+ private void computePublicKey()
+ {
+
+ ComputeInField c = new ComputeInField();
+ int rows = this.vi[this.vi.length - 1] - this.vi[0];
+ int vars = this.vi[this.vi.length - 1];
+ // Fpub
+ short[][][] coeff_quadratic_3dim = new short[rows][vars][vars];
+ this.pub_singular = new short[rows][vars];
+ this.pub_scalar = new short[rows];
+
+ // Coefficients of layers of Private Key F
+ short[][][] coeff_alpha;
+ short[][][] coeff_beta;
+ short[][] coeff_gamma;
+ short[] coeff_eta;
+
+ // Needed for counters;
+ int oils = 0;
+ int vins = 0;
+ int crnt_row = 0; // current row (polynomial)
+
+ short vect_tmp[] = new short[vars]; // vector tmp;
+ short sclr_tmp = 0;
+
+ // Composition of F and L2: Insert L2 = A2*x+b2 in F
+ for (int l = 0; l < this.layers.length; l++)
+ {
+ // get coefficients of current layer
+ coeff_alpha = this.layers[l].getCoeffAlpha();
+ coeff_beta = this.layers[l].getCoeffBeta();
+ coeff_gamma = this.layers[l].getCoeffGamma();
+ coeff_eta = this.layers[l].getCoeffEta();
+ oils = coeff_alpha[0].length;// this.layers[l].getOi();
+ vins = coeff_beta[0].length;// this.layers[l].getVi();
+ // compute polynomials of layer
+ for (int p = 0; p < oils; p++)
+ {
+ // multiply alphas
+ for (int x1 = 0; x1 < oils; x1++)
+ {
+ for (int x2 = 0; x2 < vins; x2++)
+ {
+ // multiply polynomial1 with polynomial2
+ vect_tmp = c.multVect(coeff_alpha[p][x1][x2],
+ this.A2[x1 + vins]);
+ coeff_quadratic_3dim[crnt_row + p] = c.addSquareMatrix(
+ coeff_quadratic_3dim[crnt_row + p], c
+ .multVects(vect_tmp, this.A2[x2]));
+ // mul poly1 with scalar2
+ vect_tmp = c.multVect(this.b2[x2], vect_tmp);
+ this.pub_singular[crnt_row + p] = c.addVect(vect_tmp,
+ this.pub_singular[crnt_row + p]);
+ // mul scalar1 with poly2
+ vect_tmp = c.multVect(coeff_alpha[p][x1][x2],
+ this.A2[x2]);
+ vect_tmp = c.multVect(b2[x1 + vins], vect_tmp);
+ this.pub_singular[crnt_row + p] = c.addVect(vect_tmp,
+ this.pub_singular[crnt_row + p]);
+ // mul scalar1 with scalar2
+ sclr_tmp = GF2Field.multElem(coeff_alpha[p][x1][x2],
+ this.b2[x1 + vins]);
+ this.pub_scalar[crnt_row + p] = GF2Field.addElem(
+ this.pub_scalar[crnt_row + p], GF2Field
+ .multElem(sclr_tmp, this.b2[x2]));
+ }
+ }
+ // multiply betas
+ for (int x1 = 0; x1 < vins; x1++)
+ {
+ for (int x2 = 0; x2 < vins; x2++)
+ {
+ // multiply polynomial1 with polynomial2
+ vect_tmp = c.multVect(coeff_beta[p][x1][x2],
+ this.A2[x1]);
+ coeff_quadratic_3dim[crnt_row + p] = c.addSquareMatrix(
+ coeff_quadratic_3dim[crnt_row + p], c
+ .multVects(vect_tmp, this.A2[x2]));
+ // mul poly1 with scalar2
+ vect_tmp = c.multVect(this.b2[x2], vect_tmp);
+ this.pub_singular[crnt_row + p] = c.addVect(vect_tmp,
+ this.pub_singular[crnt_row + p]);
+ // mul scalar1 with poly2
+ vect_tmp = c.multVect(coeff_beta[p][x1][x2],
+ this.A2[x2]);
+ vect_tmp = c.multVect(this.b2[x1], vect_tmp);
+ this.pub_singular[crnt_row + p] = c.addVect(vect_tmp,
+ this.pub_singular[crnt_row + p]);
+ // mul scalar1 with scalar2
+ sclr_tmp = GF2Field.multElem(coeff_beta[p][x1][x2],
+ this.b2[x1]);
+ this.pub_scalar[crnt_row + p] = GF2Field.addElem(
+ this.pub_scalar[crnt_row + p], GF2Field
+ .multElem(sclr_tmp, this.b2[x2]));
+ }
+ }
+ // multiply gammas
+ for (int n = 0; n < vins + oils; n++)
+ {
+ // mul poly with scalar
+ vect_tmp = c.multVect(coeff_gamma[p][n], this.A2[n]);
+ this.pub_singular[crnt_row + p] = c.addVect(vect_tmp,
+ this.pub_singular[crnt_row + p]);
+ // mul scalar with scalar
+ this.pub_scalar[crnt_row + p] = GF2Field.addElem(
+ this.pub_scalar[crnt_row + p], GF2Field.multElem(
+ coeff_gamma[p][n], this.b2[n]));
+ }
+ // add eta
+ this.pub_scalar[crnt_row + p] = GF2Field.addElem(
+ this.pub_scalar[crnt_row + p], coeff_eta[p]);
+ }
+ crnt_row = crnt_row + oils;
+ }
+
+ // Apply L1 = A1*x+b1 to composition of F and L2
+ {
+ // temporary coefficient arrays
+ short[][][] tmp_c_quad = new short[rows][vars][vars];
+ short[][] tmp_c_sing = new short[rows][vars];
+ short[] tmp_c_scal = new short[rows];
+ for (int r = 0; r < rows; r++)
+ {
+ for (int q = 0; q < A1.length; q++)
+ {
+ tmp_c_quad[r] = c.addSquareMatrix(tmp_c_quad[r], c
+ .multMatrix(A1[r][q], coeff_quadratic_3dim[q]));
+ tmp_c_sing[r] = c.addVect(tmp_c_sing[r], c.multVect(
+ A1[r][q], this.pub_singular[q]));
+ tmp_c_scal[r] = GF2Field.addElem(tmp_c_scal[r], GF2Field
+ .multElem(A1[r][q], this.pub_scalar[q]));
+ }
+ tmp_c_scal[r] = GF2Field.addElem(tmp_c_scal[r], b1[r]);
+ }
+ // set public key
+ coeff_quadratic_3dim = tmp_c_quad;
+ this.pub_singular = tmp_c_sing;
+ this.pub_scalar = tmp_c_scal;
+ }
+ compactPublicKey(coeff_quadratic_3dim);
+ }
+
+ /**
+ * The quadratic (or mixed) terms of the public key are compacted from a n x
+ * n matrix per polynomial to an upper diagonal matrix stored in one integer
+ * array of n (n + 1) / 2 elements per polynomial. The ordering of elements
+ * is lexicographic and the result is updating <tt>this.pub_quadratic</tt>,
+ * which stores the quadratic elements of the public key.
