Welcome to mirror list, hosted at ThFree Co, Russian Federation.

cygwin.com/git/newlib-cygwin.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'newlib/libm/common/fdlibm.h')
-rw-r--r--newlib/libm/common/fdlibm.h365
1 files changed, 0 insertions, 365 deletions
diff --git a/newlib/libm/common/fdlibm.h b/newlib/libm/common/fdlibm.h
deleted file mode 100644
index 7a0f28db4..000000000
--- a/newlib/libm/common/fdlibm.h
+++ /dev/null
@@ -1,365 +0,0 @@
-
-/* @(#)fdlibm.h 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* REDHAT LOCAL: Include files. */
-#include <math.h>
-#include <sys/types.h>
-#include <machine/ieeefp.h>
-
-/* REDHAT LOCAL: Default to XOPEN_MODE. */
-#define _XOPEN_MODE
-
-/* Most routines need to check whether a float is finite, infinite, or not a
- number, and many need to know whether the result of an operation will
- overflow. These conditions depend on whether the largest exponent is
- used for NaNs & infinities, or whether it's used for finite numbers. The
- macros below wrap up that kind of information:
-
- FLT_UWORD_IS_FINITE(X)
- True if a positive float with bitmask X is finite.
-
- FLT_UWORD_IS_NAN(X)
- True if a positive float with bitmask X is not a number.
-
- FLT_UWORD_IS_INFINITE(X)
- True if a positive float with bitmask X is +infinity.
-
- FLT_UWORD_MAX
- The bitmask of FLT_MAX.
-
- FLT_UWORD_HALF_MAX
- The bitmask of FLT_MAX/2.
-
- FLT_UWORD_EXP_MAX
- The bitmask of the largest finite exponent (129 if the largest
- exponent is used for finite numbers, 128 otherwise).
-
- FLT_UWORD_LOG_MAX
- The bitmask of log(FLT_MAX), rounded down. This value is the largest
- input that can be passed to exp() without producing overflow.
-
- FLT_UWORD_LOG_2MAX
- The bitmask of log(2*FLT_MAX), rounded down. This value is the
- largest input than can be passed to cosh() without producing
- overflow.
-
- FLT_LARGEST_EXP
- The largest biased exponent that can be used for finite numbers
- (255 if the largest exponent is used for finite numbers, 254
- otherwise) */
-
-#ifdef _FLT_LARGEST_EXPONENT_IS_NORMAL
-#define FLT_UWORD_IS_FINITE(x) 1
-#define FLT_UWORD_IS_NAN(x) 0
-#define FLT_UWORD_IS_INFINITE(x) 0
-#define FLT_UWORD_MAX 0x7fffffff
-#define FLT_UWORD_EXP_MAX 0x43010000
-#define FLT_UWORD_LOG_MAX 0x42b2d4fc
-#define FLT_UWORD_LOG_2MAX 0x42b437e0
-#define HUGE ((float)0X1.FFFFFEP128)
-#else
-#define FLT_UWORD_IS_FINITE(x) ((x)<0x7f800000L)
-#define FLT_UWORD_IS_NAN(x) ((x)>0x7f800000L)
-#define FLT_UWORD_IS_INFINITE(x) ((x)==0x7f800000L)
-#define FLT_UWORD_MAX 0x7f7fffffL
-#define FLT_UWORD_EXP_MAX 0x43000000
-#define FLT_UWORD_LOG_MAX 0x42b17217
-#define FLT_UWORD_LOG_2MAX 0x42b2d4fc
-#define HUGE ((float)3.40282346638528860e+38)
-#endif
-#define FLT_UWORD_HALF_MAX (FLT_UWORD_MAX-(1L<<23))
-#define FLT_LARGEST_EXP (FLT_UWORD_MAX>>23)
-
-/* Many routines check for zero and subnormal numbers. Such things depend
- on whether the target supports denormals or not:
-
- FLT_UWORD_IS_ZERO(X)
- True if a positive float with bitmask X is +0. Without denormals,
- any float with a zero exponent is a +0 representation. With
- denormals, the only +0 representation is a 0 bitmask.
-
- FLT_UWORD_IS_SUBNORMAL(X)
- True if a non-zero positive float with bitmask X is subnormal.
- (Routines should check for zeros first.)
-
- FLT_UWORD_MIN
- The bitmask of the smallest float above +0. Call this number
- REAL_FLT_MIN...
-
- FLT_UWORD_EXP_MIN
- The bitmask of the float representation of REAL_FLT_MIN's exponent.
-
- FLT_UWORD_LOG_MIN
- The bitmask of |log(REAL_FLT_MIN)|, rounding down.