+ *
+ * @param coeff_quadratic_to_compact 3-dimensional array containing a n x n Matrix for each of the
+ * n - v1 polynomials
+ */
+ private void compactPublicKey(short[][][] coeff_quadratic_to_compact)
+ {
+ int polynomials = coeff_quadratic_to_compact.length;
+ int n = coeff_quadratic_to_compact[0].length;
+ int entries = n * (n + 1) / 2;// the small gauss
+ this.pub_quadratic = new short[polynomials][entries];
+ int offset = 0;
+
+ for (int p = 0; p < polynomials; p++)
+ {
+ offset = 0;
+ for (int x = 0; x < n; x++)
+ {
+ for (int y = x; y < n; y++)
+ {
+ if (y == x)
+ {
+ this.pub_quadratic[p][offset] = coeff_quadratic_to_compact[p][x][y];
+ }
+ else
+ {
+ this.pub_quadratic[p][offset] = GF2Field.addElem(
+ coeff_quadratic_to_compact[p][x][y],
+ coeff_quadratic_to_compact[p][y][x]);
+ }
+ offset++;
+ }
+ }
+ }
+ }
+
+ public void init(KeyGenerationParameters param)
+ {
+ this.initialize(param);
+ }
+
+ public AsymmetricCipherKeyPair generateKeyPair()
+ {
+ return genKeyPair();
+ }
+}
diff --git a/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyParameters.java b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyParameters.java
new file mode 100644
index 00000000..9dec6853
--- /dev/null
+++ b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyParameters.java
@@ -0,0 +1,25 @@
+package org.bouncycastle.pqc.crypto.rainbow;
+
+import org.bouncycastle.crypto.params.AsymmetricKeyParameter;
+
+public class RainbowKeyParameters
+ extends AsymmetricKeyParameter
+{
+ private int docLength;
+
+ public RainbowKeyParameters(
+ boolean isPrivate,
+ int docLength)
+ {
+ super(isPrivate);
+ this.docLength = docLength;
+ }
+
+ /**
+ * @return the docLength
+ */
+ public int getDocLength()
+ {
+ return this.docLength;
+ }
+}
diff --git a/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowParameters.java b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowParameters.java
new file mode 100644
index 00000000..147c55e9
--- /dev/null
+++ b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowParameters.java
@@ -0,0 +1,111 @@
+package org.bouncycastle.pqc.crypto.rainbow;
+
+import org.bouncycastle.crypto.CipherParameters;
+
+public class RainbowParameters
+ implements CipherParameters
+{
+
+ /**
+ * DEFAULT PARAMS
+ */
+ /*
+ * Vi = vinegars per layer whereas n is vu (vu = 33 = n) such that
+ *
+ * v1 = 6; o1 = 12-6 = 6
+ *
+ * v2 = 12; o2 = 17-12 = 5
+ *
+ * v3 = 17; o3 = 22-17 = 5
+ *
+ * v4 = 22; o4 = 33-22 = 11
+ *
+ * v5 = 33; (o5 = 0)
+ */
+ private final int[] DEFAULT_VI = {6, 12, 17, 22, 33};
+
+ private int[] vi;// set of vinegar vars per layer.
+
+ /**
+ * Default Constructor The elements of the array containing the number of
+ * Vinegar variables in each layer are set to the default values here.
+ */
+ public RainbowParameters()
+ {
+ this.vi = this.DEFAULT_VI;
+ }
+
+ /**
+ * Constructor with parameters
+ *
+ * @param vi The elements of the array containing the number of Vinegar
+ * variables per layer are set to the values of the input array.
+ */
+ public RainbowParameters(int[] vi)
+ {
+ this.vi = vi;
+ try
+ {
+ checkParams();
+ }
+ catch (Exception e)
+ {
+ e.printStackTrace();
+ }
+ }
+
+ private void checkParams()
+ throws Exception
+ {
+ if (vi == null)
+ {
+ throw new Exception("no layers defined.");
+ }
+ if (vi.length > 1)
+ {
+ for (int i = 0; i < vi.length - 1; i++)
+ {
+ if (vi[i] >= vi[i + 1])
+ {
+ throw new Exception(
+ "v[i] has to be smaller than v[i+1]");
+ }
+ }
+ }
+ else
+ {
+ throw new Exception(
+ "Rainbow needs at least 1 layer, such that v1 < v2.");
+ }
+ }
+
+ /**
+ * Getter for the number of layers
+ *
+ * @return the number of layers
+ */
+ public int getNumOfLayers()
+ {
+ return this.vi.length - 1;
+ }
+
+ /**
+ * Getter for the number of all the polynomials in Rainbow
+ *
+ * @return the number of the polynomials
+ */
+ public int getDocLength()
+ {
+ return vi[vi.length - 1] - vi[0];
+ }
+
+ /**
+ * Getter for the array containing the number of Vinegar-variables per layer
+ *
+ * @return the numbers of vinegars per layer
+ */
+ public int[] getVi()
+ {
+ return this.vi;
+ }
+}
diff --git a/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowPrivateKeyParameters.java b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowPrivateKeyParameters.java
new file mode 100644
index 00000000..98768820
--- /dev/null
+++ b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowPrivateKeyParameters.java
@@ -0,0 +1,117 @@
+package org.bouncycastle.pqc.crypto.rainbow;
+
+public class RainbowPrivateKeyParameters
+ extends RainbowKeyParameters
+{
+ /**
+ * Constructor
+ *
+ * @param A1inv the inverse of A1(the matrix part of the affine linear map L1)
+ * (n-v1 x n-v1 matrix)
+ * @param b1 translation vector, part of the linear affine map L1
+ * @param A2inv the inverse of A2(the matrix part of the affine linear map L2)
+ * (n x n matrix)
+ * @param b2 translation vector, part of the linear affine map L2
+ * @param vi the number of Vinegar-variables per layer
+ * @param layers the polynomials with their coefficients of private map F
+ */
+ public RainbowPrivateKeyParameters(short[][] A1inv, short[] b1,
+ short[][] A2inv, short[] b2, int[] vi, Layer[] layers)
+ {
+ super(true, vi[vi.length - 1] - vi[0]);
+
+ this.A1inv = A1inv;
+ this.b1 = b1;
+ this.A2inv = A2inv;
+ this.b2 = b2;
+ this.vi = vi;
+ this.layers = layers;
+ }
+
+ /*
+ * invertible affine linear map L1
+ */
+ // the inverse of A1, (n-v1 x n-v1 matrix)
+ private short[][] A1inv;
+
+ // translation vector of L1
+ private short[] b1;
+
+ /*
+ * invertible affine linear map L2
+ */
+ // the inverse of A2, (n x n matrix)
+ private short[][] A2inv;
+
+ // translation vector of L2
+ private short[] b2;
+
+ /*
+ * components of F
+ */
+ // the number of Vinegar-variables per layer.
+ private int[] vi;
+
+ // contains the polynomials with their coefficients of private map F
+ private Layer[] layers;
+
+ /**
+ * Getter for the translation part of the private quadratic map L1.
+ *
+ * @return b1 the translation part of L1
+ */
+ public short[] getB1()
+ {
+ return this.b1;
+ }
+
+ /**
+ * Getter for the inverse matrix of A1.
+ *
+ * @return the A1inv inverse
+ */
+ public short[][] getInvA1()
+ {
+ return this.A1inv;
+ }
+
+ /**
+ * Getter for the translation part of the private quadratic map L2.
+ *
+ * @return b2 the translation part of L2
+ */
+ public short[] getB2()
+ {
+ return this.b2;
+ }
+
+ /**
+ * Getter for the inverse matrix of A2
+ *
+ * @return the A2inv
+ */
+ public short[][] getInvA2()
+ {
+ return this.A2inv;
+ }
+
+ /**
+ * Returns the layers contained in the private key
+ *
+ * @return layers
+ */
+ public Layer[] getLayers()
+ {
+ return this.layers;
+ }
+
+ /**
+ * /** Returns the array of vi-s
+ *
+ * @return the vi
+ */
+ public int[] getVi()
+ {
+ return vi;
+ }
+}
diff --git a/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowPublicKeyParameters.java b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowPublicKeyParameters.java
new file mode 100644
index 00000000..6f3e46f2
--- /dev/null
+++ b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowPublicKeyParameters.java
@@ -0,0 +1,53 @@
+package org.bouncycastle.pqc.crypto.rainbow;
+
+public class RainbowPublicKeyParameters
+ extends RainbowKeyParameters
+{
+ private short[][] coeffquadratic;
+ private short[][] coeffsingular;
+ private short[] coeffscalar;
+
+ /**
+ * Constructor
+ *
+ * @param docLength
+ * @param coeffQuadratic
+ * @param coeffSingular
+ * @param coeffScalar
+ */
+ public RainbowPublicKeyParameters(int docLength,
+ short[][] coeffQuadratic, short[][] coeffSingular,
+ short[] coeffScalar)
+ {
+ super(false, docLength);
+
+ this.coeffquadratic = coeffQuadratic;
+ this.coeffsingular = coeffSingular;
+ this.coeffscalar = coeffScalar;
+
+ }
+
+ /**
+ * @return the coeffquadratic
+ */
+ public short[][] getCoeffQuadratic()
+ {
+ return coeffquadratic;
+ }
+
+ /**
+ * @return the coeffsingular
+ */
+ public short[][] getCoeffSingular()
+ {
+ return coeffsingular;
+ }
+
+ /**
+ * @return the coeffscalar
+ */
+ public short[] getCoeffScalar()
+ {
+ return coeffscalar;
+ }
+}
diff --git a/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowSigner.java b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowSigner.java
new file mode 100644
index 00000000..b6014a54
--- /dev/null
+++ b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowSigner.java
@@ -0,0 +1,301 @@
+package org.bouncycastle.pqc.crypto.rainbow;
+
+import java.security.SecureRandom;
+
+import org.bouncycastle.crypto.CipherParameters;
+import org.bouncycastle.crypto.params.ParametersWithRandom;
+import org.bouncycastle.pqc.crypto.MessageSigner;
+import org.bouncycastle.pqc.crypto.rainbow.util.ComputeInField;
+import org.bouncycastle.pqc.crypto.rainbow.util.GF2Field;
+
+/**
+ * It implements the sign and verify functions for the Rainbow Signature Scheme.
+ * Here the message, which has to be signed, is updated. The use of
+ * different hash functions is possible.
+ * <p/>
+ * Detailed information about the signature and the verify-method is to be found
+ * in the paper of Jintai Ding, Dieter Schmidt: Rainbow, a New Multivariable
+ * Polynomial Signature Scheme. ACNS 2005: 164-175
+ * (http://dx.doi.org/10.1007/11496137_12)
+ */
+public class RainbowSigner
+ implements MessageSigner
+{
+ // Source of randomness
+ private SecureRandom random;
+
+ // The length of a document that can be signed with the privKey
+ int signableDocumentLength;
+
+ // Container for the oil and vinegar variables of all the layers
+ private short[] x;
+
+ private ComputeInField cf = new ComputeInField();
+
+ RainbowKeyParameters key;
+
+ public void init(boolean forSigning,
+ CipherParameters param)
+ {
+ if (forSigning)
+ {
+ if (param instanceof ParametersWithRandom)
+ {
+ ParametersWithRandom rParam = (ParametersWithRandom)param;
+
+ this.random = rParam.getRandom();
+ this.key = (RainbowPrivateKeyParameters)rParam.getParameters();
+
+ }
+ else
+ {
+
+ this.random = new SecureRandom();
+ this.key = (RainbowPrivateKeyParameters)param;
+ }
+ }
+ else
+ {
+ this.key = (RainbowPublicKeyParameters)param;
+ }
+
+ this.signableDocumentLength = this.key.getDocLength();
+ }
+
+
+ /**
+ * initial operations before solving the Linear equation system.
+ *
+ * @param layer the current layer for which a LES is to be solved.
+ * @param msg the message that should be signed.
+ * @return Y_ the modified document needed for solving LES, (Y_ =
+ * A1^{-1}*(Y-b1)) linear map L1 = A1 x + b1.
+ */
+ private short[] initSign(Layer[] layer, short[] msg)
+ {
+
+ /* preparation: Modifies the document with the inverse of L1 */
+ // tmp = Y - b1:
+ short[] tmpVec = new short[msg.length];
+
+ tmpVec = cf.addVect(((RainbowPrivateKeyParameters)this.key).getB1(), msg);
+
+ // Y_ = A1^{-1} * (Y - b1) :
+ short[] Y_ = cf.multiplyMatrix(((RainbowPrivateKeyParameters)this.key).getInvA1(), tmpVec);
+
+ /* generates the vinegar vars of the first layer at random */
+ for (int i = 0; i < layer[0].getVi(); i++)
+ {
+ x[i] = (short)random.nextInt();
+ x[i] = (short)(x[i] & GF2Field.MASK);
+ }
+
+ return Y_;
+ }
+
+ /**
+ * This function signs the message that has been updated, making use of the
+ * private key.
+ * <p/>
+ * For computing the signature, L1 and L2 are needed, as well as LES should
+ * be solved for each layer in order to find the Oil-variables in the layer.
+ * <p/>
+ * The Vinegar-variables of the first layer are random generated.
+ *
+ * @param message the message
+ * @return the signature of the message.