-
- FLT_SMALLEST_EXP
- REAL_FLT_MIN's exponent - EXP_BIAS (1 if denormals are not supported,
- -22 if they are).
-*/
-
-#ifdef _FLT_NO_DENORMALS
-#define FLT_UWORD_IS_ZERO(x) ((x)<0x00800000L)
-#define FLT_UWORD_IS_SUBNORMAL(x) 0
-#define FLT_UWORD_MIN 0x00800000
-#define FLT_UWORD_EXP_MIN 0x42fc0000
-#define FLT_UWORD_LOG_MIN 0x42aeac50
-#define FLT_SMALLEST_EXP 1
-#else
-#define FLT_UWORD_IS_ZERO(x) ((x)==0)
-#define FLT_UWORD_IS_SUBNORMAL(x) ((x)<0x00800000L)
-#define FLT_UWORD_MIN 0x00000001
-#define FLT_UWORD_EXP_MIN 0x43160000
-#define FLT_UWORD_LOG_MIN 0x42cff1b5
-#define FLT_SMALLEST_EXP -22
-#endif
-
-#ifdef __STDC__
-#undef __P
-#define __P(p) p
-#else
-#define __P(p) ()
-#endif
-
-/*
- * set X_TLOSS = pi*2**52, which is possibly defined in <values.h>
- * (one may replace the following line by "#include <values.h>")
- */
-
-#define X_TLOSS 1.41484755040568800000e+16
-
-/* Functions that are not documented, and are not in <math.h>. */
-
-extern double logb __P((double));
-#ifdef _SCALB_INT
-extern double scalb __P((double, int));
-#else
-extern double scalb __P((double, double));
-#endif
-extern double significand __P((double));
-
-/* ieee style elementary functions */
-extern double __ieee754_sqrt __P((double));
-extern double __ieee754_acos __P((double));
-extern double __ieee754_acosh __P((double));
-extern double __ieee754_log __P((double));
-extern double __ieee754_atanh __P((double));
-extern double __ieee754_asin __P((double));
-extern double __ieee754_atan2 __P((double,double));
-extern double __ieee754_exp __P((double));
-extern double __ieee754_cosh __P((double));
-extern double __ieee754_fmod __P((double,double));
-extern double __ieee754_pow __P((double,double));
-extern double __ieee754_lgamma_r __P((double,int *));
-extern double __ieee754_gamma_r __P((double,int *));
-extern double __ieee754_log10 __P((double));
-extern double __ieee754_sinh __P((double));
-extern double __ieee754_hypot __P((double,double));
-extern double __ieee754_j0 __P((double));
-extern double __ieee754_j1 __P((double));
-extern double __ieee754_y0 __P((double));
-extern double __ieee754_y1 __P((double));
-extern double __ieee754_jn __P((int,double));
-extern double __ieee754_yn __P((int,double));
-extern double __ieee754_remainder __P((double,double));
-extern __int32_t __ieee754_rem_pio2 __P((double,double*));
-#ifdef _SCALB_INT
-extern double __ieee754_scalb __P((double,int));
-#else
-extern double __ieee754_scalb __P((double,double));
-#endif
-
-/* fdlibm kernel function */
-extern double __kernel_standard __P((double,double,int));
-extern double __kernel_sin __P((double,double,int));
-extern double __kernel_cos __P((double,double));
-extern double __kernel_tan __P((double,double,int));
-extern int __kernel_rem_pio2 __P((double*,double*,int,int,int,const __int32_t*));
-
-/* Undocumented float functions. */
-extern float logbf __P((float));
-#ifdef _SCALB_INT
-extern float scalbf __P((float, int));
-#else
-extern float scalbf __P((float, float));
-#endif
-extern float significandf __P((float));
-
-/* ieee style elementary float functions */
-extern float __ieee754_sqrtf __P((float));
-extern float __ieee754_acosf __P((float));
-extern float __ieee754_acoshf __P((float));
-extern float __ieee754_logf __P((float));
-extern float __ieee754_atanhf __P((float));
-extern float __ieee754_asinf __P((float));
-extern float __ieee754_atan2f __P((float,float));
-extern float __ieee754_expf __P((float));
-extern float __ieee754_coshf __P((float));
-extern float __ieee754_fmodf __P((float,float));
-extern float __ieee754_powf __P((float,float));
-extern float __ieee754_lgammaf_r __P((float,int *));
-extern float __ieee754_gammaf_r __P((float,int *));
-extern float __ieee754_log10f __P((float));
-extern float __ieee754_sinhf __P((float));
-extern float __ieee754_hypotf __P((float,float));
-extern float __ieee754_j0f __P((float));
-extern float __ieee754_j1f __P((float));
-extern float __ieee754_y0f __P((float));
-extern float __ieee754_y1f __P((float));
-extern float __ieee754_jnf __P((int,float));
-extern float __ieee754_ynf __P((int,float));
-extern float __ieee754_remainderf __P((float,float));
-extern __int32_t __ieee754_rem_pio2f __P((float,float*));
-#ifdef _SCALB_INT
-extern float __ieee754_scalbf __P((float,int));
-#else
-extern float __ieee754_scalbf __P((float,float));
-#endif
-
-/* float versions of fdlibm kernel functions */
-extern float __kernel_sinf __P((float,float,int));
-extern float __kernel_cosf __P((float,float));
-extern float __kernel_tanf __P((float,float,int));
-extern int __kernel_rem_pio2f __P((float*,float*,int,int,int,const __int32_t*));
-
-/* The original code used statements like
- n0 = ((*(int*)&one)>>29)^1; * index of high word *
- ix0 = *(n0+(int*)&x); * high word of x *
- ix1 = *((1-n0)+(int*)&x); * low word of x *
- to dig two 32 bit words out of the 64 bit IEEE floating point
- value. That is non-ANSI, and, moreover, the gcc instruction
- scheduler gets it wrong. We instead use the following macros.