+ */
+ public byte[] generateSignature(byte[] message)
+ {
+ Layer[] layer = ((RainbowPrivateKeyParameters)this.key).getLayers();
+ int numberOfLayers = layer.length;
+
+ x = new short[((RainbowPrivateKeyParameters)this.key).getInvA2().length]; // all variables
+
+ short[] Y_; // modified document
+ short[] y_i; // part of Y_ each polynomial
+ int counter; // index of the current part of the doc
+
+ short[] solVec; // the solution of LES pro layer
+ short[] tmpVec;
+
+ // the signature as an array of shorts:
+ short[] signature;
+ // the signature as a byte-array:
+ byte[] S = new byte[layer[numberOfLayers - 1].getViNext()];
+
+ short[] msgHashVals = makeMessageRepresentative(message);
+
+ // shows if an exception is caught
+ boolean ok;
+ do
+ {
+ ok = true;
+ counter = 0;
+ try
+ {
+ Y_ = initSign(layer, msgHashVals);
+
+ for (int i = 0; i < numberOfLayers; i++)
+ {
+
+ y_i = new short[layer[i].getOi()];
+ solVec = new short[layer[i].getOi()]; // solution of LES
+
+ /* copy oi elements of Y_ into y_i */
+ for (int k = 0; k < layer[i].getOi(); k++)
+ {
+ y_i[k] = Y_[counter];
+ counter++; // current index of Y_
+ }
+
+ /*
+ * plug in the vars of the previous layer in order to get
+ * the vars of the current layer
+ */
+ solVec = cf.solveEquation(layer[i].plugInVinegars(x), y_i);
+
+ if (solVec == null)
+ { // LES is not solveable
+ throw new Exception("LES is not solveable!");
+ }
+
+ /* copy the new vars into the x-array */
+ for (int j = 0; j < solVec.length; j++)
+ {
+ x[layer[i].getVi() + j] = solVec[j];
+ }
+ }
+
+ /* apply the inverse of L2: (signature = A2^{-1}*(b2+x)) */
+ tmpVec = cf.addVect(((RainbowPrivateKeyParameters)this.key).getB2(), x);
+ signature = cf.multiplyMatrix(((RainbowPrivateKeyParameters)this.key).getInvA2(), tmpVec);
+
+ /* cast signature from short[] to byte[] */
+ for (int i = 0; i < S.length; i++)
+ {
+ S[i] = ((byte)signature[i]);
+ }
+ }
+ catch (Exception se)
+ {
+ // if one of the LESs was not solveable - sign again
+ ok = false;
+ }
+ }
+ while (!ok);
+ /* return the signature in bytes */
+ return S;
+ }
+
+ /**
+ * This function verifies the signature of the message that has been
+ * updated, with the aid of the public key.
+ *
+ * @param message the message
+ * @param signature the signature of the message
+ * @return true if the signature has been verified, false otherwise.
+ */
+ public boolean verifySignature(byte[] message, byte[] signature)
+ {
+ short[] sigInt = new short[signature.length];
+ short tmp;
+
+ for (int i = 0; i < signature.length; i++)
+ {
+ tmp = (short)signature[i];
+ tmp &= (short)0xff;
+ sigInt[i] = tmp;
+ }
+
+ short[] msgHashVal = makeMessageRepresentative(message);
+
+ // verify
+ short[] verificationResult = verifySignatureIntern(sigInt);
+
+ // compare
+ boolean verified = true;
+ if (msgHashVal.length != verificationResult.length)
+ {
+ return false;
+ }
+ for (int i = 0; i < msgHashVal.length; i++)
+ {
+ verified = verified && msgHashVal[i] == verificationResult[i];
+ }
+
+ return verified;
+ }
+
+ /**
+ * Signature verification using public key
+ *
+ * @param signature vector of dimension n
+ * @return document hash of length n - v1
+ */
+ private short[] verifySignatureIntern(short[] signature)
+ {
+
+ short[][] coeff_quadratic = ((RainbowPublicKeyParameters)this.key).getCoeffQuadratic();
+ short[][] coeff_singular = ((RainbowPublicKeyParameters)this.key).getCoeffSingular();
+ short[] coeff_scalar = ((RainbowPublicKeyParameters)this.key).getCoeffScalar();
+
+ short[] rslt = new short[coeff_quadratic.length];// n - v1
+ int n = coeff_singular[0].length;
+ int offset = 0; // array position
+ short tmp = 0; // for scalar
+
+ for (int p = 0; p < coeff_quadratic.length; p++)
+ { // no of polynomials
+ offset = 0;
+ for (int x = 0; x < n; x++)
+ {
+ // calculate quadratic terms
+ for (int y = x; y < n; y++)
+ {
+ tmp = GF2Field.multElem(coeff_quadratic[p][offset],
+ GF2Field.multElem(signature[x], signature[y]));
+ rslt[p] = GF2Field.addElem(rslt[p], tmp);
+ offset++;
+ }
+ // calculate singular terms
+ tmp = GF2Field.multElem(coeff_singular[p][x], signature[x]);
+ rslt[p] = GF2Field.addElem(rslt[p], tmp);
+ }
+ // add scalar
+ rslt[p] = GF2Field.addElem(rslt[p], coeff_scalar[p]);
+ }
+
+ return rslt;
+ }
+
+ /**
+ * This function creates the representative of the message which gets signed
+ * or verified.
+ *
+ * @param message the message
+ * @return message representative
+ */
+ private short[] makeMessageRepresentative(byte[] message)
+ {
+ // the message representative
+ short[] output = new short[this.signableDocumentLength];
+
+ int h = 0;
+ int i = 0;
+ do
+ {
+ if (i >= message.length)
+ {
+ break;
+ }
+ output[i] = (short)message[h];
+ output[i] &= (short)0xff;
+ h++;
+ i++;
+ }
+ while (i < output.length);
+
+ return output;
+ }
+}
diff --git a/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/util/ComputeInField.java b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/util/ComputeInField.java
new file mode 100644
index 00000000..9a1115da
--- /dev/null
+++ b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/util/ComputeInField.java
@@ -0,0 +1,490 @@
+package org.bouncycastle.pqc.crypto.rainbow.util;
+
+/**
+ * This class offers different operations on matrices in field GF2^8.
+ * <p/>
+ * Implemented are functions:
+ * - finding inverse of a matrix
+ * - solving linear equation systems using the Gauss-Elimination method
+ * - basic operations like matrix multiplication, addition and so on.
+ */
+
+public class ComputeInField
+{
+
+ private short[][] A; // used by solveEquation and inverse
+ short[] x;
+
+ /**
+ * Constructor with no parameters
+ */
+ public ComputeInField()
+ {
+ }
+
+
+ /**
+ * This function finds a solution of the equation Bx = b.
+ * Exception is thrown if the linear equation system has no solution
+ *
+ * @param B this matrix is the left part of the
+ * equation (B in the equation above)
+ * @param b the right part of the equation
+ * (b in the equation above)
+ * @return x the solution of the equation if it is solvable
+ * null otherwise
+ * @throws RuntimeException if LES is not solvable
+ */
+ public short[] solveEquation(short[][] B, short[] b)
+ {
+ try
+ {
+
+ if (B.length != b.length)
+ {
+ throw new RuntimeException(
+ "The equation system is not solvable");
+ }
+
+ /** initialize **/
+ // this matrix stores B and b from the equation B*x = b
+ // b is stored as the last column.
+ // B contains one column more than rows.
+ // In this column we store a free coefficient that should be later subtracted from b
+ A = new short[B.length][B.length + 1];
+ // stores the solution of the LES
+ x = new short[B.length];
+
+ /** copy B into the global matrix A **/
+ for (int i = 0; i < B.length; i++)
+ { // rows
+ for (int j = 0; j < B[0].length; j++)
+ { // cols
+ A[i][j] = B[i][j];
+ }
+ }
+
+ /** copy the vector b into the global A **/
+ //the free coefficient, stored in the last column of A( A[i][b.length]
+ // is to be subtracted from b
+ for (int i = 0; i < b.length; i++)
+ {
+ A[i][b.length] = GF2Field.addElem(b[i], A[i][b.length]);
+ }
+
+ /** call the methods for gauss elimination and backward substitution **/
+ computeZerosUnder(false); // obtain zeros under the diagonal
+ substitute();
+
+ return x;
+
+ }
+ catch (RuntimeException rte)
+ {
+ return null; // the LES is not solvable!
+ }
+ }
+
+ /**
+ * This function computes the inverse of a given matrix using the Gauss-
+ * Elimination method.
+ * <p/>
+ * An exception is thrown if the matrix has no inverse
+ *
+ * @param coef the matrix which inverse matrix is needed
+ * @return inverse matrix of the input matrix.
+ * If the matrix is singular, null is returned.
+ * @throws RuntimeException if the given matrix is not invertible
+ */
+ public short[][] inverse(short[][] coef)
+ {
+ try
+ {
+ /** Initialization: **/
+ short factor;
+ short[][] inverse;
+ A = new short[coef.length][2 * coef.length];
+ if (coef.length != coef[0].length)
+ {
+ throw new RuntimeException(
+ "The matrix is not invertible. Please choose another one!");
+ }
+
+ /** prepare: Copy coef and the identity matrix into the global A. **/
+ for (int i = 0; i < coef.length; i++)
+ {
+ for (int j = 0; j < coef.length; j++)
+ {
+ //copy the input matrix coef into A
+ A[i][j] = coef[i][j];
+ }
+ // copy the identity matrix into A.
+ for (int j = coef.length; j < 2 * coef.length; j++)
+ {
+ A[i][j] = 0;
+ }
+ A[i][i + A.length] = 1;
+ }
+
+ /** Elimination operations to get the identity matrix from the left side of A. **/
+ // modify A to get 0s under the diagonal.
+ computeZerosUnder(true);
+
+ // modify A to get only 1s on the diagonal: A[i][j] =A[i][j]/A[i][i].
+ for (int i = 0; i < A.length; i++)
+ {
+ factor = GF2Field.invElem(A[i][i]);
+ for (int j = i; j < 2 * A.length; j++)
+ {
+ A[i][j] = GF2Field.multElem(A[i][j], factor);
+ }
+ }
+
+ //modify A to get only 0s above the diagonal.
+ computeZerosAbove();
+
+ // copy the result (the second half of A) in the matrix inverse.
+ inverse = new short[A.length][A.length];
+ for (int i = 0; i < A.length; i++)
+ {
+ for (int j = A.length; j < 2 * A.length; j++)
+ {
+ inverse[i][j - A.length] = A[i][j];
+ }
+ }
+ return inverse;
+
+ }
+ catch (RuntimeException rte)
+ {
+ // The matrix is not invertible! A new one should be generated!
+ return null;
+ }
+ }
+
+ /**
+ * Elimination under the diagonal.
+ * This function changes a matrix so that it contains only zeros under the
+ * diagonal(Ai,i) using only Gauss-Elimination operations.
+ * <p/>
+ * It is used in solveEquaton as well as in the function for
+ * finding an inverse of a matrix: {@link}inverse. Both of them use the
+ * Gauss-Elimination Method.
+ * <p/>
+ * The result is stored in the global matrix A
+ *
+ * @param usedForInverse This parameter shows if the function is used by the
+ * solveEquation-function or by the inverse-function and according
+ * to this creates matrices of different sizes.
+ * @throws RuntimeException in case a multiplicative inverse of 0 is needed
+ */
+ private void computeZerosUnder(boolean usedForInverse)
+ throws RuntimeException
+ {
+
+ //the number of columns in the global A where the tmp results are stored
+ int length;
+ short tmp = 0;
+
+ //the function is used in inverse() - A should have 2 times more columns than rows
+ if (usedForInverse)
+ {
+ length = 2 * A.length;
+ }
+ //the function is used in solveEquation - A has 1 column more than rows
+ else
+ {
+ length = A.length + 1;
+ }
+
+ //elimination operations to modify A so that that it contains only 0s under the diagonal
+ for (int k = 0; k < A.length - 1; k++)
+ { // the fixed row
+ for (int i = k + 1; i < A.length; i++)
+ { // rows
+ short factor1 = A[i][k];
+ short factor2 = GF2Field.invElem(A[k][k]);
+
+ //The element which multiplicative inverse is needed, is 0
+ //in this case is the input matrix not invertible
+ if (factor2 == 0)
+ {
+ throw new RuntimeException("Matrix not invertible! We have to choose another one!");
+ }
+
+ for (int j = k; j < length; j++)
+ {// columns
+ // tmp=A[k,j] / A[k,k]
+ tmp = GF2Field.multElem(A[k][j], factor2);
+ // tmp = A[i,k] * A[k,j] / A[k,k]
+ tmp = GF2Field.multElem(factor1, tmp);
+ // A[i,j]=A[i,j]-A[i,k]/A[k,k]*A[k,j];
+ A[i][j] = GF2Field.addElem(A[i][j], tmp);
+ }
+ }
+ }
+ }
+
+ /**
+ * Elimination above the diagonal.
+ * This function changes a matrix so that it contains only zeros above the
+ * diagonal(Ai,i) using only Gauss-Elimination operations.
+ * <p/>
+ * It is used in the inverse-function
+ * The result is stored in the global matrix A
+ *
+ * @throws RuntimeException in case a multiplicative inverse of 0 is needed
+ */
+ private void computeZerosAbove()
+ throws RuntimeException
+ {
+ short tmp = 0;
+ for (int k = A.length - 1; k > 0; k--)
+ { // the fixed row
+ for (int i = k - 1; i >= 0; i--)
+ { // rows
+ short factor1 = A[i][k];
+ short factor2 = GF2Field.invElem(A[k][k]);
+ if (factor2 == 0)
+ {
+ throw new RuntimeException("The matrix is not invertible");
+ }
+ for (int j = k; j < 2 * A.length; j++)
+ { // columns
+ // tmp = A[k,j] / A[k,k]
+ tmp = GF2Field.multElem(A[k][j], factor2);
+ // tmp = A[i,k] * A[k,j] / A[k,k]
+ tmp = GF2Field.multElem(factor1, tmp);
+ // A[i,j] = A[i,j] - A[i,k] / A[k,k] * A[k,j];
+ A[i][j] = GF2Field.addElem(A[i][j], tmp);
+ }
+ }
+ }
+ }
+
+
+ /**
+ * This function uses backward substitution to find x
+ * of the linear equation system (LES) B*x = b,
+ * where A a triangle-matrix is (contains only zeros under the diagonal)
+ * and b is a vector
+ * <p/>
+ * If the multiplicative inverse of 0 is needed, an exception is thrown.