- Unlike the original code, we determine the endianness at compile
- time, not at run time; I don't see much benefit to selecting
- endianness at run time. */
-
-#ifndef __IEEE_BIG_ENDIAN
-#ifndef __IEEE_LITTLE_ENDIAN
- #error Must define endianness
-#endif
-#endif
-
-/* A union which permits us to convert between a double and two 32 bit
- ints. */
-
-#ifdef __IEEE_BIG_ENDIAN
-
-typedef union
-{
- double value;
- struct
- {
- __uint32_t msw;
- __uint32_t lsw;
- } parts;
-} ieee_double_shape_type;
-
-#endif
-
-#ifdef __IEEE_LITTLE_ENDIAN
-
-typedef union
-{
- double value;
- struct
- {
- __uint32_t lsw;
- __uint32_t msw;
- } parts;
-} ieee_double_shape_type;
-
-#endif
-
-/* Get two 32 bit ints from a double. */
-
-#define EXTRACT_WORDS(ix0,ix1,d) \
-do { \
- ieee_double_shape_type ew_u; \
- ew_u.value = (d); \
- (ix0) = ew_u.parts.msw; \
- (ix1) = ew_u.parts.lsw; \
-} while (0)
-
-/* Get the more significant 32 bit int from a double. */
-
-#define GET_HIGH_WORD(i,d) \
-do { \
- ieee_double_shape_type gh_u; \
- gh_u.value = (d); \
- (i) = gh_u.parts.msw; \
-} while (0)
-
-/* Get the less significant 32 bit int from a double. */
-
-#define GET_LOW_WORD(i,d) \
-do { \
- ieee_double_shape_type gl_u; \
- gl_u.value = (d); \
- (i) = gl_u.parts.lsw; \
-} while (0)
-
-/* Set a double from two 32 bit ints. */
-
-#define INSERT_WORDS(d,ix0,ix1) \
-do { \
- ieee_double_shape_type iw_u; \
- iw_u.parts.msw = (ix0); \
- iw_u.parts.lsw = (ix1); \
- (d) = iw_u.value; \
-} while (0)
-
-/* Set the more significant 32 bits of a double from an int. */
-
-#define SET_HIGH_WORD(d,v) \
-do { \
- ieee_double_shape_type sh_u; \
- sh_u.value = (d); \
- sh_u.parts.msw = (v); \
- (d) = sh_u.value; \
-} while (0)
-
-/* Set the less significant 32 bits of a double from an int. */
-
-#define SET_LOW_WORD(d,v) \
-do { \
- ieee_double_shape_type sl_u; \
- sl_u.value = (d); \
- sl_u.parts.lsw = (v); \
- (d) = sl_u.value; \
-} while (0)
-
-/* A union which permits us to convert between a float and a 32 bit
- int. */
-
-typedef union
-{
- float value;
- __uint32_t word;
-} ieee_float_shape_type;
-
-/* Get a 32 bit int from a float. */
-
-#define GET_FLOAT_WORD(i,d) \
-do { \
- ieee_float_shape_type gf_u; \
- gf_u.value = (d); \
- (i) = gf_u.word; \
-} while (0)
-
-/* Set a float from a 32 bit int. */
-
-#define SET_FLOAT_WORD(d,i) \
-do { \
- ieee_float_shape_type sf_u; \
- sf_u.word = (i); \
- (d) = sf_u.value; \
-} while (0)