+ * In this case is the LES not solvable
+ *
+ * @throws RuntimeException in case a multiplicative inverse of 0 is needed
+ */
+ private void substitute()
+ throws RuntimeException
+ {
+
+ // for the temporary results of the operations in field
+ short tmp, temp;
+
+ temp = GF2Field.invElem(A[A.length - 1][A.length - 1]);
+ if (temp == 0)
+ {
+ throw new RuntimeException("The equation system is not solvable");
+ }
+
+ /** backward substitution **/
+ x[A.length - 1] = GF2Field.multElem(A[A.length - 1][A.length], temp);
+ for (int i = A.length - 2; i >= 0; i--)
+ {
+ tmp = A[i][A.length];
+ for (int j = A.length - 1; j > i; j--)
+ {
+ temp = GF2Field.multElem(A[i][j], x[j]);
+ tmp = GF2Field.addElem(tmp, temp);
+ }
+
+ temp = GF2Field.invElem(A[i][i]);
+ if (temp == 0)
+ {
+ throw new RuntimeException("Not solvable equation system");
+ }
+ x[i] = GF2Field.multElem(tmp, temp);
+ }
+ }
+
+
+ /**
+ * This function multiplies two given matrices.
+ * If the given matrices cannot be multiplied due
+ * to different sizes, an exception is thrown.
+ *
+ * @param M1 -the 1st matrix
+ * @param M2 -the 2nd matrix
+ * @return A = M1*M2
+ * @throws RuntimeException in case the given matrices cannot be multiplied
+ * due to different dimensions.
+ */
+ public short[][] multiplyMatrix(short[][] M1, short[][] M2)
+ throws RuntimeException
+ {
+
+ if (M1[0].length != M2.length)
+ {
+ throw new RuntimeException("Multiplication is not possible!");
+ }
+ short tmp = 0;
+ A = new short[M1.length][M2[0].length];
+ for (int i = 0; i < M1.length; i++)
+ {
+ for (int j = 0; j < M2.length; j++)
+ {
+ for (int k = 0; k < M2[0].length; k++)
+ {
+ tmp = GF2Field.multElem(M1[i][j], M2[j][k]);
+ A[i][k] = GF2Field.addElem(A[i][k], tmp);
+ }
+ }
+ }
+ return A;
+ }
+
+ /**
+ * This function multiplies a given matrix with a one-dimensional array.
+ * <p/>
+ * An exception is thrown, if the number of columns in the matrix and
+ * the number of rows in the one-dim. array differ.
+ *
+ * @param M1 the matrix to be multiplied
+ * @param m the one-dimensional array to be multiplied
+ * @return M1*m
+ * @throws RuntimeException in case of dimension inconsistency
+ */
+ public short[] multiplyMatrix(short[][] M1, short[] m)
+ throws RuntimeException
+ {
+ if (M1[0].length != m.length)
+ {
+ throw new RuntimeException("Multiplication is not possible!");
+ }
+ short tmp = 0;
+ short[] B = new short[M1.length];
+ for (int i = 0; i < M1.length; i++)
+ {
+ for (int j = 0; j < m.length; j++)
+ {
+ tmp = GF2Field.multElem(M1[i][j], m[j]);
+ B[i] = GF2Field.addElem(B[i], tmp);
+ }
+ }
+ return B;
+ }
+
+ /**
+ * Addition of two vectors
+ *
+ * @param vector1 first summand, always of dim n
+ * @param vector2 second summand, always of dim n
+ * @return addition of vector1 and vector2
+ * @throws RuntimeException in case the addition is impossible
+ * due to inconsistency in the dimensions
+ */
+ public short[] addVect(short[] vector1, short[] vector2)
+ {
+ if (vector1.length != vector2.length)
+ {
+ throw new RuntimeException("Multiplication is not possible!");
+ }
+ short rslt[] = new short[vector1.length];
+ for (int n = 0; n < rslt.length; n++)
+ {
+ rslt[n] = GF2Field.addElem(vector1[n], vector2[n]);
+ }
+ return rslt;
+ }
+
+ /**
+ * Multiplication of column vector with row vector
+ *
+ * @param vector1 column vector, always n x 1
+ * @param vector2 row vector, always 1 x n
+ * @return resulting n x n matrix of multiplication
+ * @throws RuntimeException in case the multiplication is impossible due to
+ * inconsistency in the dimensions
+ */
+ public short[][] multVects(short[] vector1, short[] vector2)
+ {
+ if (vector1.length != vector2.length)
+ {
+ throw new RuntimeException("Multiplication is not possible!");
+ }
+ short rslt[][] = new short[vector1.length][vector2.length];
+ for (int i = 0; i < vector1.length; i++)
+ {
+ for (int j = 0; j < vector2.length; j++)
+ {
+ rslt[i][j] = GF2Field.multElem(vector1[i], vector2[j]);
+ }
+ }
+ return rslt;
+ }
+
+ /**
+ * Multiplies vector with scalar
+ *
+ * @param scalar galois element to multiply vector with
+ * @param vector vector to be multiplied
+ * @return vector multiplied with scalar
+ */
+ public short[] multVect(short scalar, short[] vector)
+ {
+ short rslt[] = new short[vector.length];
+ for (int n = 0; n < rslt.length; n++)
+ {
+ rslt[n] = GF2Field.multElem(scalar, vector[n]);
+ }
+ return rslt;
+ }
+
+ /**
+ * Multiplies matrix with scalar
+ *
+ * @param scalar galois element to multiply matrix with
+ * @param matrix 2-dim n x n matrix to be multiplied
+ * @return matrix multiplied with scalar
+ */
+ public short[][] multMatrix(short scalar, short[][] matrix)
+ {
+ short[][] rslt = new short[matrix.length][matrix[0].length];
+ for (int i = 0; i < matrix.length; i++)
+ {
+ for (int j = 0; j < matrix[0].length; j++)
+ {
+ rslt[i][j] = GF2Field.multElem(scalar, matrix[i][j]);
+ }
+ }
+ return rslt;
+ }
+
+ /**
+ * Adds the n x n matrices matrix1 and matrix2
+ *
+ * @param matrix1 first summand
+ * @param matrix2 second summand
+ * @return addition of matrix1 and matrix2; both having the dimensions n x n
+ * @throws RuntimeException in case the addition is not possible because of
+ * different dimensions of the matrices
+ */
+ public short[][] addSquareMatrix(short[][] matrix1, short[][] matrix2)
+ {
+ if (matrix1.length != matrix2.length || matrix1[0].length != matrix2[0].length)
+ {
+ throw new RuntimeException("Addition is not possible!");
+ }
+
+ short[][] rslt = new short[matrix1.length][matrix1.length];//
+ for (int i = 0; i < matrix1.length; i++)
+ {
+ for (int j = 0; j < matrix2.length; j++)
+ {
+ rslt[i][j] = GF2Field.addElem(matrix1[i][j], matrix2[i][j]);
+ }
+ }
+ return rslt;
+ }
+
+}
diff --git a/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/util/GF2Field.java b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/util/GF2Field.java
new file mode 100644
index 00000000..7c286491
--- /dev/null
+++ b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/util/GF2Field.java
@@ -0,0 +1,139 @@
+package org.bouncycastle.pqc.crypto.rainbow.util;
+
+/**
+ * This class provides the basic operations like addition, multiplication and
+ * finding the multiplicative inverse of an element in GF2^8.
+ * <p/>
+ * The operations are implemented using the irreducible polynomial
+ * 1+x^2+x^3+x^6+x^8 ( 1 0100 1101 = 0x14d )
+ * <p/>
+ * This class makes use of lookup tables(exps and logs) for implementing the
+ * operations in order to increase the efficiency of Rainbow.
+ */
+public class GF2Field
+{
+
+ public static final int MASK = 0xff;
+
+ /*
+ * this lookup table is needed for multiplication and computing the
+ * multiplicative inverse
+ */
+ static final short exps[] = {1, 2, 4, 8, 16, 32, 64, 128, 77, 154, 121, 242,
+ 169, 31, 62, 124, 248, 189, 55, 110, 220, 245, 167, 3, 6, 12, 24,
+ 48, 96, 192, 205, 215, 227, 139, 91, 182, 33, 66, 132, 69, 138, 89,
+ 178, 41, 82, 164, 5, 10, 20, 40, 80, 160, 13, 26, 52, 104, 208,
+ 237, 151, 99, 198, 193, 207, 211, 235, 155, 123, 246, 161, 15, 30,
+ 60, 120, 240, 173, 23, 46, 92, 184, 61, 122, 244, 165, 7, 14, 28,
+ 56, 112, 224, 141, 87, 174, 17, 34, 68, 136, 93, 186, 57, 114, 228,
+ 133, 71, 142, 81, 162, 9, 18, 36, 72, 144, 109, 218, 249, 191, 51,
+ 102, 204, 213, 231, 131, 75, 150, 97, 194, 201, 223, 243, 171, 27,
+ 54, 108, 216, 253, 183, 35, 70, 140, 85, 170, 25, 50, 100, 200,
+ 221, 247, 163, 11, 22, 44, 88, 176, 45, 90, 180, 37, 74, 148, 101,
+ 202, 217, 255, 179, 43, 86, 172, 21, 42, 84, 168, 29, 58, 116, 232,
+ 157, 119, 238, 145, 111, 222, 241, 175, 19, 38, 76, 152, 125, 250,
+ 185, 63, 126, 252, 181, 39, 78, 156, 117, 234, 153, 127, 254, 177,
+ 47, 94, 188, 53, 106, 212, 229, 135, 67, 134, 65, 130, 73, 146,
+ 105, 210, 233, 159, 115, 230, 129, 79, 158, 113, 226, 137, 95, 190,
+ 49, 98, 196, 197, 199, 195, 203, 219, 251, 187, 59, 118, 236, 149,
+ 103, 206, 209, 239, 147, 107, 214, 225, 143, 83, 166, 1};
+
+ /*
+ * this lookup table is needed for multiplication and computing the
+ * multiplicative inverse
+ */
+ static final short logs[] = {0, 0, 1, 23, 2, 46, 24, 83, 3, 106, 47, 147,
+ 25, 52, 84, 69, 4, 92, 107, 182, 48, 166, 148, 75, 26, 140, 53,
+ 129, 85, 170, 70, 13, 5, 36, 93, 135, 108, 155, 183, 193, 49, 43,
+ 167, 163, 149, 152, 76, 202, 27, 230, 141, 115, 54, 205, 130, 18,
+ 86, 98, 171, 240, 71, 79, 14, 189, 6, 212, 37, 210, 94, 39, 136,
+ 102, 109, 214, 156, 121, 184, 8, 194, 223, 50, 104, 44, 253, 168,
+ 138, 164, 90, 150, 41, 153, 34, 77, 96, 203, 228, 28, 123, 231, 59,
+ 142, 158, 116, 244, 55, 216, 206, 249, 131, 111, 19, 178, 87, 225,
+ 99, 220, 172, 196, 241, 175, 72, 10, 80, 66, 15, 186, 190, 199, 7,
+ 222, 213, 120, 38, 101, 211, 209, 95, 227, 40, 33, 137, 89, 103,
+ 252, 110, 177, 215, 248, 157, 243, 122, 58, 185, 198, 9, 65, 195,
+ 174, 224, 219, 51, 68, 105, 146, 45, 82, 254, 22, 169, 12, 139,
+ 128, 165, 74, 91, 181, 151, 201, 42, 162, 154, 192, 35, 134, 78,
+ 188, 97, 239, 204, 17, 229, 114, 29, 61, 124, 235, 232, 233, 60,
+ 234, 143, 125, 159, 236, 117, 30, 245, 62, 56, 246, 217, 63, 207,
+ 118, 250, 31, 132, 160, 112, 237, 20, 144, 179, 126, 88, 251, 226,
+ 32, 100, 208, 221, 119, 173, 218, 197, 64, 242, 57, 176, 247, 73,
+ 180, 11, 127, 81, 21, 67, 145, 16, 113, 187, 238, 191, 133, 200,
+ 161};
+
+ /**
+ * This function calculates the sum of two elements as an operation in GF2^8
+ *
+ * @param x the first element that is to be added
+ * @param y the second element that should be add
+ * @return the sum of the two elements x and y in GF2^8
+ */
+ public static short addElem(short x, short y)
+ {
+ return (short)(x ^ y);
+ }
+
+ /**
+ * This function computes the multiplicative inverse of a given element in
+ * GF2^8 The 0 has no multiplicative inverse and in this case 0 is returned.
+ *
+ * @param x the element which multiplicative inverse is to be computed
+ * @return the multiplicative inverse of the given element, in case it
+ * exists or 0, otherwise
+ */
+ public static short invElem(short x)
+ {
+ if (x == 0)
+ {
+ return 0;
+ }
+ return (exps[255 - logs[x]]);
+ }
+
+ /**
+ * This function multiplies two elements in GF2^8. If one of the two
+ * elements is 0, 0 is returned.
+ *
+ * @param x the first element to be multiplied.
+ * @param y the second element to be multiplied.
+ * @return the product of the two input elements in GF2^8.
+ */
+ public static short multElem(short x, short y)
+ {
+ if (x == 0 || y == 0)
+ {
+ return 0;
+ }
+ else
+ {
+ return (exps[(logs[x] + logs[y]) % 255]);
+ }
+ }
+
+ /**
+ * This function returns the values of exps-lookup table which correspond to
+ * the input
+ *
+ * @param x the index in the lookup table exps
+ * @return exps-value, corresponding to the input
+ */
+ public static short getExp(short x)
+ {
+ return exps[x];
+ }
+
+ /**
+ * This function returns the values of logs-lookup table which correspond to
+ * the input
+ *
+ * @param x the index in the lookup table logs
+ * @return logs-value, corresponding to the input
+ */
+ public static short getLog(short x)
+ {
+ return logs[x];
+ }
+
+
+}
diff --git a/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/util/RainbowUtil.java b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/util/RainbowUtil.java
new file mode 100644
index 00000000..2b073b1b
--- /dev/null
+++ b/core/src/main/java/org/bouncycastle/pqc/crypto/rainbow/util/RainbowUtil.java
@@ -0,0 +1,230 @@
+package org.bouncycastle.pqc.crypto.rainbow.util;
+
+/**
+ * This class is needed for the conversions while encoding and decoding, as well as for
+ * comparison between arrays of some dimensions
+ */
+public class RainbowUtil
+{
+
+ /**
+ * This function converts an one-dimensional array of bytes into a
+ * one-dimensional array of int
+ *
+ * @param in the array to be converted
+ * @return out
+ * the one-dimensional int-array that corresponds the input
+ */
+ public static int[] convertArraytoInt(byte[] in)
+ {
+ int[] out = new int[in.length];
+ for (int i = 0; i < in.length; i++)
+ {
+ out[i] = in[i] & GF2Field.MASK;
+ }
+ return out;
+ }
+
+ /**
+ * This function converts an one-dimensional array of bytes into a
+ * one-dimensional array of type short
+ *
+ * @param in the array to be converted
+ * @return out
+ * one-dimensional short-array that corresponds the input
+ */
+ public static short[] convertArray(byte[] in)
+ {
+ short[] out = new short[in.length];
+ for (int i = 0; i < in.length; i++)
+ {
+ out[i] = (short)(in[i] & GF2Field.MASK);
+ }
+ return out;
+ }
+
+ /**
+ * This function converts a matrix of bytes into a matrix of type short
+ *
+ * @param in the matrix to be converted
+ * @return out
+ * short-matrix that corresponds the input
+ */
+ public static short[][] convertArray(byte[][] in)
+ {
+ short[][] out = new short[in.length][in[0].length];
+ for (int i = 0; i < in.length; i++)
+ {
+ for (int j = 0; j < in[0].length; j++)
+ {
+ out[i][j] = (short)(in[i][j] & GF2Field.MASK);
+ }
+ }
+ return out;
+ }
+
+ /**
+ * This function converts a 3-dimensional array of bytes into a 3-dimensional array of type short
+ *
+ * @param in the array to be converted
+ * @return out
+ * short-array that corresponds the input
+ */
+ public static short[][][] convertArray(byte[][][] in)
+ {
+ short[][][] out = new short[in.length][in[0].length][in[0][0].length];
+ for (int i = 0; i < in.length; i++)
+ {
+ for (int j = 0; j < in[0].length; j++)
+ {
+ for (int k = 0; k < in[0][0].length; k++)
+ {
+ out[i][j][k] = (short)(in[i][j][k] & GF2Field.MASK);
+ }
+ }
+ }
+ return out;
+ }
+
+ /**
+ * This function converts an array of type int into an array of type byte
+ *
+ * @param in the array to be converted
+ * @return out
+ * the byte-array that corresponds the input
+ */
+ public static byte[] convertIntArray(int[] in)
+ {
+ byte[] out = new byte[in.length];
+ for (int i = 0; i < in.length; i++)
+ {
+ out[i] = (byte)in[i];
+ }
+ return out;
+ }
+
+
+ /**
+ * This function converts an array of type short into an array of type byte
+ *
+ * @param in the array to be converted
+ * @return out
+ * the byte-array that corresponds the input
+ */
+ public static byte[] convertArray(short[] in)
+ {
+ byte[] out = new byte[in.length];
+ for (int i = 0; i < in.length; i++)
+ {
+ out[i] = (byte)in[i];
+ }
+ return out;
+ }
+
+ /**
+ * This function converts a matrix of type short into a matrix of type byte
+ *
+ * @param in the matrix to be converted
+ * @return out
+ * the byte-matrix that corresponds the input
+ */
+ public static byte[][] convertArray(short[][] in)
+ {
+ byte[][] out = new byte[in.length][in[0].length];
+ for (int i = 0; i < in.length; i++)
+ {
+ for (int j = 0; j < in[0].length; j++)
+ {
+ out[i][j] = (byte)in[i][j];
+ }
+ }
+ return out;
+ }
+
+ /**
+ * This function converts a 3-dimensional array of type short into a 3-dimensional array of type byte
+ *
+ * @param in the array to be converted
+ * @return out
+ * the byte-array that corresponds the input
+ */
+ public static byte[][][] convertArray(short[][][] in)
+ {
+ byte[][][] out = new byte[in.length][in[0].length][in[0][0].length];
+ for (int i = 0; i < in.length; i++)
+ {
+ for (int j = 0; j < in[0].length; j++)
+ {
+ for (int k = 0; k < in[0][0].length; k++)
+ {
+ out[i][j][k] = (byte)in[i][j][k];
+ }
+ }
+ }
+ return out;
+ }
+
+ /**
+ * Compare two short arrays. No null checks are performed.
+ *
+ * @param left the first short array
+ * @param right the second short array
+ * @return the result of the comparison
+ */
+ public static boolean equals(short[] left, short[] right)
+ {
+ if (left.length != right.length)
+ {
+ return false;
+ }
+ boolean result = true;
+ for (int i = left.length - 1; i >= 0; i--)
+ {
+ result &= left[i] == right[i];
+ }
+ return result;
+ }
+
+ /**
+ * Compare two two-dimensional short arrays. No null checks are performed.
+ *
+ * @param left the first short array
+ * @param right the second short array
+ * @return the result of the comparison
+ */
+ public static boolean equals(short[][] left, short[][] right)
+ {
+ if (left.length != right.length)
+ {
+ return false;
+ }
+ boolean result = true;
+ for (int i = left.length - 1; i >= 0; i--)
+ {
+ result &= equals(left[i], right[i]);
+ }
+ return result;
+ }
+
+ /**
+ * Compare two three-dimensional short arrays. No null checks are performed.
+ *
+ * @param left the first short array
+ * @param right the second short array
+ * @return the result of the comparison
+ */
+ public static boolean equals(short[][][] left, short[][][] right)
+ {
+ if (left.length != right.length)
+ {
+ return false;
+ }
+ boolean result = true;
+ for (int i = left.length - 1; i >= 0; i--)
+ {
+ result &= equals(left[i], right[i]);
+ }
+ return result;
+ }
+
+}